Skip to main content
Log in

Meiosis-I in Mesostoma ehrenbergii spermatocytes includes distance segregation and inter-polar movements of univalents, and vigorous oscillations of bivalents

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

An Erratum to this article was published on 01 October 2013

Abstract

In this article, we describe meiosis-I in spermatocytes of the free-living freshwater flatworm Mesostoma ehrenbergii. The original observations of Oakley (1983, 1985) and Fuge (Eur J Cell Biol 44:294–298, 1987, Cell Motil Cytoskeleton 13:212–220, 1989, Protoplasma 160:39–48, 1991), the first to describe these cells, challenge our understanding of cell division, and we have expanded on these descriptions with the aim of laying the framework for further experimental work. These cells contain three bivalents and four univalent chromosomes (two pairs). Bivalent kinetochores oscillate vigorously and regularly throughout prometaphase, for up to several hours, until anaphase. Anaphase onset usually begins in the middle of the kinetochore oscillation cycle. Precocious cleavage furrows form at the start of prometaphase, ingress and then remain arrested until the end of anaphase. The four univalents do not pair, yet by anaphase there is one of each kind at each pole, an example of “distance segregation” (Hughes-Schrader in Chromosoma 27:109–129, 1969). Until proper segregation is achieved, univalents move between spindle poles up to seven times in an individual cell; they move with velocities averaging 9 μm/min, which is faster than the oscillatory motions of the bivalent kinetochores (5–6 μm/min), and much faster than the anaphase movements of the segregating half-bivalents (1 μm/min). Bipolar bivalents periodically reorient, most often resulting in the partner kinetochores exchanging poles. We suggest that the large numbers of inter-polar movements of univalents, and the reorientations of bivalents that lead to partners exchanging poles, might be because there is non-random segregation of chromosomes, as in some other cell types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2
Fig 3
Fig 4
Fig 5
Fig 6
Fig 7
Fig 8
Fig 9
Fig 10
Fig 11
Fig 12
Fig 13
Fig 14

Similar content being viewed by others

References

  • Aist JR, Bayles CJ (1988) Video motion analysis of mitotic events in living cells of the fungus Fusarium solani. Cell Motil Cytoskeleton 9:325–336

    Article  Google Scholar 

  • Ault JG, DeMarco AJ, Salmon ED, Rieder CL (1991) Studies on the ejection properties of asters: astral microtubule turnover influences the oscillatory behaviour and positioning of mono-oriented chromosomes. J Cell Sci 99:701–710

    PubMed  Google Scholar 

  • Bajer AS (1982) Functional autonomy of monopolar spindle and evidence for oscillatory movement in mitosis. J Cell Biol 93:33–48

    Article  CAS  PubMed  Google Scholar 

  • Camenzind R, Nicklas RB (1968) The non-random segregation in spermatocytes of Gryllotalpa hexadactyla. A micromanipulation analysis. Chromosoma 24:324–335

    Article  CAS  PubMed  Google Scholar 

  • Cameron LA, Yang G, Cimini D, Canman JC, Kisurina-Evgenieva O, Khodjakov A, Danuser G, Salmon ED (2006) Kinesin 5-independent poleward flux of kinetochore microtubules in PtK1 cells. J Cell Biol 173:173–179

    Article  CAS  PubMed  Google Scholar 

  • Campas O, Sens P (2006) Chromosome oscillations in mitosis. Phys Rev Lett 97:1–4

    Google Scholar 

  • Carlson JG (1977) Anaphase chromosome movement in the unequally dividing grasshopper neuroblast and its relation to anaphases of other cells. Chromosoma 64:191–206

    Article  Google Scholar 

  • Cassimeris L, Rieder CL, Salmon ED (1994) Microtubule assembly and kinetochore directional instability in vertebrate monopolar spindles: implications for the mechanism of chromosome congression. J Cell Sci 107:285–297

    PubMed  Google Scholar 

  • Civelekoglu-Scholey G, Sharp DJ, Mogilner A, Scholey JM (2006) Model of chromosome motility in Drosophila embryos: adaptation of a general mechanism for rapid mitosis. Biophys J 90:3966–3986

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Civelekoglu-Scholey G, He B, Shen M, Wan X, Roscioli E, Bowden B, Cimini D (2013) Dynamic bonds and polar ejection force distribution explain kinetochore oscillations in PtK1 cells. J Cell Biol 201:577–593

    Article  CAS  PubMed  Google Scholar 

  • Dietz R (1956) Die Spermatocytenteilungen der Tipuliden. II. Graphische analyse der chromosomenbewegung während der prometaphase I im leben. Chromosoma 8:183–211

    Article  Google Scholar 

  • Ferraro-Gideon J, Sheykhani R, Zhu Q, Duquette ML, Berns MW, Forer A (2013) Measurements of forces produced by the mitotic spindle using optical tweezers. Mol Biol Cell 24:1375–1386

