Skip to main content

Molecular Aspects of Grapevine-Pathogenic Fungi Interactions

  • Chapter
Grapevine Molecular Physiology & Biotechnology

Grapevine is a major and highly valuable fruit crop with roughly 2.25 mil ha grown worldwide in 2007 (source: U.S. Food and Agriculture Organization). Unfortunately, most of the premium cultivars used for winemaking, including the widely used European Vitis vinifera cultivars, are highly susceptible to several pathogenic microorganisms including fungi, oomycetes, bacteria, phytoplasma and viruses. In the past 15 years, the understanding of grapevinepathogen interactions has entered the molecular era and will most certainly constitute a basis for future improvement of grapevine disease tolerance. After a brief presentation of the main fungal- or oomycete-induced diseases, this chapter aims to give an overview of some aspects of grapevine-pathogenic fungi or oomycete interactions, at the molecular level. It includes an overview of resistance gene analogs, elicitors that induce defense reactions in grapevine, signalling pathways and gene activation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adrian M, Jeandet P, Bessis R, Joubert JM (1996) Induction of phytoalexin (resveratrol) synthesis in grapevine leaves reated with aluminum chloride (AlCl3). J Agric Food Chem 44:1979-1981

    Article  CAS  Google Scholar 

  • Adrian M, Jeandet P, Veneau J, Weston LA, Bessis R (1997) Biological activity of resveratrol, a stilbenic compound from grapevines, against Botrytis cinerea, the causal agent for gray mold. J Chem Ecol 23:1689-1702

    Article  CAS  Google Scholar 

  • Adrian M, Jeandet P, Douillet-Breuil AC, Tesson L, Bessis R (2000) Stilbene content of mature Vitis vinifera berries in response to UV-C elicitation. J Agric Food Chem 48:6103-5

    Article  PubMed  CAS  Google Scholar 

  • Ausubel FM (2005) Are innate immune signalling pathways in plant, animals concerved? Nat Immunol 6:973-797

    Article  PubMed  CAS  Google Scholar 

  • Aziz A, Poinssot B, Daire X, Adrian M, Bezier A, Lambert B, Joubert J M, Pugin A (2003) Laminarin elicits defense responses in grapevine, induces protection against Botrytis cinerea, Plasmopara viticola. Mol Plant Microbe Interact 16:1118-1128

    Article  PubMed  CAS  Google Scholar 

  • Aziz A, Heyraud A, Lambert B (2004) Oligogalacturonide signal transduction, induction of defense-related responses, protection of grapevine against Botrytis cinerea. Planta 218:767-774

    Article  PubMed  CAS  Google Scholar 

  • Aziz A, Gauthier A, Bezler A, Poinssot B, Joubert JM, Pugin A, Heyraud A, Baillieul F (2007) Elicitor, resistance-nducing activities of beta-1,4 cellodextrins in grapevine, comparison with beta-1,3 glucans, alpha-1,4 oligogalacturonides. J Exp Bot 58:1463-1472

    Article  PubMed  CAS  Google Scholar 

  • Bai J, Pennill LA, Ning J, Lee SW, Ramalingam J, Webb CA, Zhao B, Sun Q, Nelson JC, Leach JE, Hulbert SH (2002) Diversity in leucine in nucleotide binding site-Leucine-rich repeat genes in cereals. Genome Res 12:1871-1884

    Article  PubMed  CAS  Google Scholar 

  • Bais AJ, Mutphy P J, Dry IB (2000) The molecular regulation of stilbene phytoalexin biosynthesis in Vitis vinifera during grape berry development. Austral J Plant Physiol 27:425-433

    Article  CAS  Google Scholar 

  • Barker CL, Donald T, Pauquet J, Ratnaparkhe MB, Bouquet A, Adam-Blondon AF, Thomas MR, Dry I (2005) Genetic, physical mapping of the grapevine powdery mildew resistance gene Run1, using a bacterial artificial chromosome library. Theor Appl Genet 111:370-377

    Article  PubMed  CAS  Google Scholar 

  • Bergelson J, Kreitman M, Stahl EA, Tian D (2001) Evolutionary dynamics of plant R-genes. Science 292:2281-2285

    Article  PubMed  CAS  Google Scholar 

  • Bertsch C, Joly D, Walter B (2003) Sequence of a putative Vitis vinifera PR-1. Vitis 42:103-104

