Skip to main content
Log in

The endodermis—development and differentiation of the plant’s inner skin

  • Review
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Controlling external compound entrance is essential for plant survival. To set up an efficient and selective sorting of nutrients, free diffusion via the apoplast in vascular plants is blocked at the level of the endodermis. Although we have learned a lot about endodermal specification in the last years, information regarding its differentiation is still very limited. A differentiated endodermal cell can be defined by the presence of the “Casparian strip” (CS), a cell wall modification described first by Robert Caspary in 1865. While the anatomical description of CS in many vascular plants has been very detailed, we still lack molecular information about the establishment of the Casparian strips and their actual function in roots. The recent isolation of a novel protein family, the CASPs, that localizes precisely to a domain of the plasma membrane underneath the CS represents an excellent point of entry to explore CS function and formation. In addition, it has been shown that the endodermis contains transporters that are localized to either the central (stele-facing) or peripheral (soil-facing) plasma membranes. These features suggest that the endodermis functions as a polar plant epithelium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AUX1:

AUXIN RESISTANT1

AXR4:

AUXIN RESISTANT 4

BOR1:

BORON EFFLUX CARRIER 1

BOR4:

BORON EFFLUX CARRIER 4

CS:

Casparian strip

CSD:

Casparian strip membrane domain

GFP:

Green fluorescent protein

FM4-64:

N-(3-triethylammoniumpropyl)-4-(6-(4-(diethylamino)phenyl)hexatrienyl)pyridinium dibromide

NIP5; 1:

NOD26-LIKE INTRINSIC PROTEIN 5; 1

NPSN12:

Novel plant snare 12

PEN3:

Penetration resistant 3

PI:

Propidium iodide

PIN:

PINFORMED

PIS1:

Polar auxin transport inhibitor sensitive 1

PM:

Plasma membrane

PP2A:

PROTEIN PHOSPHATASE 2A

SCR:

SCARECROW

SHR:

SHORT ROOT

References

  • Alassimone J, Naseer S, Geldner N (2010) A developmental framework for endodermal differentiation and polarity. Proc Natl Acad Sci USA 107(11):5214–5219

    Article  PubMed  CAS  Google Scholar 

  • Bazzoni G, Dejana E (2004) Endothelial cell-to-cell junctions: molecular organization and role in vascular homeostasis. Physiol Rev 84(3):869–901

    Article  PubMed  CAS  Google Scholar 

  • Behrisch R (1926) Zur Kenntnis der Endodermiszelle. Berichte der Deutschen Botanischen Gesellschaft 44:162–164

    Google Scholar 

  • Bell JK, McCully ME (1970) A histological study of lateral root initiation and development in Zea mays. Protoplasma 70:179–205

    Article  Google Scholar 

  • Benfey PN, Scheres B (2000) Root development. Curr Biol 10(22):R813–R815

    Article  PubMed  CAS  Google Scholar 

  • Bonnett HT Jr (1968) The root endodermis: fine structure and function. J Cell Biol 37(1):199–205

    Article  PubMed  Google Scholar 

  • Bonnett HT Jr (1969) Cortical cell death during lateral root formation. J Cell Biol 40(1):144–159

    Article  PubMed  Google Scholar 

  • Caspary R (1865) Bemerkungen u¨ber die Schutzscheide und die Bildung des Stammes und der Wurzel. Jahrb wissensc Botanik 4:24

    Google Scholar 

  • Cereijido M, Contreras RG, Shoshani L (2004) Cell adhesion, polarity, and epithelia in the dawn of metazoans. Physiol Rev 84(4):1229–1262

    Article  PubMed  CAS  Google Scholar 

  • Clarkson DT, Robards AW, Stephens JE, Stark M (1987) Suberin lamellae in the hypodermis of maize (Zea mays) roots; development and factors affecting the permeability of hypodermal layers. Plant Cell Environ 10(1):83–93

    Article  Google Scholar 

  • Cui H, Levesque MP, Vernoux T, Jung JW, Paquette AJ, Gallagher KL, Wang JY, Blilou I, Scheres B, Benfey PN (2007) An evolutionarily conserved mechanism delimiting SHR movement defines a single layer of endodermis in plants. Science 316(5823):421–425

