Skip to main content
Log in

Terminalia arjuna bark extract alleviates nickel toxicity by suppressing its uptake and modulating antioxidative defence in rice seedlings

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Terminalia arjuna (Ta) bark contains various natural antioxidants and has been used to protect animal cells against oxidative stress. In the present study, we have examined alleviating effects of Ta bark aqueous extract against Ni toxicity in rice (Oryza sativa L.). When rice seedlings were raised for 8 days in hydroponics in Yoshida nutrient medium containing 200 μM NiSO4, a decline in height, reduced biomass, increased Ni uptake, loss of root plasma membrane integrity, increase in the level of O2˙, H2O2 and ˙OH, increased lipid peroxidation, decline in photosynthetic pigments, increase in the level of antioxidative enzymes superoxide dismutase, catalase and glutathione peroxidase and alterations in their isoenzyme profile patterns were observed. Transmission electron microscopy (TEM) showed damage to chloroplasts marked by disorganised enlarged starch granules and disrupted thylakoids under Ni toxicity. Exogenously adding Ta bark extract (3.2 mg ml−1) to the growth medium considerably alleviated Ni toxicity in the seedlings by reducing Ni uptake, suppressing generation of reactive oxygen species, reducing lipid peroxidation, restoring level of photosynthesis pigments and ultrastructure of chloroplasts, and restoring levels of antioxidative enzymes. Results suggest that Ta bark extract considerably alleviates Ni toxicity in rice seedlings by preventing Ni uptake and reducing oxidative stress in the seedlings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adriano DC (2001) Trace elements in terrestrial environments, 2nd edn. Springer, New York, pp 1–867

    Book  Google Scholar 

  • Ali A, Kaur G, Hayat K, Ali M, Ather M (2003) A novel naphthanol glycoside from Terminalia arjuna with antioxidant and nitric oxide inhibitory activities. Die Pharmazie An Int J of Pharma Sci 58:932–934

    CAS  Google Scholar 

  • Ali MB, Hahn EJ, Paek KY (2005) Effects of temperature on oxidative stress defense systems, lipid peroxidation and lipoxygenase activity in Phalaenopsis. Plant Physiol Biochem 43:213–222

    Article  CAS  PubMed  Google Scholar 

  • Allen SE, Grimshaw HM, Rowland AP (1986) Chemical analysis. In: Mooren PD, Chapman SB (eds) Methods in plant ecology. Blackwell Scientific Publication, Oxford, pp 285–344

    Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Assunçao AG, Bookum WM, Nelissen HJ, Vooijs R, Schat H, Ernst WH (2003) Differential metal‐specific tolerance and accumulation patterns among Thlaspi caerulescens populations originating from different soil types. New Phytol 159:411–419

    Article  Google Scholar 

  • Baccouch S, Chaoui A, El Feriani E (2001) Nickel toxicity induce oxidative damage in Zea mays roots. J Plant Nutr 24:1085–1097

    Article  CAS  Google Scholar 

  • Bailey-Serres J, Mittler R (2006) The roles of reactive oxygen species in plant cells. Plant Phy 141:311–311

    Article  CAS  Google Scholar 

  • Beauchamp CO, Fridovich I (1971) Superoxide dismutase: improved assay and an assay applicable to acrylamide gels. Anal Biochem 44:176–287

    Article  Google Scholar 

  • Beers RF, Sizer IW (1952) Colorimetric method for estimation of catalase. J Biol Chem 195:133–139

    CAS  PubMed  Google Scholar 

  • Biswas M, Biswas K, Karan TK, Bhattacharya S, Ghosh AK, Haldar PK (2011) Evaluation of analgesic and anti-inflammatory activities of Terminalia arjuna leaf. J Phytol 3:33–38

    CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1):248–254

    Article  CAS  PubMed  Google Scholar 

  • Brown PH, Welch RM, Cary EE (1987) Nickel: a micronutrient essential for higher plants. Plant Physiol 85(3):801–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai YZ, Sun M, Corke H (2003) Antioxidant activity of betalains from plants of the Amaranthaceae. J Agri and Food Chem 51:2288–2294