    CAS  Google Scholar 

  • Bisson LF, Waterhouse AL, Ebeler SE, Walker AM, Lapsley JT (2002) The present, the future of the international wine industry. Nature 418:969-699

    Article  CAS  Google Scholar 

  • Blein J-P, Coutos-Thévenot P, Marion D, Ponchet M (2002) From elicitins to lipid-transfer proteins: a new insight in cell signalling involved in plant defense mechanisms. Trends Plant Sci 7:293-296

    Article  PubMed  CAS  Google Scholar 

  • Bonomelli A, Mercier L, Franchel J, Baillieul F, Benizri E, Mauro MC (2004) Response of grapevine defenses to UV-C exposure. Am J Enol Vitic 55:51-59

    CAS  Google Scholar 

  • Borie B, Jeandet P, Parize A, Bessis R, Adrian M (2004) Resveratrol, stilbene synthase mRNA production in grapevine leaves treated with biotic, abiotic phytoalexin elicitors. Am J Enol Vitic 55:60-64

    CAS  Google Scholar 

  • Bru R, Selles S, Casado-Vela J, Belchi-Navarro S, Pedreno MA (2006) Modified cyclodextrins are chemically defined glucan inducers of defense responses in grapevine cell cultures. J Agric Food Chem 54:65-71

    Article  PubMed  CAS  Google Scholar 

  • Bruno G, Sparapano L (2006a) Effects of three esca-associated fungi on Vitis vinifera L.:II. Characterization of biomolecules in xylem sap, leaves of healthy, diseased vines. Physiol Mol Plant Pathol 69:195-208

    Google Scholar 

  • Bruno G, Sparapano L (2006b) Effects of three esca-associated fungi on Vitis vinifera L.:III. Enzymes produced by the pathogens, their role in fungus-to-plant or in fungus-to-fungus interactions. Physiol Mol Plant Pathol 69:182-194

    Google Scholar 

  • Busam G, Kassemeyer HH, Matern U (1997) Differential expression of chitinases in Vitis vinifera L. responding to systemic acquired resistance activators or fungal challenge. Plant Physiol 115:1029-38

    Article  PubMed  CAS  Google Scholar 

  • Calonnec A, Cartolaro P, Poupot C, Dubourdieu D, Darriet P (2004) effects of Uncinula necator on the yield and quality of grapes (Vitis vinifera) wine. Plant Pathol 53:434-445

    Article  CAS  Google Scholar 

  • Chen JY, Wen PF, Kong WF, Pan QH, Zhan JC, Li JM, Wan SB, Huang WD (2006) Effect of salicylic acid on phenylpropanoids, phenylalanine ammonia-lyase in harvested grape berries. Postharvest Biol Technol 40:64-72

    Article  CAS  Google Scholar 

  • Chen W-J, Delmotte F, Richard-Cervera S, Douence L, Greif C, Corio-Costet M-F (2007) At least two origins of fungicide resistance in grapevine downy mildew populations. Appl Ennviron Microbiol 73:5162-5172

    Article  CAS  Google Scholar 

  • Chisholm ST, Coaker G, Day B, Staskawicz BJ (2006) Host-microbe interactions: shaping the evolution of the plant immune system. Cell 124:803-814

    Article  PubMed  CAS  Google Scholar 

  • Coutos-Thévenot P, Jouenne T, Maes O, Guerbette F, Grosbois M, Le Caer JP, Boulay M, Deloire A, Kader J, Guern J (1993) Four 9-kD proteins excreted by somatic embryos of grapevine are isoforms of lipid-transfer proteins. Eur J Biochem 217:885-889

    Article  PubMed  Google Scholar 

  • Coutos-Thevenot P, Poinssot B, Yean H, Buffard D, Esnault R, Hain R, Boulay M (2001) Tolerance of grapevine 41B rootstock in in vitro transgenic plants expressing the stilbene synthase vst1 gene under the control of a fungi inducible PR 10 promoter. J Exp Bot 358:949-959

    Google Scholar 

  • Curtin C, Zhang W, Franco C, Curtin C, Kikuchi M (2003) Manipulating anthocyanin composition in Vitis vinifera suspension cultures by elicitation with jasmonic acid, light irradiation. Biotechnol Letters 25:1131-1135

