Skip to main content
Log in

Lead (Pb)-induced biochemical and ultrastructural changes in wheat (Triticum aestivum) roots

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

The focus of the present study was to explore lead (Pb)-induced metabolic alterations vis-à-vis ultrastructural changes in wheat roots to establish Pb toxicity syndrome at a structural level. Pb (50–500 μM) enhanced malondialdehyde (an indicator of lipid peroxidation) and hydrogen peroxide content, and electrolyte leakage, thereby suggesting reactive oxygen species-induced disruption of membrane integrity and oxidative stress in wheat roots. The activities of superoxide dismutases and catalases enhanced upon Pb exposure, whereas those of ascorbate and guaiacol peroxidases declined. Pb-induced metabolic disruption was manifested in significant alterations in wheat root ultrastructure as analyzed by transmission electron microscopy. Pb caused thinning of cell wall (at 50 μM), formation of amoeboid protrusions and folds and intercellular spaces, and appearance of lesions and nicks/breaks (at ≥250 μM Pb). Pb was deposited along the cell walls as dark precipitates. At ≤250 μM Pb, the number of mitochondria increased significantly, whereas structural damage in terms of change of shape and disintegration was observed at ≥ 250 μM Pb. Pb reduced the size of nucleoli and induced puff formation (at 250 μM), resulting in complete disintegration/disappearance of nucleolus at 500 μM. The study concludes that Pb inhibited wheat root growth involving an ROS-mediated oxidative damage vis-à-vis the ultrastructural alterations in cell membrane and disruption of mitochondrial and nuclear integrity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bajji M, Kinet J-M, Lutts S (2002) The use of the electrolyte leakage method for assessing cell membrane stability as a water stress tolerance test in durum wheat. Plant Growth Regul 36:61–70

    Article  CAS  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–286

    Article  PubMed  CAS  Google Scholar 

  • Cakmak I, Marschner H (1992) Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase and glutathione reductase in bean leaves. Plant Physiol 98:1222–1227

    Article  PubMed  CAS  Google Scholar 

  • Dogan M, Saygideger SD, Colak U (2009) Effect of lead toxicity on aquatic macrophyte Elodea canadensis Michx. Bull Environ Contam Toxicol 83:249–254

    Article  PubMed  CAS  Google Scholar 

  • Egley GH, Paul RN, Vaughn KC, Duke SO (1983) Role of peroxidase in the development of water impermeable seed coats in Sida spinosa L. Planta 157:224–232

    Article  CAS  Google Scholar 

  • Eun SO, Youn HS, Lee Y (2000) Lead disturbs microtubule organization in the root meristem of Zea mays. Physiol Plant 110:357–365

    Article  CAS  Google Scholar 

  • Foyer CH, Halliwell B (1976) The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta 133:21–25

    Article  Google Scholar 

  • Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic link between stress perception and physiological responses. Plant Cell 17:1866–1875

    Article  PubMed  CAS  Google Scholar 

  • Foyer CH, Descourvières P, Kunert KJ (1994) Protection against oxygen radicals: an important defence mechanism studied in transgenic plants. Plant Cell Environ 17:507–523

    Article  CAS  Google Scholar 

  • Gupta DK, Nicoloso FT, Schetinger MR, Rossato LV, Pereira LB, Castro GY, Srivastava S, Tripathi RD (2009) Antioxidant defense mechanism in hydroponically grown Zea mays seedlings under moderate lead stress. J Hazard Mater 172:479–484

    Article  PubMed  CAS  Google Scholar 

  • Gwózdz EA, Przymusiński R, Rucińska R, Deckert J (1997) Plant cell responses to heavy metals: molecular and physiological aspects. Acta Physiol Plant 19:459–465

    Article  Google Scholar 

  • Gzyl J, Przymusinski R, Gwóźdź EA (2009) Ultrastructure analysis of cadmium-tolerant and -sensitive cell lines of cucumber (Cucumis sativus L.). Plant Cell Tissue Organ Cult 99:227–232

