Skip to main content

Advertisement

Log in

Protoplasts: a useful research system for plant cell biology, especially dedifferentiation

  • Review Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

As protoplasts have the characteristics of no cell walls, rapid population growth, and synchronicity, they are useful tools for research in many fields, especially cellular biology (Table 1). This article is an overview that focuses on the application of protoplasts to investigate the mechanisms of dedifferentiation, including changes in hormone signals, epigenetic changes, and organelle distribution during the dedifferentiation process. The article also emphasizes the wide range of uses for protoplasts in studying protein positions and signaling during different stresses. The examples provided help to show that protoplast systems, for example the mesophyll protoplast system of Arabidopsis, represent promising tools for studying developmental biology. Meanwhile, specific analysis of protoplast, which comes from different tissue, has specific advantages and limitations (Table 2), and it can provide recommendations to use this system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asai T, Tena G, Plotnikova J, Willmann MR, Chiu WL, Gomez-Gomez L et al (2002) MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415:977–985

    Article  PubMed  CAS  Google Scholar 

  • Bhargava A, Ahad A, Wang S et al (2013) The interacting MYB75 and KNAT7 transcription factors modulate secondary cell wall deposition both in stems and seed coat in Arabidopsis. Planta. doi:10.1007/s00425-012-1821-9

    PubMed  Google Scholar 

  • Boudsocq M, Barbier-Brygoo H, Laurière C (2004) Identification of nine sucrose nonfermenting 1-related protein kinases 2 activated by hyperosmotic and saline stresses in Arabidopsis thaliana. J Biol Chem 279:41758–41766

    Article  PubMed  CAS  Google Scholar 

  • Camborde L, Tournier V, Noizet M et al (2007) A Turnip yellow mosaic virus infection system in Arabidopsis suspension cell culture. FEBS Lett 581(2):337–341

    Article  PubMed  CAS  Google Scholar 

  • Carpaneto A, Ivashikina N, Levchenko V, Krol E, Jeworutzki E, Zhu JK et al (2007) Cold transiently activates calcium-permeable channels in Arabidopsis mesophyll cells. Plant Physiol 143:487–494

    Article  PubMed  CAS  Google Scholar 

  • Chitteti BR, Peng Z (2007) Proteome and phosphoproteome dynamic change during cell dedifferentiation in Arabidopsis. Proteomics 7(9):1473–1500

    Article  PubMed  CAS  Google Scholar 

  • Damri M, Grafi G (2009) Senescing cells share common features with dedifferentiating cells. Rejuvenation Res 6:435–443

    Article  Google Scholar 

  • Doan Trung L, Christophe M (2013) Aquaporin trafficking in plant cells: an emerging membrane–protein mode. Traffic. doi:10.1111/tra.12062

    Google Scholar 

  • Doelling JH, Pikaard CS (1993) Transient expression in Arabidopsis thaliana protoplasts derived from rapidly established cell suspension cultures. Plant Cell Reports 2:241–244

    Google Scholar 

  • Endler A, Meyer S, Schelbert S et al (2006) Identification of a vacuolar sucrose transporter in barley and Arabidopsis mesophyll cells by a tonoplast proteomic approach. Plant Physiol 141(1):196–207

    Article  PubMed  CAS  Google Scholar 

  • Faraco M, Sansebastiano D et al (2011) One protoplast is not the other! Plant Physiol 156(2):474

    Article  PubMed  CAS  Google Scholar 

  • Fukao Y, Yoshida M, Kurata R et al (2013) Peptide separation methodologies for in depth proteomics in Arabidopsis. Plant Cell Physiol. doi:10.1093/pcp/pct033

    Google Scholar 

  • Geisler M, Blakeslee JJ, Bouchard R, Lee OR, Vincenzetti V, Bandyopadhyay A et al (2005) Cellular efflux of auxin catalyzed by the Arabidopsis MDR/PGP transporter AtPGP1. Plant J 44:179–194

    Article  PubMed  CAS  Google Scholar 

  • Grafi G (2004) How cells dedifferentiate: a lesson from plants. Dev Biol 268:1–6

    Article  PubMed  CAS  Google Scholar 

  • Grafi G, Chalifa-Caspi V (2011) Plant response to stress meets dedifferentiation. Planta 233:433–438