    Article  CAS  Google Scholar 

  • Dalbo MA, Ye GN, Weeden NF, Wilcox WF, Reisch BI (2001) Marker-assisted selection for powdery mildew resistance in grapes. J Am Soc Horticult 126:83-89

    Google Scholar 

  • Dangl JL, Jones JDG (2001) Plant pathogens, integrated defense responses to infection. Nature 411:826-833

    Article  PubMed  CAS  Google Scholar 

  • Délye C, Laigret F, Corio-Costet M-F (1997) A mutation in the 14α-demethylase gene of Un cinula necator that correlates with resistance to a sterol biosynthesis inhibitor. Appl Environ Microbiol 63:2996–2970

    Google Scholar 

  • Di Gaspero G, Cipriani G (2003) Nucleotide biding site/leucine-rich repeats, Pto-like, repceptorlike kinases related to disease resistance in grapevine. Mol Gen Genomics 269:612-623

    Article  CAS  Google Scholar 

  • Di Gaspero G, Cipriani G, Adam-Blondon A-F, Testolin R (2007) Linkage maps of grapevine displaying the chromosomal location of 420 microsatellite markers, 82 markers for R-gene candidates. Theor Appl Genet 114:1249-1263

    Article  PubMed  CAS  Google Scholar 

  • Doligez A, Adam-Blondon A-F, Cipriani G, Di Gaspero G, Laucou V, Merdinoglu D, Meredith CP, Riaz S (2006) An integrated SSR map of grapevine based on five mapping populations. Theor Appl Genet 113:369-382

    Article  PubMed  CAS  Google Scholar 

  • Ellis J, Dodds P, Pryor T (2000) Structure, function, evolution of plant disease resistance genes. Curr Opin Plant Biol 3:278-284

    Article  PubMed  CAS  Google Scholar 

  • Fan CH, Pu N, Wang XP, Wang YJ, Fang L, Xu WR, Zhang JX (2008) Agrobacterium-mediated genetic transformation of grapevine (Vitis vinifera L.) with a novel stilbene synthase gene from Chinese wild Vitis pseudoreticulata. Plant Cell Tissue Organ Cult 92:197-206

    Article  CAS  Google Scholar 

  • Fischer BM, Salakhutdinov I, Akkurt M, Eibach R, Edwards KJ, Töpfer R, Zyprian EM (2004) Quantitative trait locus analysis of fungal disease resistance factors on a molecular map of grapevine. Theor Appl Genet 108:501-515

    Article  PubMed  CAS  Google Scholar 

  • François J, Lallemand M, Fleurat-Lessard P, Laquitaine L, Delrot S, Coutos-Thévenot P, Gomès E (2008) Overexpression of the VvLTP1 gene interferes with somatic embryo development in grapevine. Function Plant Biol 35:394-402

    Article  CAS  Google Scholar 

  • Gabler FM, Smilanick JL, Mansour M, Ramming DW, Mackey BE (2003) Correlations of morphological, anatomical,, chemical features of grape berries with resistance to Botrytis cinerea. Phytopathology 93:1263-1273

    Article  PubMed  Google Scholar 

  • Garcia-Brugger A, Lamotte O, Vandelle E, Bourque S, Lecourieux D, Poinssot B, Wendehenne D, Pugin A (2006) Early signalling events induced by elicitors of plant defenses. Mol Plant Microbe Interact 19:714-724

    Article  CAS  Google Scholar 

  • Giorcelli A, Sparvoli F, Fulvio MY, Tava A, Balestrazzi A, Vrhovsek U, Calligari P, Bollini R, Confalonieri M (2004) Expression of the stilbene synthase (StSy) gene from grapevine in transgenic white poplar results in high accumulation of the antioxidant resveratrol glucosides. Transgenic Res 13:203-214

    Article  PubMed  CAS  Google Scholar 

  • Girault TJF, Rogniaux H, Pascal S, Delrot S, Coutos-Thevenot P, Gomès E (2008) Exogenous application of a lipid transfer protein-jasmonic acid complex induces protection of grapevine towards infection by Botrytis cinerea. Plant Physiol Biochem 46:140-149