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Forer A, Koch C (1973) Influence of autosome movements and of sex chromosome movements on sex-chromosome segregation in crane fly spermatocytes. Chromosoma 40:417–442

    Article  CAS  PubMed  Google Scholar 

  • Forer A, Pickett-Heaps JD (2005) Fibrin clots keep non-adhering living cells in place on glass for perfusion or fixation. Cell Biol Int 29:721–730

    Article  CAS  PubMed  Google Scholar 

  • Forer A, Pickett-Heaps JD (2010) Precocious (pre-anaphase) cleavage furrows in Mesostoma spermatocytes. Eur J Cell Biol 89:607–618

    Article  CAS  PubMed  Google Scholar 

  • Forer A, Spurck T, Pickett-Heaps JD, Wilson PJ (2003) Structure of kinetochore fibres in crane-fly spermatocytes after irradiation with an ultraviolet microbeam: neither microtubules nor actin filaments remain in the irradiated region. Cell Motil Cytoskeleton 56:173–192

    Article  PubMed  Google Scholar 

  • Forer A, Pickett-Heaps JD, Spurck T (2008) What generates flux of tubulin in kinetochore microtubules? Protoplasma 232:137–141

    Article  PubMed  Google Scholar 

  • Forer A, Ferraro-Gideon J, Berns MW (2013) Distance segregation of sex chromosomes in crane-fly spermatocytes studied using laser microbeam irradiations. Protoplasma. doi:10.1007/s00709-013-0480-4

    Google Scholar 

  • Fuge H (1987) Oscillatory movements of bipolar-oriented bivalent kinetochores and spindle forces in male meiosis of Mesostoma ehrenbergii. Eur J Cell Biol 44:294–298

    Google Scholar 

  • Fuge H (1989) Rapid kinetochore movements in Mesostoma ehrenbergii spermatocytes: action of antagonistic chromosome fibre. Cell Motil Cytoskeleton 13:212–220

    Article  Google Scholar 

  • Fuge H (1991) Morphological aspects of chromosome spindle fibres in Mesostoma: “microtubular fir-tree” structures and microtubule association with kinetochores and chromatin. Protoplasma 160:39–48

    Article  Google Scholar 

  • Gerbi SA (1986) Unusual chromosome movements in sciarid flies. Results Probl Cell Differ 13:71–104

    Article  CAS  PubMed  Google Scholar 

  • Hebert PDN, Beaton MJ (1990) Breeding systems and genome size of the rhabdocoel turbellaria Mesostoma ehrenbergii. Genome 33:719–724

    Article  Google Scholar 

  • Hoang C, Ferraro-Gideon J, Gauthier K, Forer A (2013) Methods for rearing Mesostoma ehrenbergii in the laboratory for cell biology experiments, including identification of factors that influence production of different egg types. Cell Biol Int. doi:10.1002/cbin.10129

  • Hughes-Schrader S (1969) Distance segregation and compound sex chromosomes in Mantispids (Neuroptera: Mantispidae). Chromosoma 27:109–129

    Article  CAS  PubMed  Google Scholar 

  • Husted L, Ruebush TK (1940) A comparative cytological and morphological study of Mesostoma ehrenbergii ehrenbergii and Mesostoma ehrenbergii wardii. J Morphol 67:387–410

    Article  Google Scholar 

  • Husted L, Ferguson FF, Strewalt MA (1939) Chromosome association in Mesostoma ehrenbergii (Focke) Schmidt. Amer Naturalist 73:180–184

    Google Scholar 

  • Jaqaman K, King EM, Amaro AC, Winter JR, Dorn JF, Elliot HL, Mchedlishvili N, McClelland SE, Porter IA, Posch M et al (2010) Kinteochore alignment within the metaphase plate is regulated by centromere stiffness and microtubule depolymerise. J Cell Biol 188:665–679

    Article  CAS  PubMed  Google Scholar 

  • Johansen KM, Forer A, Yao C, Girton J, Johansen J (2011) Do nuclear envelope and intranuclear proteins reorganize during mitosis to form an elastic, hydrogel-like spindle matrix? Chromosome Res 19:345–365

    Article  CAS  PubMed  Google Scholar 

  • Katajima TS, Ohsugi M, Ellenberg J (2011) Complete kinetochore tracking reveals error-prone homologous chromosome biorientation in mammalian oocytes. Cell 146:568–581

    Article  Google Scholar 

  • Ke K, Cheng J, Hunt AJ (2009) The distribution of polar ejection forces determines the amplitude of chromosome directional instability. Curr Biol 19:807–815

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Khodjakov A, Rieder CL (1996) Kinetochores moving away from their associated pole do not exert a significant pushing force on the chromosome. J Cell Biol 135:315–327

    Article  CAS  PubMed  Google Scholar 

  • Khodjakov A, Cole RW, McEwan BF, Buttle KF, Rieder CL (1997) Chromosome fragments possessing only one kinetochore can congress to the spindle equator. J Cell Bio 136:229–240