    Article  PubMed  CAS  Google Scholar 

  • Dhonukshe P, Tanaka H, Goh T, Ebine K, Mahonen AP, Prasad K, Blilou I, Geldner N, Xu J, Uemura T, Chory J, Ueda T, Nakano A, Scheres B, Friml J (2008) Generation of cell polarity in plants links endocytosis, auxin distribution and cell fate decisions. Nature 456(7224):962–966

    Article  PubMed  CAS  Google Scholar 

  • Di Laurenzio L, Wysocka-Diller J, Malamy JE, Pysh L, Helariutta Y, Freshour G, Hahn MG, Feldmann KA, Benfey PN (1996) The SCARECROW gene regulates an asymmetric cell division that is essential for generating the radial organization of the Arabidopsis root. Cell 86(3):423–433

    Article  PubMed  Google Scholar 

  • Ding Z, Galvan-Ampudia CS, Demarsy E, Langowski L, Kleine-Vehn J, Fan Y, Morita MT, Tasaka M, Fankhauser C, Offringa R, Friml J (2011) Light-mediated polarization of the PIN3 auxin transporter for the phototropic response in Arabidopsis. Nat Cell Biol 13(4):447–452

    Article  PubMed  CAS  Google Scholar 

  • Enstone DE, Peterson CA, Ma F (2003) Root endodermis and exodermis: structure, function, and responses to the environment. J Plant Growth Reg 21(4):335–351

    Article  Google Scholar 

  • Feraru E, Friml J (2008) PIN polar targeting. Plant Physiol 147(4):1553–1559

    Article  PubMed  CAS  Google Scholar 

  • Feraru E, Feraru MI, Kleine-Vehn J, Martiniere A, Mouille G, Vanneste S, Vernhettes S, Runions J, Friml J (2011) PIN polarity maintenance by the cell wall in Arabidopsis. Curr Biol 21(4):338–343

    Article  PubMed  CAS  Google Scholar 

  • Forster C (2008) Tight junctions and the modulation of barrier function in disease. Histochem Cell Biol 130(1):55–70

    Article  PubMed  Google Scholar 

  • Friml J, Yang X, Michniewicz M, Weijers D, Quint A, Tietz O, Benjamins R, Ouwerkerk PB, Ljung K, Sandberg G, Hooykaas PJ, Palme K, Offringa R (2004) A PINOID-dependent binary switch in apical–basal PIN polar targeting directs auxin efflux. Science 306(5697):862–865

    Article  PubMed  CAS  Google Scholar 

  • Furutani M, Sakamoto N, Yoshida S, Kajiwara T, Robert HS, Friml J, Tasaka M (2011) Polar-localized NPH3-like proteins regulate polarity and endocytosis of PIN-FORMED auxin efflux carriers. Development 138(10):2069–2078

    Article  PubMed  CAS  Google Scholar 

  • Gallagher KL, Paquette AJ, Nakajima K, Benfey PN (2004) Mechanisms regulating SHORT-ROOT intercellular movement. Curr Biol 14(20):1847–1851

    Article  PubMed  CAS  Google Scholar 

  • Geldner N (2009) Cell polarity in plants: a PARspective on PINs. Curr Opin Plant Biol 12(1):42–48

    Article  PubMed  CAS  Google Scholar 

  • Geldner N, Friml J, Stierhof YD, Jurgens G, Palme K (2001) Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature 413(6854):425–428

    Article  PubMed  CAS  Google Scholar 

  • Geldner N, Anders N, Wolters H, Keicher J, Kornberger W, Muller P, Delbarre A, Ueda T, Nakano A, Jurgens G (2003) The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport, and auxin-dependent plant growth. Cell 112(2):219–230

    Article  PubMed  CAS  Google Scholar 

  • Grebe M (2011) Plant biology: unveiling the Casparian strip. Nature 473(7347):294–295

    Article  PubMed  CAS  Google Scholar 

  • Grunewald W, Friml J (2010) The march of the PINs: developmental plasticity by dynamic polar targeting in plant cells. EMBO J 29(16):2700–2714

    Article  PubMed  CAS  Google Scholar 

  • Gupta IR, Ryan AK (2010) Claudins: unlocking the code to tight junction function during embryogenesis and in disease. Clin Genet 77(4):314–325