    Article  PubMed  CAS  Google Scholar 

  • Godfrey D, Able AJ, Dry IB (2007) Induction of a grapevine germin-like protein (VvGLP3) gen is closely linked to the site of Erysiphe necator infection: a possible role in defense? Mol Plant Microbe Interact 20:1112-1115

    Article  PubMed  CAS  Google Scholar 

  • Gomès E, Sagot E, Gaillard C, aquitaine L, Poinsot B, Sanejouand H-Y, Delrot S, Coutos-Thévenot, P (2003) Non specific lipid-transfer protein genes expression in grape (Vitis sp.) cells in response to fungal elicitor treatments. Mol Plant Microbe Interact 16:456-464

    Article  PubMed  Google Scholar 

  • Grando MS, Bellin D, Edwards KJ, Pozzi C, Stefanini M, Velasco R (2003) Molecular linkage maps of Vitis vinifera L., Vitis riparia Mchx. Theor Appl Genet 106:1213-1224

    PubMed  CAS  Google Scholar 

  • Grant, M Lamb C (2006) Systemic immunity. Curr Opin Plant Biol 9:414-420

    Article  PubMed  CAS  Google Scholar 

  • Grimmig B, Gonzalez-Perez MN, Welzl G, Penuelas J, Schubert R, Hain R, Heidenreich B, Betz C, Langebartels C, Ernst D, Sandermann H (2002) Ethylene-, ozone-induced regulation of a grapevine resveratrol synthase gene:different responsive promoter regions. Plant Physiol Biochem 40:865-870

    Article  CAS  Google Scholar 

  • Hain, R Reif HJ, Krause E, Langebartels R, Kindl H, Vornam B, Wiese W, Schmelzer E, Schreier PH, Stocker RH et al. (1993) Disease resistance results from foreign phytoalexin expression in a novel plant. Nature 361:153-6

    Article  PubMed  CAS  Google Scholar 

  • Hayasaka Y, Adams KS, Pocock KF, Baldock GA, Waters EJ, Hoj PB (2001) Use of electrospray mass spectrometry for mass determination of grape (Vitis vinifera) juice pathogenesis-related proteins:a potential tool for varietal differentiation. J Agric Food Chem 49:1830-9

    Article  PubMed  CAS  Google Scholar 

  • Husken A, Baumert A, Milkowski C, Becker HC, Strack D, Mollers C (2005) Resveratrol glucoside (piceid) synthesis in seeds of transgenic oilseed rape (Brassica napus L.). Theor Appl Genet 111:1553-1562

    Article  PubMed  CAS  Google Scholar 

  • Iriti M, Rossoni M, Borgo M, Faoro F (2004) Benzothiadiazole enhances resveratrol, anthocyanin biosynthesis in grapevine, meanwhile improving resistance to Botrytis cinerea. J Agric Food Chem 52:4406-4413

    Article  PubMed  CAS  Google Scholar 

  • Jacobs AK, Dry IB, Robinson SP (1999) Induction of different pathogenesis-related cDNAs in grapevine infected by powdery mildew, treated with etephon. Plant Pathol 48:325-336

    Article  CAS  Google Scholar 

  • Jaysankar S, Zhijin LI, Gray DJ (2003) Constitutive expression of Vitis vinifera thaumatin-like protein after in vitro selection, its role in anthracnose resistance. Function Plant Biol 30:1105-1115

    Article  Google Scholar 

  • Jean-Denis JB, Pezet R, Tabacchi R (2006) Rapid analysis of stilbenes, derivatives from downy mildew-infected grapevine leaves by liquid chromatography-atmospheric pressure photoionisation mass spectrometry. J Chromatogr 1112:263-268

    Article  CAS  Google Scholar 

  • Kasparovsky T, Blein JP, Mikes V (2004) Ergosterol elicits oxidative burst in tobacco cells via phospholipase A2, protein kinase C signal pathway. Plant Physiol Biochem 42:429-35

    Article  PubMed  CAS  Google Scholar 

  • Keller M, Viret O, Cole FM (2003) Botrytis cinerea infection in grape flowers:defense reaction, latency, disease expression. Phytopathology 93:316-322

    Article  PubMed  Google Scholar 

  • Kortekamp A (2006) Expression analysis of defense-related genes in grapevine leaves after inoculation with a host, a non-host pathogen. Plant Physiol Biochem 44:58-67

    Article  PubMed  CAS  Google Scholar 

  • Kortekamp A, Welter L, Vogt S, Knoll A, Schwander F, Töpfer R, Zyprian E (2008) Identification, isolation, characterization of a CC-NBS-LRR candidate disease resitance gene family in grapevine. Mol Breeding:doi 10.1007/s11032-008-9186-2.