    Article  CAS  Google Scholar 

  • Chaney RL, Chen KY, Li YM, Angle JS, Baker AJ (2008) Effects of calcium on nickel tolerance and accumulation in Alyssum species and cabbage grown in nutrient solution. Plant Soil 311(1–2):131–140

    Article  CAS  Google Scholar 

  • Chen C, Huang D, Liu J (2009) Functions and toxicity of nickel in plants: recent advances and future prospects. Clean Soil, Air, Water 37(4–5):304–313

    Article  CAS  Google Scholar 

  • Dakshini KMM, Foy CL (Eds.) (1999) Principles and practices in plant ecology: allele-chemical interactions. CRC press

  • Das K, Chakraborty PP, Ghosh D, Nandi DK (2010) Protective effect of aqueous extract of Terminalia arjuna against dehydrating induced oxidative stress and uremia in male rat. Iran J Pharma Res 9:153–16

    Article  Google Scholar 

  • Dixon NE, Gazzola C, Blakeley RL, Zerner B (1975) Jack bean urease (EC 3.5.1.5) metalloenzyme simple biological role for nickel. J Amer Chem Soc 97(14):4131–4133

    Article  CAS  Google Scholar 

  • Egley GH, Paul RN, Vaughn KC, Duke SO (1983) Role of peroxidase in the development of water impermeable seed coats in Sida spinosa L. Planta 157:224–232

    Article  CAS  PubMed  Google Scholar 

  • Ewais EA (1997) Effects of cadmium, nickel and lead on growth, chlorophyll content and proteins of weeds. Biol 39:403–410

    CAS  Google Scholar 

  • Frahry G, Schopfer P (2001) NADH stimulated, cyanide resistant superoxide production in maize coleoptiles analyzed with tetrazolium based assay. Planta 212:175–183

    Article  CAS  PubMed  Google Scholar 

  • Gajewska E, Skłodowska M, Słaba M, Mazur J (2006a) Effect of nickel on antioxidative enzyme activities, proline and chlorophyll contents in wheat shoots. Biol Plant 50:653–659

    Article  CAS  Google Scholar 

  • Gajewska E, Słaba M, Andrzejewska R, Skłodowska M (2006b) Nickel-induced inhibition of wheat root growth is related to H2O2 production, but not to lipid peroxidation. Plant Growth Regul 49:95–103

    CAS  Google Scholar 

  • Gajewska E, Skłodowska M (2007) Effect of nickel on ROS content and antioxidative enzyme activities in wheat leaves. Biometals 20:27–36

  • Gajewska E, Drobik D, Wielanek M, Sekulska-Nalewajko J, Gocławski J, Mazur J, Skłodowska M (2013) Alleviation of nickel toxicity in wheat (Triticum aestivum L.) seedlings by selenium supplementation. Biol Lett 50(2):65–78

    Article  Google Scholar 

  • Gauthaman K, Maulik M, Kumari R, Manchanda SC, Dinda AK, Maulik SK (2001) Effect of chronic treatment with bark of Terminalia arjuna: a study on the isolated ischemic-reperfused rat heart. J Ethnopharmocol 75:197–201

    Article  CAS  Google Scholar 

  • Gonnelli C, Galardi F, Gabbrielli R (2001) Nickel and copper tolerance and toxicity in three Tuscan populations of Silene paradoxa. Physiol Plant 113:507–514

    Article  CAS  Google Scholar 

  • Haidry MT, Malik A (2014) Hepatoprotective and Antioxidative Effects of Terminalia Arjuna against Cadmium Provoked Toxicity in Albino Rats (Ratus norvegicus). Biochem Pharmacol 3(130):2167–0501

    Google Scholar 

  • Halliwell B, Gutteridge JM (1981) Formation of a thiobarbituric-acid-reactive substance from deoxyribose in the presence of iron salts: the role of superoxide and hydroxyl radicals. FEBS Lett 128(2):347–352