    Article  PubMed  CAS  Google Scholar 

  • Grafi G, Ben-Meir H, Avivi Y, Moshe M, Dahan Y, Zemach A (2007) Histone methylation controls telomerase-independent telomere lengthening in cells undergoing dedifferentiation. Dev Biol 306:838–846

    Article  PubMed  CAS  Google Scholar 

  • Gu Y, Innes RW (2011) The KEEP ON GOING protein of Arabidopsis recruits the ENHANCED DISEASE RESISTANCE1 protein to the trans-Golgi network/early endosome vesicles. Plant Physiol 155:1827–1838

    Article  PubMed  CAS  Google Scholar 

  • Hartmann Y, Valentine WJ, Christie JM et al (1998) Identification of UV/blue light-response elements in the Arabidopsis thaliana chalcone synthase promoter using a homologous protoplast transient expression system. Plant Mol Biol 36:741–754

    Article  PubMed  CAS  Google Scholar 

  • Himer A, Ladwig F, Stransky H, Okumoto S, Keinath M, Harms A et al (2006) Arabidopsis LHT1 is a high-affinity transporter for cellular amino acid uptake in both root epidermis and leaf mesophyll. Plant Cell 18:1931–1946

    Article  Google Scholar 

  • Huang H, Wang Z, Cheng J et al (2013) An efficient cucumber (Cucumis sativus L.) protoplast isolation and transient expression system. Sci Hortic 150:206–212

    Article  CAS  Google Scholar 

  • Huits HSM, Gerats AGM, Kreike MM et al (1994) Genetic control of dihydroflavonol 4-reductase gene expression in Petunia hybrida. Plant J 6:295–310

    Article  PubMed  CAS  Google Scholar 

  • Hwang I, Sheen J (2001) Two-component circuitry in Arabidopsis cytokinin signal transduction. Nature 413:383–389

    Article  PubMed  CAS  Google Scholar 

  • Lihong X, Liechi Z, Ge Y (2012) Transcriptome of protoplasts reprogrammed into stem cells in Physcomitrella patens. PLoS One 7:e35961

    Article  Google Scholar 

  • Mordhorst AP, Voerman KJ, Hartog MV, Meijer EA et al (1998) Somatic embryogenesis in Arabidopsis thaliana is facilitated by mutations in genes repressing meristematic cell divisions. Genetics 149:549–563

    PubMed  CAS  Google Scholar 

  • Nagata T, Takebe I (1971) Plating of isolated tobacco mesophyll protoplasts on agar medium. Planta 99:12–20

    Article  Google Scholar 

  • Ondrej V, Kitner M, Doležalov I et al (2009) Chromatin structural rearrangement during dedifferentiation of protoplasts of Cucumis sativus L. Mol Cells 27:443–447

    Article  PubMed  CAS  Google Scholar 

  • Persak H, Pitzschke A (2013) Tight interconnection and multi-level control of Arabidopsis MYB44 in MAPK cascade signalling. PLoS One 8(2):e57547. doi:10.1371/journal.pone.0057547

    Article  PubMed  CAS  Google Scholar 

  • Quattrocchio F, Verweij W, Kroon A et al (2006) PH4 of petunia is an R2R3 MYB protein that activates vacuolar acidification through interactions with basic-helix-loop-helix transcription factors of the anthocyanin pathway. Plant Cell 18:1274–1291

    Article  PubMed  CAS  Google Scholar 

  • Riazunnisa K, Lolla P, Scheibe R, Raghavendra AS (2007) Preparation of Arabidopsis mesophyll protoplasts with high rates of photosynthesis. Physiol Plant 129:879–886

    Article  Google Scholar 

  • Russell JA, Roy MK, Sanford JC (1992) Major improvements in biolistic transformation of suspension-cultured tobacco cells. Vitro Cell Dev 28(2):97–105

    Article  Google Scholar 

  • Schirawski J, Planchais S (2000) An improved protocol for the preparation of protoplasts from an established Arabidopsis thaliana cell suspension culture and infection with RNA of turnip yellow mosaic tymo virus: a simple and reliable method. J Virol Methods 86:85–94