    Google Scholar 

  • Krivanek AF, Riaz S, Walker MA (2006) Identification, molecular mapping of PdR1, a primary resistance gene to Pierce’s disease in Vitis. Theor Appl Genet 112:1125-1131

    Article  PubMed  CAS  Google Scholar 

  • La Guerche S, Dauphin B, Pons M, Blancard D, Darriet P (2006) Characterization of some mushroom, earthy off-odors microbially induced by the development of rot on grapes. J Agric Food Chem 54:9193-9200

    Article  PubMed  CAS  Google Scholar 

  • Langcake P, Pryce RJ (1976) The production of resveratrol by Vitis vinifera, other members of the Vitaceae as o response to infection or injury. Physiol Plant Pathol 9:77-86

    Article  CAS  Google Scholar 

  • Langcake P, Pryce RJ (1977) A new class of phytoalexins from grapevines. Experientia 33:151-2

    Article  PubMed  CAS  Google Scholar 

  • Laquitaine L, Gomès E, François J, Marchive C, Pascal S, Hamdi S, Atanassova R, Delrot S, Coutos-Thevenot P (2006) Molecular basis of ergosterol-induced protection of grape against Botrytis cinerea: induction of type I Lipid Transfer Protein promoter activity, WRKY, stilbene synthase gene expression. Mol Plant Microbe Interact 19:1103-1112

    Article  PubMed  CAS  Google Scholar 

  • Larignon P, Dubos B (1997) Fungi associated with esca disease in grapevine. Eur J Plant Pathol 103:147-157

    Article  Google Scholar 

  • Larronde F, Gaudillere JP, Krisa S, Decendit A, Deffieux G, Merillon JM (2003) Airborne methyl jasmonate induces stilbene accumulation in leaves, berries of grapevine plants. Am J Enol Vitic 54:63-66

    CAS  Google Scholar 

  • Laura R, Franceschetti M, Ferri M, Tassoni A, Bagni N (2007) Resveratrol production in Vitis vinifera cell suspensions treated with several elicitors. Caryologia 60:169-171

    Google Scholar 

  • Leroux P, Chapeland F, Arnold A, Gredt M (1998) Résistance de Botrytis cinerea aux fongicides. Phytoma, la défense des végétaux 504:62-67

    CAS  Google Scholar 

  • Liswidowati F, Melchior F, Holmann F, Schwer B, Kindl H (1991) Induction of stilbene synthase by Botrytis cinerea in cultured grapevine cells. Planta 183:307-314

    Article  CAS  Google Scholar 

  • Lochman J, Mikes V (2006) Ergosterol treatment leads to the expression of a specific set of defense-related genes in tobacco. Plant Mol Biol 62:43-51

    Article  PubMed  CAS  Google Scholar 

  • Maldonado AM, Doerner P, Dixon RA, Lamb CJ, Cameron RK (2002) A putative lipid transfer protein involved in systemic resistance signalling in Arabidopsis. Nature 419:399-403

    Article  PubMed  CAS  Google Scholar 

  • Marchive C, Mzid R, Deluc L, Barrieu F, Pirrello J, Gauthier A, Corio-Costet MF, Regad F, Cailleteau B, Hamdi S, Lauvergeat V (2007) Isolation, characterization of a Vitis vinifera transcription factor, VvWRKY1,, its effect on responses to fungal pathogens in transgenic tobacco plants. J Exp Bot 58:1999-2010

    Article  PubMed  CAS  Google Scholar 

  • Melchior F, Kindl H (1990) Grapevine stilbene synthase cDNA only slightly differing from chalcone synthase cDNA is expressed in Escherichia coli into a catalytically active enzyme. FEBS Lett 268:17-20

    Article  PubMed  CAS  Google Scholar 

  • Merdinoglu D, Wiedemann-Merdinoglu S, Coste P, Dumas V, Haetty S, Butterlin G, Greif C (2003) Genetic analysis of downy mildew resistance derived from Muscadinia rotundifolia. Acta Horticult 603:451-456

