Skip to main content

Advertisement

Log in

Calcium supplementation modulates arsenic-induced alterations and augments arsenic accumulation in callus cultures of Indian mustard (Brassica juncea (L.) Czern.)

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

In the present study, the effect of arsenate (AsV) exposure either alone or in combination with calcium (Ca) was investigated in callus cultures of Brassica juncea (L.) Czern. cv. Pusa Bold grown for a period up to 24 h. The AsV (250 μM) + Ca (10 mM) treatment resulted in a significantly higher level of As (464 μg g−1 dry weight (DW)) than AsV without Ca (167 μg g−1 DW) treatment at 24 h. Furthermore, AsV + Ca-treated calli had a higher percent of AsIII (24–47%) than calli subjected to AsV treatment (12–14%). Despite this, AsV + Ca-treated calli did not show any signs of hydrogen peroxide (H2O2) accumulation or cell death upon in vivo staining, while AsV-exposed calli had increased H2O2, shrinkage of cytoplasmic contents, and cell death. Thus, AsV treatment induced oxidative stress, which in turn elicited a response of antioxidant enzymes and metabolites as compared with control and AsV + Ca treatment. The positive effects of Ca supplementation were also correlated to an increase in thiolic constituents', viz., cysteine, reduced glutathione, and glutathione reductase in AsV + Ca than in AsV treatment. An analysis of selected signaling related genes, e.g., mitogen-activated protein kinases (MAPK3 and MAPK6) and jasmonate ZIM-domain (JAZ3) suggested that AsV and AsV + Ca followed variable pathways to sense and signal the As stress. In AsV-alone treatment, jasmonate signaling was seemingly activated, while MAPK3 was not involved. In contrast, AsV + Ca treatment appeared to specifically inhibit jasmonate signaling and activate MAPK3. In conclusion, Ca supplementation may hold promise for achieving increased As accumulation in plants without compromising their tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aebi H (1974) Catalase. In: Bergenmeyer HU (ed) Methods of enzymatic analysis. Verlag Chemie, Weinheim, Germany, pp 673–684

    Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287

    Article  PubMed  CAS  Google Scholar 

  • Boursiac Y, Harper JF (2007) The origin and function of calmodulin regulated Ca2+ pumps in plants. J Bioenerg Biomembr 39:409–414

    Article  PubMed  CAS  Google Scholar 

  • Brownie J, Shawcross S, Theaker J, Whitcombe D, Ferrie R, Newton C, Little S (1997) The elimination of primer-dimer accumulation in PCR. Nucleic Acids Res 25:3235–3241

    Article  PubMed  CAS  Google Scholar 

  • Chen TB, Huang ZC, Huang YY, Xie H, Liao XY (2003) Cellular distribution of arsenic and other elements in hyperaccumulator Pteris nervosa and their relations to arsenic accumulation. Chin Sci Bull 48:1586–1591

    CAS  Google Scholar 

  • Colcombet J, Hirt H (2008) Arabidopsis MAPKs: a complex signaling network involved in multiple biological processes. Biochem J 413:217–226

    Article  PubMed  CAS  Google Scholar 

  • Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875

    Article  PubMed  CAS  Google Scholar 

  • Gaitonde MK (1967) A spectrophotometric method for the direct determination of cysteine in the presence of other naturally occurring amino acids. Biochem J 104:627–633

    PubMed  CAS  Google Scholar 

  • Hammond JP, Bowen HC, White PJ, Mills V, Pyke KA, Baker AJM, Whiting SN, May ST, Broadley MR (2006) A comparison of the Thlaspi caerulescens and Thlaspi arvense shoot transcriptomes. New Phytol 170:239–260

    Article  PubMed  CAS  Google Scholar 

  • Han S, Kim D (2006) AtRTPrimer: database for Arabidopsis genome wide homogenous and specific RT-PCR primer-pairs. BMC Bioinformatics 7:179–188

    Article  PubMed  Google Scholar 

  • Hemeda HM, Klein BP (1990) Effects of naturally occurring antioxidants on peroxidase activity of vegetable extracts. J Food Sci 55(184–185):192

    Google Scholar 

  • Hissin PJ, Hilf R (1976) A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal Biochem 74:214–226

    Article  PubMed  CAS  Google Scholar 

  • Irtelli B, Navari-Izzo F (2008) Uptake kinetics of different arsenic species by Brassica carinata. Plant Soil 303:105–113

    Article  CAS  Google Scholar 

  • Li W-X, Chen T-B, Huang Z-C, Lei M, Liao X-Y (2006) Effect of arsenic on chloroplast ultrastructure and calcium distribution in arsenic hyperaccumulator Pteris vittata L. Chemosphere 62:803–809