    Article  PubMed  CAS  Google Scholar 

  • Sheahan MB, Rose RJ, McCurdy DW (2004) Organelle inheritance in plant cell division: the actin cytoskeleton is required for unbiased inheritance of chloroplasts, mitochondria and endoplasmic reticulum in dividing protoplasts. Plant J 37:379–390

    Article  PubMed  CAS  Google Scholar 

  • Sheahan MB, McCurdy DW, Rose RJ (2005) Mitochondria as a connected population: ensuring continuity of the mitochondrial genome during plant cell dedifferentiation through massive mitochondrial fusion. Plant J 44:744–755

    Article  PubMed  CAS  Google Scholar 

  • Sheahan MB, Rose RJ, McCurdy DW (2007) Actin-filament-dependent remodeling of the vacuole in cultured mesophyll protoplasts. Protoplasma 230:141–152

    Article  PubMed  Google Scholar 

  • Sheen J (2001) Signal transduction in maize and Arabidopsis mesophyll protoplasts. Plant Physiol 127:1466–1475

    Article  PubMed  CAS  Google Scholar 

  • Takahashi Y, Kuroda H (1989) Isolation of an auxin-regulated gene cDNA expressed during the transition from G to S phase in tobacco mesophyll protoplasts. Proc Nati Acad Sci 86:9279–9283

    Article  CAS  Google Scholar 

  • Tan MC, Rietveld EM (1987) Regeneration of leaf mesophyll protoplasts of tomato cultivars (L. esculentum): factors important for efficient protoplast culture and plant regeneration. Plant Cell Reports 6:172–175

    Article  PubMed  Google Scholar 

  • Uchimiya H, Murashige T (1974) Evaluation of parameters in the isolation of viable protoplasts from cultured tobacco cells. Plant Physiol 54:936–944

    Article  PubMed  CAS  Google Scholar 

  • Verweij W, Spelt C, Di Sansebastiano GP et al (2008) A novel type of tonoplast localized H+-ATPase is required for vacuolar acidification and coloration of flowers and seeds. Nat Cell Biol 10:1456–1462

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Tiwari SB, Hagen G, Guilfoyle TJ (2005) AUXIN RESPONSE FACTOR7 restores the expression of auxin-responsive genes in mutant Arabidopsis leaf mesophyll protoplasts. Plant Cell 17:1979–1993

    Article  PubMed  CAS  Google Scholar 

  • Wu FH, Shen SC, Lee LY, Lee SH, Chan MT, Lin CS (2009) Tape-Arabidopsis sandwich—a simpler Arabidopsis protoplast isolation method. Plant Methods 5:16–25

    Article  PubMed  Google Scholar 

  • Yamagishi H, Landgren M, Forsberg J et al (2002) Production of asymmetric hybrids between Arabidopsis thaliana and Brassica napus utilizing an efficient protoplast culture system. Theor Appl Genet 104:959–964

    Article  PubMed  CAS  Google Scholar 

  • Yoo SD, Cho YH, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cellsy stem for transient gene expression analysis. Nat Protoc 2:1565–1572

    Article  PubMed  CAS  Google Scholar 

  • Zhai Z, Sooksa-nguan S, Vatamaniuk OK (2008) Establishing RNA interference as a reverse-genetic approach for gene functional analysis in protoplasts. Plant Physiol 149:642–652

    Article  PubMed  Google Scholar 

  • Zhao J, Morozova N, Williams L, Libs L, Avivi Y, Grafi G (2001) Two phases of chromatin decondensation during dedifferentiation of plant cells. J Biol Chem 276:22772–22778

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This paper resulted from the National Natural Sciences Foundation of China support program (no.30970169) and Tongji University Young Talents Program (no. 1500219048) and Shanghai Municipal Health Bureau support program (no. 15002360037).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Zhu or Hai-Liang Liu.

Additional information

Handling Editor: Liwen Jiang

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, F., Zhu, J. & Liu, HL. Protoplasts: a useful research system for plant cell biology, especially dedifferentiation. Protoplasma 250, 1231–1238 (2013). https://doi.org/10.1007/s00709-013-0513-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-013-0513-z

Keywords

Navigation