    CAS  Google Scholar 

  • Meyers BC, Kozik A, Griego A, Kuang H, Michelmore RW (2003) Genome-wide analysis of the NBS-LRR-encoding genes in Arabidopsis. Plant Cell 15:809-834

    Article  PubMed  CAS  Google Scholar 

  • Mohamed N, Lherminier J, Farmer MJ, Fromentin J, Beno N, Houot V, Milat ML, Blein J-P (2006) Defense responses in grapevine leaves against Botrytis cinerea induced by application of a Pythium oligandrum strain or its elicitin, oligandrin, to roots. Phytopathology 97:611-620

    Article  CAS  Google Scholar 

  • Moller WJ, Kasimatis AN (1978) Dieback of grapevine caused by Eutypa armeniacae. Plant Disease Rep 62:254-258

    Google Scholar 

  • Monteiro S, Carra-Pereira MA, Loureiro VB, Teixeira AR, Ferreira RB (2007) The diversity of pathogenesis-related proteins decreases during grape maturation. Phytochemistry 68:416-425

    Article  PubMed  CAS  Google Scholar 

  • Morales M, Bru R, Garcia-Carmona F, Ros-Barcelo A, Pedreno MA (1998) Effect of dimethyl-{\ss}cyclodextrins on resveratrol metabolism in Gamay grapevine cell cultures before, after inoculation with Xylophilus ampelinus. Plant Cell Tissue Organ Cult 53:179-187

    Article  CAS  Google Scholar 

  • Moroldo M, Paillard S, Marconi R, Legeai F, et al. (2008) A physical map of the heterozygous grapevine Carbernet Sauvignon allows mapping candidate genes for disease resistance. BMC Plant Biol 6:66

    Article  CAS  Google Scholar 

  • Mullins MG, Bouquet A, Williams LE (1992) Biology of the Grapevine. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Munkvold GP, Marois JJ (1994) Eutypa dieback of sweet cherry, occurence of Eutypa lata perithecia in the central valley of california. Plant Disease 78:200-207

    Google Scholar 

  • Olmo H P (1986) The potential role of (vinifera x Rotundifolia) hybrids in grape variety improvement. Experientia 42:921-926

    Article  Google Scholar 

  • Pascoe I (1999) Grapevine trunk disease - black goo decline, esca, Eutypa dieback, others. Aust Grape Wine 429:27-28

    Google Scholar 

  • Pauquet J, Bouquet,A, This P, Adam-Blondon AF (2001) Establishment of a local map of AFLP markers around the powdery mildew resistance gene Run1 in grapevine, assessment of their usefulness for marker assisted selection. Theor Appl Genet 103:1201-1210

    Article  CAS  Google Scholar 

  • Pezet R, Pont V (1995) Mode of toxic action of Vitaceae stilbenes on fungal cells. In: Daniel M, Purkayastha RP (eds) Handbook of Phytoalexin Metabolism. Action, Marcel Dekker Inc

    Google Scholar 

  • Pezet R, Gindro K, Viret O, Richter H (2004) Effects of resveratrol, viniferins, pterostilbene on Plasmopara viticola zoospore mobility, disease development. Vitis 43:145-148

    CAS  Google Scholar 

  • Poinssot B, Vandelle E, Bentéjac M, Adrian M, Levis C, Brygoo Y, Garin J, Sicilia F, Coutos-Thevenot P, Pugin A (2003) The endopolygalacturonase 1 from Botrytis cinerea activates grapevine defense reactions unrelated to its enzymatic activity. Mol Plant Microbe Interact 16:553-563

    Article  PubMed  CAS  Google Scholar 

  • Ponchet M, Panabières F, Milat M-L, Mikes V, Montillet J-L, Suty L, Triantaphylides C, Tirilly Y, Blein J-P (1999) Are elicitins cryptograms in plant-Oomycetes communication? Cell Mol Life Sci 56:1020-1047

    Article  PubMed  CAS  Google Scholar 

  • Pont V, Pezet R (1990) Relation between the chemical structure, the biological activity of hydroxystilbenes against Botrytis cinerea. J Phytopathol 130:1-8