    Article  PubMed  CAS  Google Scholar 

  • Liao XY, Xiao XY, Chen TB (2003) Effects of Ca and As addition on As, P and Ca uptake by hyperaccumulator Pteris vittata L. under sand culture (in Chinese). Acta Ecol Sinica 23:2057–2065

    Google Scholar 

  • Lowry ΟΗ, Roseborough ΝJ, Farr AL, Randall RJ (1951) Protein measurement with folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Matysik J, Alia BB, Mohanty P (2002) Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants. Current Sci 82:525–532

    CAS  Google Scholar 

  • Mondal P, Majumdar CB, Mohanty B (2006) Laboratory based approaches for arsenic remediation from contaminated water: recent developments. J Hazard Mater 137:464–479

    Article  PubMed  CAS  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Patade VY, Suprasanna P, Bapat VA (2008) Effects of salt stress in relation to osmotic adjustment on sugarcane (Saccharum officinarum L.) callus cultures. Plant Growth Regul 55:169–173

    Article  CAS  Google Scholar 

  • Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30:e36

    Article  PubMed  Google Scholar 

  • Radoni A, Thulke S, Mackay IM, Landt O, Siegert W, Nitsche A (2004) Guideline to reference gene selection for quantitative real-time PCR. Biochem Biophys Res Comm 313:856–862

    Article  Google Scholar 

  • Ririe KM, Rasmussen RP, Wittwer CT (1997) Product differentiation by analysis of DNA melting curves during the polymerase chain reaction. Anal Biochem 245:54–160

    Article  Google Scholar 

  • Rodríguez-Serrano M, Romero-Puertas MC, Pazmino DM, Testillano PS, Risueno MC, del Rio LA, Sandalio LM (2009) Cellular response of pea plants to cadmium toxicity: cross talk between reactive oxygen species, nitric oxide, and calcium. Plant Physiol 150:229–243

    Article  PubMed  Google Scholar 

  • Samantaray S, Rout GR, Das P (2001) Heavy metal and nutrient concentration in soil and plants growing on a metalliferous chromite minespoil. Environ Technol 22:1147–1154

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor, Plainview, NY

    Google Scholar 

  • Schraudner M, Moeder W, Wiese C, Van Camp W, Inze D, Langebartels C, Sandermann H Jr (1998) Ozone-induced oxidative burst in the ozone biomonitor plant, tobacco Bel W3. Plant J 16:235–245

    Article  PubMed  CAS  Google Scholar 

  • Sharma A, Sainger M, Dwivedi S, Srivastava S, Tripathi RD, Singh RP (2010) Genotypic variation in Brassica juncea (L.) Czern. cultivars in growth, nitrate assimilation, antioxidant responses and phytoremediation potential during cadmium stress. J Environ Biol 31:773–780

    CAS  Google Scholar 

  • Shekhawat GS, Verma K, Jana S, Singh K, Teotia P, Prasad A (2010) In vitro biochemical evaluation of cadmium tolerance mechanism in callus and seedlings of Brassica juncea. Protoplasma 239:31–38

    Article  PubMed  CAS  Google Scholar 

  • Singh HP, Kaur S, Batish DR, Sharma VP, Sharma N, Kohli RK (2009) Nitric oxide alleviates arsenic toxicity by reducing oxidative damage in the roots of Oryza sativa (rice). Nitric Oxide 20:289–297

    Article  PubMed  CAS  Google Scholar 

  • Smith IK, Vierheller TL, Thorne CA (1988) Assay of glutathione reductase in crude tissue homogenates using 5,5‘-dithiobis(2-nitrobenzoic acid). Anal Biochem 175:408–413

    Article  PubMed  CAS  Google Scholar 

  • Srivastava S, D'Souza SF (2009) Increasing sulfur supply enhances tolerance to arsenic and its accumulation in Hydrilla verticillata (L.f.) Royle. Environ Sci Technol 43:6308–6313

    Article  PubMed  CAS  Google Scholar 

  • Srivastava S, D'Souza SF (2010) Effect of variable sulfur supply on arsenic tolerance and antioxidant responses in Hydrilla verticillata (L.f.) Royle. Ecotox Environ Safety 73:1314–1322

    Article  CAS  Google Scholar 

  • Srivastava S, Mishra S, Tripathi RD, Dwivedi S, Gupta DK (2006) Copper-induced oxidative stress and response of antioxidants and phytochelatins in Hydrilla verticillata (L.f.) Royle. Aquat Toxicol 80:405–415