    Article  PubMed  CAS  Google Scholar 

  • Heisler MG, Hamant O, Krupinski P, Uyttewaal M, Ohno C, Jonsson H, Traas J, Meyerowitz EM (2010) Alignment between PIN1 polarity and microtubule orientation in the shoot apical meristem reveals a tight coupling between morphogenesis and auxin transport. PLoS Biol 8(10):e1000516

    Article  PubMed  Google Scholar 

  • Helariutta Y, Fukaki H, Wysocka-Diller J, Nakajima K, Jung J, Sena G, Hauser MT, Benfey PN (2000) The SHORT-ROOT gene controls radial patterning of the Arabidopsis root through radial signaling. Cell 101(5):555–567

    Article  PubMed  CAS  Google Scholar 

  • Karahara I, Shibaoka H (1992) Isolation of Casparian strips from pea roots. Plant Cell Physiol 33(5):555–561

    CAS  Google Scholar 

  • Karahara I, Ikeda A, Kondo T, Uetake Y (2004) Development of the Casparian strip in primary roots of maize under salt stress. Planta 219(1):41–47

    Article  PubMed  CAS  Google Scholar 

  • Karas I, McCully ME (1973) Further studies of the histology of lateral root development in Zea mays. Protoplasma 77:243–269

    Article  Google Scholar 

  • Kasai K, Takano J, Miwa K, Toyoda A, Fujiwara T (2011) High boron-induced ubiquitination regulates vacuolar sorting of the BOR1 borate transporter in Arabidopsis thaliana. J Biol Chem 286(8):6175–6183

    Article  PubMed  CAS  Google Scholar 

  • Kitakura S, Vanneste S, Robert S, Lofke C, Teichmann T, Tanaka H, Friml J (2011) Clathrin mediates endocytosis and polar distribution of PIN auxin transporters in Arabidopsis. Plant Cell [Epub ahead of print]

  • Kleine-Vehn J, Langowski L, Wisniewska J, Dhonukshe P, Brewer PB, Friml J (2008) Cellular and molecular requirements for polar PIN targeting and transcytosis in plants. Mol Plant 1(6):1056–1066

    Article  PubMed  CAS  Google Scholar 

  • Langowski L, Ruzicka K, Naramoto S, Kleine-Vehn J, Friml J (2010) Trafficking to the outer polar domain defines the root–soil interface. Curr Biol 20(10):904–908

    Article  PubMed  CAS  Google Scholar 

  • Liesche J, Martens HJ, Schulz A (2011) Symplasmic transport and phloem loading in gymnosperm leaves. Protoplasma 248(1):181–190

    Article  PubMed  CAS  Google Scholar 

  • Luttge U, Laties GG (1966) Dual mechanisms of ion absorption in relation to long distance transport in plants. Plant Physiol 41(9):1531–1539

    Article  PubMed  CAS  Google Scholar 

  • Ma JF, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M, Ishiguro M, Murata Y, Yano M (2006) A silicon transporter in rice. Nature 440(7084):688–691

    Article  PubMed  CAS  Google Scholar 

  • Ma JF, Yamaji N, Mitani N, Tamai K, Konishi S, Fujiwara T, Katsuhara M, Yano M (2007) An efflux transporter of silicon in rice. Nature 448(7150):209–212

    Article  PubMed  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, London

    Google Scholar 

  • Martin-Belmonte F, Mostov K (2008) Regulation of cell polarity during epithelial morphogenesis. Curr Opin Cell Biol 20(2):227–234

    Article  PubMed  CAS  Google Scholar 

  • Men S, Boutte Y, Ikeda Y, Li X, Palme K, Stierhof YD, Hartmann MA, Moritz T, Grebe M (2008) Sterol-dependent endocytosis mediates post-cytokinetic acquisition of PIN2 auxin efflux carrier polarity. Nat Cell Biol 10(2):237–244

    Article  PubMed  CAS  Google Scholar 

  • Michniewicz M, Zago MK, Abas L, Weijers D, Schweighofer A, Meskiene I, Heisler MG, Ohno C, Zhang J, Huang F, Schwab R, Weigel D, Meyerowitz EM, Luschnig C, Offringa R, Friml J (2007) Antagonistic regulation of PIN phosphorylation by PP2A and PINOID directs auxin flux. Cell 130(6):1044–1056