    Article  CAS  Google Scholar 

  • Repka V, Kubikova J, Fischerova L (2000) Immunodetection of PR-1-like proteins in grapevine leaves infected with Oidium tuckeri, in elicited suspension cell cultures. Vitis 39:123-127

    CAS  Google Scholar 

  • Repka V, Fischerova I, Silharova K (2001a) Biological activity of the elicitor released from mycelium of a grapevine isolate of the necrotrophic fungus Botrytis cinerea. Vitis 40:205-212

    Google Scholar 

  • Repka V (2001b) Elicitor-stimulated induction of defense mechanisms, defense gene activation in grapevine cell suspension cultures. Biol Plant 44:555-565

    Google Scholar 

  • Repka V (2002) A bestatin primes grapevine cells for augmented elicitation of the hypersensitivelike cell death, associated defense responses by methyl jasmonate. Vitis 41:69-76

    CAS  Google Scholar 

  • Repka, V, Fischerova, I, Silharova, K, Repka, V, Fischerova, I (2004) Methyl jasmonate is a potent elicitor of multiple defense responses in grapevine leaves, cell-suspension cultures. Biol Plant 48:273-283

    Article  CAS  Google Scholar 

  • Repka V (2006) Early defense responses induced by two distinct elicitors derived from a Botrytis cinerea in grapevine leaves, cell suspensions. Biol Plant 50:94-106

    Article  CAS  Google Scholar 

  • Richter H, Pezet R, Viret O, Gindro K (2005) Characterization of 3 new partial stilbene synthase genes out of over 20 expressed in Vitis vinifera during the interaction with Plasmopara viticola. Physiol Mol Plant Pathol 67:248-260

    Article  CAS  Google Scholar 

  • Robert N, Ferran J, Breda C, Coutos-Thevenot P, Boulay M, Buffard D, Esnault R (2001) Molecular characterization of the incompatible interaction of Vitis vinifera leaves with Pseudomonas syringae pv. pisi: expression of genes coding for stilbene synthase, class 10 PR protein. Eur J Plant Pathol 107:249-261

    Article  CAS  Google Scholar 

  • Robert N, Roche K, Lebeau Y, Breda C, Boulay M, Esnault R, uffard D (2002) Expression of grapevine chitinase genes in berries, leaves infected by fungal, bacterial pathogens. Plant Sci 162:389-400

    Article  CAS  Google Scholar 

  • Rossard S, Luini E, Perault JM, Bonmort J, Roblin G (2006) Early changes in membrane permeability, production of oxidative burst, modification of PAL activity induced by ergosterol in cotyledons of Mimosa pudica. J Exp Bot 57:1245-52

    Article  PubMed  CAS  Google Scholar 

  • Schulze K, Schreiber L, Szankowski I (2005) Inhibiting effects of resveratrol, its glucoside piceid against Venturia inaequalis, the causal agent of apple scab. J Agric Food Chem 53:356-362

    Article  PubMed  CAS  Google Scholar 

  • Schwekendiek A, Spring O, Heyerick A, Pickel B, Pitsch NT, Peschke F, De-Keukeleire D, Weber G (2007) Constitutive expression of a grapevine stilbene synthase gene in transgenic hop (Humulus lupulus L.) yields resveratrol, its derivatives in substantial quantities. J Agric Food Chem 105:195-203

    Google Scholar 

  • Shiu S-H, Bleecker AB (2001) Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. Proc Natl Acad Sci USA 98:10763-10768

    Article  PubMed  CAS  Google Scholar 

  • Szankowski I, Briviba K, Fleschhut J, Schonherr J, Jacobsen HJ, Kiesecker H (2003) Transformation of apple (Malus domestica Borkh.) with the stilbene synthase gene from grapevine (Vitis vinifera L.), a PGIP gene from kiwi (Actinidia deliciosa). Plant Cell Rep 22:141-149

    Article  PubMed  CAS  Google Scholar 

  • Tassoni A, Fornale S, Franceschetti M, Musiani F, Michael AJ, Perry B, Bagni N, Franceschetti M, Ferri M, Tassoni A (2005) Jasmonates, Na-orthovanadate promote resveratrol production in Vitis vinifera cv. Barbera cell cultures. New Phytol 166:895-905