    Article  CAS  Google Scholar 

  • Hanchey P, Wheeler H, Luke HH (1968) Pathological changes in ultrastructure: effect of victorin on oat roots. Am J Bot 55:53–61

    Article  CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  PubMed  CAS  Google Scholar 

  • Heumann HG (1987) Effects of heavy metals on growth and ultrastructure of Chara vulgaris. Protoplasma 136:37–48

    Article  CAS  Google Scholar 

  • Islam E, Yang X, Li T, Liu D, Jin X, Meng F (2007) Effect of Pb toxicity on root morphology, physiology and ultrastructure in the two ecotypes of Elsholtzia argyi. J Hazard Mater 147:806–816

    Article  PubMed  CAS  Google Scholar 

  • Islam E, Liu D, Li T, Yang X, Jin X, Mahmood Q, Tian S, Li J (2008) Effect of Pb toxicity on leaf growth, physiology and ultrastructure in the two ecotypes of Elsholtzia argyi. J Hazard Mater 154:914–926

    Article  PubMed  CAS  Google Scholar 

  • Kaur G, Singh HP, Batish DR, Kohli RK (2011) A time-course assessment of changes in reactive oxygen species generation and antioxidant defense in hydroponically grown wheat in response to lead ions (Pb2+). Protoplasma. doi:10.1007/s00709-011-0353-7

  • Konarska A (2008) Changes in the ultrastructure of Capsicum annuum L. seedlings roots under aluminum stress conditions. Acta Agrobot 61:27–32

    Google Scholar 

  • Koyro HW (1997) Ultrastructural and physiological changes in root cells of sorghum plants (Sorghum bicolor × S. sudanensis cv. Sweet Sioux) induced by NaCl. J Exp Bot 48:693–706

    Article  CAS  Google Scholar 

  • Krzeslowska M, Lenartowska M, Mellweowicz EJ, Samardakiewicz S, Wozny A (2009) Pectinous cell wall thickenings formation: a response of moss protonemata cells to lead. Environ Exp Bot 65:119–131

    Article  CAS  Google Scholar 

  • Kurkova EB, Myasoedov NA, Kotov AA, Kotova LM, Luńkov RV, Shamsutdinov NZ, Balnokin Yu V (2002) Specific structure of root cells of the salt-accumulating halophyte Suaeda altissima L. Genome Biol 387:710–713

    Google Scholar 

  • Liu D, Zou J, Meng Q, Zou J, Jiang W (2009) Uptake and accumulation and oxidative stress in garlic (Allium sativum L.) under lead phytotoxicity. Ecotoxicology 18:134–143

    Article  PubMed  CAS  Google Scholar 

  • Lowry OH, Rosebrough NT, Farr AL Randall RJ (1951) Protein measurement with the folin-phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Małecka A, Piechalak A, Tomaszewska B (2009) Reactive oxygen species production and antioxidative defense system in pea root tissues treated with lead ions: the whole roots level. Acta Physiol Plant 31:1053–1063

    Article  Google Scholar 

  • Meyers DE, Auchterlonie GJ, Webb RI, Wood B (2008) Uptake and localisation of lead in the root system of Brassica juncea. Environ Pollut 153:323–332

    Article  PubMed  CAS  Google Scholar 

  • Mittova V, Guy M, Tal M, Volokita M (2004) Salinity up-regulates the antioxidative system in root mitochondria and peroxisomes of the wild salt-tolerant tomato species Lycopersicon pennellii. J Exp Bot 55:1105–1113

    Article  PubMed  CAS  Google Scholar 

  • Montillet J-L, Chamnongpol S, Rustérucci C, Dat J, Van de Cotte B, Agnel J-P, Battesti C, Inzé D, Van Breusegem F, Triantaphylidès C (2005) Fatty acid hydroperoxides and H2O2 in the execution of hypersensitive cell death in tobacco leaves. Plant Physiol 138:1516–1526

    Article  PubMed  CAS  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Reddy AM, Kumar SG, Jyothsnakumari G, Thimmanaik S, Sudhakar C (2005) Lead induced changes in antioxidant metabolism of horsegram (Macrotyloma uniflorum (Lam.) Verdc.) and bangalgram (Cicer arietinum L.). Chemosphere 60:97–104