    Article  CAS  Google Scholar 

  • Liu J, Desai A, Onuchic JN, Hwa T (2007) A mechanobiochemical mechanism for monooriented chromosome oscillation in mitosis. PNAS 104:16104–16109

    Google Scholar 

  • Nicklas RB (1972) Chromosome micromanipulation IV. Polarized motions within the spindle and models for mitosis. Chromosoma 39:1–26

    Article  CAS  PubMed  Google Scholar 

  • Nicklas RB, Staehly CA (1967) Chromosome micromanipulation. I. The mechanics of chromosome attachment to the spindle. Chromosoma 21:1–16

    Article  CAS  PubMed  Google Scholar 

  • Nur U (1982) Destruction of specific heterochromatic chromosomes during spermatogenesis in the Comstockiella chromosome system (Coccoidea: Homoptera). Chromosoma (Berl) 85:519–530

    Article  Google Scholar 

  • Oakley HA (1983) Male meiosis in Mesostoma ehrenbergii ehrenbergii. Kew Chromosome Conference II Editors PE Brandham, MD Bennett. George Allen and Unwin, London (Boston, Sydney) pp 195–199

  • Oakley HA (1985) Meiosis in Mesostoma ehrenbergii ehrenbergii (Turbellaria, Rhabdocoela) III. Univalent chromosome segregation during the first meiotic division in spermatocytes. Chromosoma 91:95–100

    Article  CAS  PubMed  Google Scholar 

  • Pickett-Heap JD, Tippit DH (1980) Light and electron microscopic oberservations on cell division in two large pinnate diatoms, Hantzschia and Nitzschia. I. Mitosis in vivo. Eur J Cell Biol 21:1–11

    Google Scholar 

  • Pickett-Heaps JD, Forer A (2009) Mitosis: spindle evolution and the matrix model. Protoplasma 235:91–99

    Article  PubMed  Google Scholar 

  • Pickett-Heaps JD, Tippit DH, Andreozzi JA (1979) Cell division in the pinnate diatom Pinnularia. V—Observations on live cells. Biol Cell 35:295–304

    Google Scholar 

  • Riche S, Zouak M, Argoul F, Arneodo A, Pecreaux J, Delattre M (2013) Evolutionary comparisons reveal a positional switch for spindle pole oscillations in Caenorhabditis embryos. J Cell Biol 201:653–662

    Article  CAS  PubMed  Google Scholar 

  • Rieder CL, Salmon ED (1994) Motile kinetochores and polar ejection forces dictate chromosome position on the vertebrate mitotic spindle. J Cell Biol 124:223–233

    Article  CAS  PubMed  Google Scholar 

  • Schrader F (1921) The chromosomes of Pseudococcus nipae. Biol Bull 40:259–270

    Article  Google Scholar 

  • Sharp DJ, Ross JL (2012) Microtubule-severing enzymes at the cutting edge. J Cell Sci 125:2561–2569

    Article  CAS  PubMed  Google Scholar 

  • Sheykhani R, Shirodkar P, Forer A (2013) The role of myosin phosphorylation in anaphase chromosome movement. Eur J Cell Biol 92:175–186

    Article  CAS  PubMed  Google Scholar 

  • Skibbens RV, Skeen VP, Salmon ED (1993) Directional instability of kinetochore motility during chromosome congression and segregation in mitotic newt lung cells: a push–pull mechanism. J Cell Biol 122:859–875

    Article  CAS  PubMed  Google Scholar 

  • Skibbens RV, Rieder CL, Salmon ED (1995) Kinetochore motility after severing between sister centromeres using laser microsurgery: evidence that kinetochore directional instability and position is regulated by tension. J Cell Sci 108:2537–2548

    CAS  PubMed  Google Scholar 

  • Wan X, Cimini D, Cameron LA, Salmon ED (2012) The coupling between sister kinetochore directional instability and oscillation in centromere stretch in metaphase PtK1 cells. Mol Biol Cell 23:1035–1046

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wong R, Forer A (2003) Backward chromosome movement in crane-fly spermatocytes after UV microbeam irradiation of the interzone and a kinetochore. Cell Biol Int 28:293–298

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Canadian Natural Sciences and Engineering Council to A.F.

Conflict of interest

None of the authors have any conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur Forer.

Additional information

Handling Editor: Patricia Wadsworth

Electronic supplementary material

Below is the link to the electronic supplementary material.

(AVI 19626 kb)

(AVI 35390 kb)

(AVI 4326 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferraro-Gideon, J., Hoang, C. & Forer, A. Meiosis-I in Mesostoma ehrenbergii spermatocytes includes distance segregation and inter-polar movements of univalents, and vigorous oscillations of bivalents. Protoplasma 251, 127–143 (2014). https://doi.org/10.1007/s00709-013-0532-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-013-0532-9

Keywords

Navigation