    Article  PubMed  CAS  Google Scholar 

  • Trouvelot S, Varnier AL, Allegre M, Mercier L, Baillieul F, Arnould C, Gianinazzi-Pearson V, Klarzynski O, Joubert JM, Pugin A, Daire X (2008) A beta-1,3 glucan sulfate induces resistance in grapevine against Plasmopara viticola through priming of defense responses, including HR-like cell death. Mol Plant Microbe Interact 21:232-243

    Article  PubMed  CAS  Google Scholar 

  • Urena AG, Orea JM, Montero C, Jimenez JB, Gonzalez JL, Sanchez A, Dorado M (2003) Improving postharvest resistance in fruits by external application of trans-resveratrol. J Agric Food Chem 51:82-89

    Article  CAS  Google Scholar 

  • Van Loon LC, Rep M, Pieterse CM (2006) Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol 44:135-162

    Article  PubMed  CAS  Google Scholar 

  • Vandelle E, Poinssot B, Wendehenne D, Bentéjac M, Pugin A (2006) Integrated signalling network involving calcium, nitric oxide, active oxygen species but not mitogen-activated protein kinases in Bc-PG1-elicited grapevine defenses. Mol Plant Microbe Interact 19:429-440

    Article  PubMed  CAS  Google Scholar 

  • Velasco R, Zharkikh A, Troggio M, Cartwright DA, et al. (2007) A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS ONE 12:e1326

    Article  CAS  Google Scholar 

  • Vezzulli S, Civardi S, Ferrari F, Bavaresco L (2007) Methyl jasmonate treatment as a trigger of resveratrol synthesis in cultivated grapevine. Am J Enol Vitic 58:530-533

    CAS  Google Scholar 

  • Wang W, Devoto A, Turner JG, Xiao S (2007) Expression of the membrane-associated resistance RPW8 enhances basal defense against biotrophic pathogens. Mol Plant Microbe Interact 20:966-976

    Article  PubMed  CAS  Google Scholar 

  • Wen PF, Chen JY, Kong WF, Pan QH, Wan SB, Huang WD (2005) Salicylic acid induced the expression of phenylalanine ammonia-lyase gene in grape berry. Plant Sci 169:928-934

    Article  CAS  Google Scholar 

  • Wen PF, Chen JY, Wan SB, Kong WF, Zhang P, Wang W, Zhan JC, Pan QH, Huang WD (2008) Salicylic acid activates phenylalanine ammonia-lyase in grape berry in response to high temperature stress. Plant Growth Reg 55:1-10

    Article  CAS  Google Scholar 

  • Wielgoss A, Kortekamp A (2006) Comparison of PR1 expression in grapevine cultures after inoculation with a host-, a non-host pathogen. Vitis 45:9-13

    CAS  Google Scholar 

  • Wiese W, Vornam B, Krause E, Kindl H (1994) Structural organization, differential expression of three stilbene synthase genes located on a 13  kb grapevine DNA fragment. Plant Mol Biol 26:667-677

    Article  PubMed  CAS  Google Scholar 

  • Xiao S, Calis O, Patrick E, Zhang G, Charoenwattana P, Meuskett P, Parker JE, Turner JG (2005) The atypical resistance gene, RPW8, recruits components of basal defense for powdery mildew resistance in Arabidopsis. Plant J 42:95-110

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Curtin C, Kikuchi M, Franco C (2002) Integration of jasmonic acid, light irradiation for enhancement of anthocyanin biosynthesis in Vitis vinifera suspension cultures. Plant Sci 162:459-468

    Article  Google Scholar 

  • Zhou T, Chen JQ, Araki H, Jing Z, Jiang K, Shen J, Tian D (2004) Genome-wide identification of NBS-LRR genes in japonica rice reveals significant expansion of divergent non-TIR NBSLRR genes. Mol Gen Genet 271:402-415

    CAS  Google Scholar 

  • Zhu YJ, Agbayani R, Jackson MC, Tang CS, Moore PH (2004) Expression of the grapevine stilbene synthase gene VST1 in papaya provides increased resistance against diseases caused by Phytophthora palmivora. Planta 220:241-250

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Gomès, E., Coutos-Thévenot, P. (2009). Molecular Aspects of Grapevine-Pathogenic Fungi Interactions. In: Roubelakis-Angelakis, K.A. (eds) Grapevine Molecular Physiology & Biotechnology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2305-6_15

Download citation

Publish with us

Policies and ethics