    Article  CAS  PubMed  Google Scholar 

  • Heath RL, Packer L (1968) Photo peroxidation in isolated chloroplasts. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  PubMed  Google Scholar 

  • Hsu YT, Kao CH (2007) Toxicity in leaves of rice exposed to cadmium is due to hydrogen peroxide accumulation. Plant Soil 298:231–241

    Article  CAS  Google Scholar 

  • Izosimova A (2005) Modeling the interaction between calcium and nickel in the soil-plant system. Landbauforschung Volkenrode FAL Agricultural Research. Special Issue 288, ISBN 3-86576-011-2, 100

  • Jana S, Choudhuri MA (1981) Glycolate metabolism of three submerged aquatic angiosperms during aging. Aquat Bot 12:345–354

    Article  Google Scholar 

  • Jocsak I, Vegvari G, Rabnecz G, Droppa M (2008) Investigation of nickel stress induction in terms of metal accumulation and antioxidative enzyme activity in barley seedlings. Acta Biol Szeged 52:167–71

    Google Scholar 

  • King FE, King TJ, Ross JM (1954) The chemistry of extractives from hardwoods. Part XVIII. The constitution of arjunolic acid, a triterpene from Terminalia arjuna. J of the Chem Soc (Resumed): (0)3995-4003

  • Kristiansen KA, Jensen PE, Møller IM, Schulz A (2009) Monitoring reactive oxygen species formation and localization in living cells by use of the fluorescent probe CM-H2DCFDA and confocal laser microscopy. Physiol Plant 136:369–383

    Article  CAS  PubMed  Google Scholar 

  • Kumar P, Tewari RK, Nand Sharma P (2007) Excess nickel-induced changes in antioxidative processes in maize leaves. J Plant Nutr Soil Sci 170:796–802

    Article  CAS  Google Scholar 

  • Kumar GP, Navya K, Ramya EM, Ven Ali Ramana M, Anand T, Anilakumar KR (2013) DNA damage protecting and free radical scavenging properties of Terminalia arjuna bark in PC-12 cells and plasmid DNA. Free Radicals Antioxid 3:35–39

    Article  Google Scholar 

  • Kvesitadze G, Khatisashvili G, Sadunishvili T, Ramsden, JJ (2006) Biochemical mechanisms of detoxification in higher plants: basis of phytoremediation. Springer Science & Business Media

  • L’Huillier L, d’Auzac J, Durand M, Michaud-Ferrière N (1996) Nickel effects on two maize (Zea mays) cultivars: growth, structure, Ni concentration, and localization. Can J Bot 74:1547–1554

    Article  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382

    Article  CAS  Google Scholar 

  • Lin CC, Kao CH (2001) Cell wall peroxidase activity, hydrogen peroxide level and NaCl-inhibited root growth of rice seedlings. Plant Soil 230:135–143

    Article  CAS  Google Scholar 

  • Llamas A, Ullrich CI, Sanz A (2008) Ni2+ toxicity in rice: effect on membrane functionality and plant water content. Plant Physiol Biochem 46(10):905–910

    Article  CAS  PubMed  Google Scholar 

  • Maheshwari R, Dubey RS (2007) Nickel toxicity inhibits ribonuclease and protease activities in rice seedlings: protective effects of proline. Plant Growth Regul 51:231–243

    Article  CAS  Google Scholar 

  • Maheshwari R, Dubey RS (2009) Nickel-induced oxidative stress and the role of antioxidant defence in rice seedlings. Plant Growth Regul 59:37–49

    Article  CAS  Google Scholar 

  • Manna P, Sinha M, Sil PC (2006) Aqueous extract of Terminalia arjuna prevents carbon tetrachloride induced hepatic and renal disorders. BMC Complement Altern Med 30:6–33

    Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, London

    Google Scholar 

  • Mishra HP, Fridovich I (1972) The role of superoxide anion in auto oxidation of the epinephrine and sample assay for SOD. J Biol Chem 247:3170–3175