    Article  PubMed  CAS  Google Scholar 

  • Srivastava S, Srivastava AK, Suprasanna P, D'Souza SF (2009) Comparative biochemical and transcriptional profiling of two contrasting varieties of Brassica juncea L. in response to arsenic exposure reveals mechanisms of stress perception and tolerance. J Exp Bot 60:3419–3431

    Article  PubMed  CAS  Google Scholar 

  • Srivastava S, Srivastava AK, Surasanna P, D'Souza SF (2010) Comparative antioxidant profiling of tolerant and sensitive varieties of Brassica juncea L. to arsenate and arsenite exposure. Bull Environ Contam Toxicol 84:342–346

    Article  PubMed  CAS  Google Scholar 

  • Srivastava S, Suprasanna P, D'Souza SF (2011) Redox state and energetic equilibrium determine the magnitude of stress in Hydrilla verticillata upon exposure to arsenate. Protoplasma. doi:10.1007/s00709-010-0256-z

  • Staswick PE (2008) JAZing up jasmonate signaling. Trends Plant Sci 13:66–71

    Article  PubMed  CAS  Google Scholar 

  • Tichopad A, Dilger M, Schwarz G, Pfaffl MW (2003) Standardized determination of real-time PCR efficiency from a single reaction set-up. Nucleic Acids Res 31:122–128

    Article  Google Scholar 

  • Tripathi RD, Srivastava S, Mishra S, Singh N, Tuli R, Gupta DK, Maathuis FJM (2007) Arsenic hazards: strategies for tolerance and remediation by plants. Trends Biotechnol 25:158–165

    Article  PubMed  CAS  Google Scholar 

  • Tu C, Ma LQ (2002) Effects of arsenic concentrations and forms on arsenic uptake by the hyperaccumulator ladder brake. J EnvironQual 31:641–647

    CAS  Google Scholar 

  • Vincze E, Bowra S (2005) Northerns revisited: a protocol that eliminates formaldehyde from the gel while enhancing resolution and sensitivity. Anal Biochem 342:356–357

    Article  PubMed  CAS  Google Scholar 

  • Wang CQ, Wang BS (2007) Ca2 + −CaM is involved in betacyanin accumulation induced by darkness in C3 halophyte Suaeda salsa. J Integr Plant Biol 49:1378–1385

    Article  CAS  Google Scholar 

  • Wang CQ, Zhang YF, Liu T (2005) Activity changes of CaM and Ca2 + −ATPase during low temperature-induced anthocyanin accumulation in Alternanthera bettzickiana. Physiol Plant 124:260–266

    Article  CAS  Google Scholar 

  • Wohlgemuth H, Mittelstrass K, Kschieschan S, Bender J, Weigel HJ, Overmyer K, Kangasjärvi J, Sandermann H, Langebartels C (2002) Activation of an oxidative burst is a general feature of sensitive plants exposed to the air pollutant ozone. Plant Cell Environ 25:717–726

    Article  CAS  Google Scholar 

  • Yamada T, Takeda R, Tsuda Y, Matsumoto S, Sadao K, Sawabe A (2005) Behavior of heavy metals in the callus of Brassica juncea, a heavy metal accumulator plant. Bunseki Kagaku 54:929–933

    Article  CAS  Google Scholar 

  • Yang X, Chen H, Xu W, He Z, Ma M (2007) Hyperaccumulation of arsenic by callus, sporophytes and gametophytes of Pteris vittata cultured in vitro. Plant Cell Rep 26:1889–1897

    Article  PubMed  CAS  Google Scholar 

  • Zhao FJ, Ma JF, Meharg AA, McGrath SP (2009) Arsenic uptake and metabolism in plants. New Phytol 181:777–794

    Article  PubMed  CAS  Google Scholar 

  • Zheng MZ, Cai C, Hu Y, Sun GX, Williams PN, Cui HJ, Li G, Zhao FJ, Zhu YG (2011) Spatial distribution of arsenic and temporal variation of its concentration in rice. New Phytol 189:200–209

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

Mr. Raghuwardhan is gratefully acknowledged for the assistance provided in conducting the experiments. We thank Dr. R.D. Tripathi and Dr. Sanjay Dwivedi of National Botanical Research Institute, India, for assistance regarding the analysis of total As and As speciation.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Penna Suprasanna.

Additional information

Handling Editor: Bhumi Nath Tripathi

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rai, A.N., Srivastava, S., Paladi, R. et al. Calcium supplementation modulates arsenic-induced alterations and augments arsenic accumulation in callus cultures of Indian mustard (Brassica juncea (L.) Czern.). Protoplasma 249, 725–736 (2012). https://doi.org/10.1007/s00709-011-0316-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-011-0316-z

Keywords

Navigation