    Article  PubMed  CAS  Google Scholar 

  • Rucińska R, Waplak S, Gwózdz EA (1999) Free radical formation and activity of antioxidant enzymes in lupin roots exposed to lead. Plant Physiol Biochem 37:187–194

    Article  Google Scholar 

  • Sengar RS, Gautam M, Sengar RS, Garg SK, Sengar K, Chaudhary R (2008) Lead stress effects on physiobiochemical activities of higher plants. Rev Environ Contam Toxicol 196:73–93

    Article  PubMed  CAS  Google Scholar 

  • Sergio E, Cobianchi RC, Conte B, Basile A (2007) Ultrastructural alterations and HSP 70 induction in Elodea canadensis Michx. exposed to heavy metals. Caryologia 60:115–120

    Google Scholar 

  • Sharma P, Dubey RS (2005) Lead toxicity in plants. Braz J Plant Physiol 17:35–52

    Article  CAS  Google Scholar 

  • Singh HP, Batish DR, Kohli RK, Arora K (2007) Arsenic-induced root growth inhibition in mung bean (Phaseolus aureus Roxb.) is due to oxidative stress resulting from enhanced lipid peroxidation. Plant Growth Regul 53:65–73

    Article  CAS  Google Scholar 

  • Singh HP, Batish DR, Kaur G, Arora K, Kohli RK (2008) Nitric oxide (as sodium nitroprusside) supplementation ameliorates Cd toxicity in hydroponically grown wheat roots. Environ Exp Bot 63:158–167

    Article  CAS  Google Scholar 

  • Singh HP, Kaur G, Batish DR, Kohli RK (2011) Lead (Pb)-inhibited radicle emergence in Brassica campestris involves alterations in starch-metabolizing enzymes. Biol Trace Elem Res 144:1295–1301

    Google Scholar 

  • Sun Q, Ye ZH, Wang XR, Wong MH (2005) Increase of glutathione in mine population of Sedum alfredii: a Zn hyperaccumulator and Pb accumulator. Phytochemistry 66:2549–2556

    Article  PubMed  CAS  Google Scholar 

  • Tarhanen S (1998) Ultrastructural responses of the lichen Bryoria fuscescens to simulated acid rain and heavy metal deposition. Ann Bot 82:735–746

    Article  CAS  Google Scholar 

  • van Assche F, Clijsters H (1990) Effects of metal on enzyme activities in plants. Plant Cell Environ 13:195–206

    Article  Google Scholar 

  • Verma S, Dubey RS (2003) Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Sci 164:645–655

    Article  CAS  Google Scholar 

  • Wierzbicka M (1987) Lead accumulation and its translocation barriers in roots of Allium cepa L.—autoradiographic and ultrastructural studies. Plant Cell Environ 10:17–26

    Article  CAS  Google Scholar 

  • Wierzbicka M (1998) Lead in the apoplast of Allium cepa L. root tips—ultrastructural studies. Plant Sci 133:105–119

    Article  Google Scholar 

  • Yamamoto Y, Kobayashi Y, Devi R, Rikiishi S, Matsumoto H (2002) Aluminum toxicity is associated with mitochondrial dysfunction and the production of reactive oxygen species in plant cells. Plant Physiol 128:63–72

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Gurpreet Kaur is thankful to University Grants Commission, New Delhi, India, for financial support in the form of research fellowship. We are grateful to the in-charge, Electron Microscopy Facility at All India Institute of Medical Sciences, New Delhi, for necessary help in getting the samples analyzed by TEM.

Conflicts of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harminder Pal Singh.

Additional information

Handling Editor: Bhumi Nath Tripathi

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaur, G., Singh, H.P., Batish, D.R. et al. Lead (Pb)-induced biochemical and ultrastructural changes in wheat (Triticum aestivum) roots. Protoplasma 250, 53–62 (2013). https://doi.org/10.1007/s00709-011-0372-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-011-0372-4

Keywords

Navigation