    Google Scholar 

  • Molas J (1998) Changes in morphological and anatomical structure of cabbage (Brassica oleracea L.) outer leaves and in ultrastructure of their chloroplasts caused by an in vitro excess of nickel. Photosynthetica 34:513–522

    Article  Google Scholar 

  • Nadkarni AK (ed.) (1976) Indian Materia Medica, vol. 1. Popular Prakashan (Pvt) Ltd, Bombay, India, p. 1199

  • Pandey N, Sharma CP (2002) Effect of heavy metals Co2+, Ni2+ and Cd2+ on growth and metabolism of cabbage. Plant Sci 163:753–758

    Article  CAS  Google Scholar 

  • Pandey P, Srivastava RK, Dubey RS (2013) Salicylic acid alleviates aluminum toxicity in rice seedlings better than magnesium and calcium by reducing aluminum uptake, suppressing oxidative damage and increasing antioxidative defense. Ecotoxicol 22:656–670

    Article  CAS  Google Scholar 

  • Parida BK, Chhibba IM, Nayyar VK (2003) Influence of nickel contaminated soils on fenugreek (Trigonella corniculata L.) growth and mineral composition. Sci Hortic (Amsterdam) 98:113–119

    Article  CAS  Google Scholar 

  • Pawar RS, Bhutani KK (2005) Effect of oleanane triterpenoids from Terminalia arjuna—a cardioprotective drug on the process of respiratory oxyburst. Phytomed 12:391–393

    Article  CAS  Google Scholar 

  • Pompella A, Maellaro E, Casini AF, Comporti M (1987) Histochemical detection of lipid peroxidation in the liver of bromobenzene-poisoned mice. Am J Pathol 129:295–301

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rao KVM, Sresty TVS (2000) Antioxidative parameters in the seedlings of pigeon pea (Cajanus cajan (L.) Millspaugh) in response to Zn and Ni stresses. Plant Sci 157:113–128

  • Raouf GAM, Vaibhav K, Khan A, Tabassum R, Ahmed ME, Javed H, Siddiqui MS (2013) Terminalia arjuna bark extract inhibits histological alterations by mitigating oxidative stress in lead intoxicated mice. Ori Pharm Exp Medi 13(4):253–265

    Article  Google Scholar 

  • Ros R, Cook DT, Martinez-Cortina C, Picazo I (1992) Nickel and cadmium-related changes in growth, plasma membrane lipid composition, ATPase hydrolytic activity and proton-pumping of rice (Oryza sativa L. cv. Bahia) shoots. J Exp Bot 43(11):1475–1481

    Article  CAS  Google Scholar 

  • Russell A, Lee KL (2005) Structure–property relations in nonferrous metals. John Wiley & Sons

  • Saha A, Pawar VM, Jayaraman S (2012) Characterisation of polyphenols in Terminalia arjuna bark extract. J Pharm Sci 74(4):339–347

    CAS  Google Scholar 

  • Schutzendubel A, Schwanz P, Teichmann T, Gross K, Langenfeld-Heyser R, Godbold DL, Polle A (2001) Cadmium-induced changes in antioxidative systems, hydrogen peroxide content, and differentiation in Scots pine roots. Plant Physiol 127:887–898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seregin IV, Kozhevnikova AD (2006) Physiological role of nickel and its toxic effects on higher plants. Russ J Plant Physiol 53:257–277

    Article  CAS  Google Scholar 

  • Seregin IV, Kozhevnikova AD, Kazyumina EM, Ivanov VB (2003) Nickel toxicity and distribution in maize roots. Russ J Plant Physiol 50:711–717

    Article  CAS  Google Scholar 

  • Shafer WE, Schönherr J (1985) Accumulation and transport of phenol, 2-nitrophenol, and 4-nitrophenol in plant cuticles. Ecotoxicol Environ Saf 10(2):239–252

    Article  CAS  PubMed  Google Scholar 

  • Shah K, Kumar RG, Verma S, Dubey RS (2001) Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Sci 161:1135–1144

    Article  CAS  Google Scholar 

  • Shahid M, Pourrut B, Dumat C, Nadeem M, Aslam M, Pinelli E (2014) Heavy-metal-induced reactive oxygen species: phytotoxicity and physicochemical changes in plants. Rev Environ Contam Toxicol 232:1–44

    CAS  PubMed  Google Scholar 

  • Sharma P, Dubey RS (2007) Involvement of oxidative stress and role of antioxidative defense system in growing rice seedlings exposed to toxic concentrations of aluminum. Plant Cell Rep 26(11):2027–2038

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot. doi:10.1155/2012/217037

    Google Scholar 

  • Sinha M, Manna P, Sil PC (2007) Aqueous extract of the bark of Terminalia arjuna plays a protective role against sodium-fluoride-induced hepatic and renal oxidative stress. J Natural Med 61:251–260

    Article  Google Scholar 

  • Somashekaraiah BV, Padmaja K, Prasad ARK (1992) Phytotoxicity of cadmium ions on germinating seedlings of mung bean (Phaseolus vulgaris): involvement of lipid peroxides in chlorophyll degradation. Physiol Plant 85:85–89

    Article  CAS  Google Scholar 

  • Stobart AK, Griffiths WT, Ameen‐Bukhari I, Sherwood RP (1985) The effect of Cd2+ on the biosynthesis of chlorophyll in leaves of barley. Physiol Plant 63:293–298

    Article  CAS  Google Scholar 

  • Sultana B, Anwar F, Przybylski R (2007) Antioxidant activity of phenolic components present in barks of Azadirachta indica, Terminalia arjuna, Acacia nilotica, and Eugenia jambolana Lam. Trees Food Chem 104:1106–1114

    Article  CAS  Google Scholar 

  • Thordal-Christensen H, Zhang Z, Wei YD, Collinge DB (1997) Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. Plant J 11:1187–1194

    Article  CAS  Google Scholar 

  • Verma S, Dubey RS (2003) Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Sci 164(4):645–655

    Article  CAS  Google Scholar 

  • Wang H, Feng T, Peng X, Yan M, Tang X (2009) Up-regulation of chloroplastic antioxidant capacity is involved in alleviation of nickel toxicity of Zea mays L. by exogenous salicylic acid. Ecotoxicol Environ Saf 72(5):1354–1362

    Article  CAS  PubMed  Google Scholar 

  • Weatherley PE (1950) Studies in the water relation of cotton plant 1. The field measurement of water deficits in leaves. New Phytol 49:81–97

    Article  Google Scholar 

  • Yoshida S, Forno DA, Cock JH, Gomez KA (1976) Laboratory manual for physiological studies of rice. Int Rice Res Inst, Manila, Phillipines 3:83

    Google Scholar 

  • Zhang L, Li Y, Xing D, Gao C (2009) Characterization of mitochondrial dynamics and subcellular localization of ROS reveal that HsfA2 alleviates oxidative damage caused by heat stress in Arabidopsis. J Exp Bot 60:2073–2091

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work reported in this manuscript is part of a Major Research Project (No. 40-662/2013, SR) sanctioned to RSD by University Grants Commission, New Delhi. RR availed Research Fellowship in this project. Authors acknowledge Advanced Instrumentation Research Facility (AIRF), Jawaharlal Nehru University, New Delhi for providing TEM analysis facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. S. Dubey.

Ethics declarations

Conflict of interest

Authors declare that there is no conflict of interest.

Additional information

Handling Editor: Bhumi Nath Tripathi

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajpoot, R., Rani, A., Srivastava, R.K. et al. Terminalia arjuna bark extract alleviates nickel toxicity by suppressing its uptake and modulating antioxidative defence in rice seedlings. Protoplasma 253, 1449–1462 (2016). https://doi.org/10.1007/s00709-015-0899-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-015-0899-x

Keywords

Navigation