    Article  PubMed  CAS  Google Scholar 

  • Miwa K, Takano J, Omori H, Seki M, Shinozaki K, Fujiwara T (2007) Plants tolerant of high boron levels. Science 318(5855):1417

    Article  PubMed  CAS  Google Scholar 

  • Moon GJ, Clough BF, Peterson CA, Allaway WG (1986) Apoplastic and symplastic pathways in Avicennia marina (Forsk.) Vierh. roots revealed by fluorescent tracer dyes. Funct Plant Biol 13(5):637–648

    CAS  Google Scholar 

  • Nagahashi G, Thomson WW, Leonard RT (1974) The Casparian strip as a barrier to the movement of lanthanum in corn roots. Science 183(4125):670–671

    Article  PubMed  CAS  Google Scholar 

  • Nakajima K, Sena G, Nawy T, Benfey PN (2001) Intercellular movement of the putative transcription factor SHR in root patterning. Nature 413(6853):307–311

    Article  PubMed  CAS  Google Scholar 

  • Naramoto S, Kleine-Vehn J, Robert S, Fujimoto M, Dainobu T, Paciorek T, Ueda T, Nakano A, Van Montagu MC, Fukuda H, Friml J (2010) ADP-ribosylation factor machinery mediates endocytosis in plant cells. Proc Natl Acad Sci USA 107(50):21890–21895

    Article  PubMed  CAS  Google Scholar 

  • Peterson CA (1987) The exodermal Casparian band of onion roots blocks the apoplastic movement of sulphate ions. J Exp Bot 38(12):2068–2081

    Article  CAS  Google Scholar 

  • Peterson CA, Murrmann M, Steudle E (1993) Location of the major barriers to water and ion movement in young roots of Zea mays L. Planta 190(1):127–136

    Article  CAS  Google Scholar 

  • Robards AW, Robb ME (1972) Uptake and binding of uranyl ions by barley roots. Science 178(4064):980–982

    Article  PubMed  CAS  Google Scholar 

  • Robards AW, Robb ME (1974) The entry of ions and molecules into roots: an investigation using electron-opaque tracers. Planta 120(1):1–12

    Article  CAS  Google Scholar 

  • Roppolo D, De Rybel B, Tendon VD, Pfister A, Alassimone J, Vermeer JE, Yamazaki M, Stierhof YD, Beeckman T, Geldner N (2011) A novel protein family mediates Casparian strip formation in the endodermis. Nature 473(7347):380–383

    Article  PubMed  CAS  Google Scholar 

  • Rufz de Lavison JD (1910) Du mode de pénétration de quelques sels dans la plante vivante. Rev Gen Bot 22:16

    Google Scholar 

  • Schreiber L, Hartmann K, Skrabs M, Zeier J (1999) Apoplastic barriers in roots: chemical composition of endodermal and hypodermal cell walls. J Exp Bot 50(337):1267–1280

    CAS  Google Scholar 

  • Shen L, Weber CR, Turner JR (2008) The tight junction protein complex undergoes rapid and continuous molecular remodeling at steady state. J Cell Biol 181(4):683–695

    Article  PubMed  CAS  Google Scholar 

  • Singh C, Jacobson L (1977) The radial and longitudinal path of ion movement in roots. Physiol Plant 41(1):59–64

    Article  CAS  Google Scholar 

  • Sozzani R, Cui H, Moreno-Risueno MA, Busch W, Van Norman JM, Vernoux T, Brady SM, Dewitte W, Murray JA, Benfey PN (2010) Spatiotemporal regulation of cell-cycle genes by SHORTROOT links patterning and growth. Nature 466(7302):128–132

    Article  PubMed  CAS  Google Scholar 

  • Steed E, Balda MS, Matter K (2010) Dynamics and functions of tight junctions. Trends Cell Biol 20(3):142–149

    Article  PubMed  CAS  Google Scholar 

  • Strader LC, Bartel B (2009) The Arabidopsis PLEIOTROPIC DRUG RESISTANCE8/ABCG36 ATP binding cassette transporter modulates sensitivity to the auxin precursor indole-3-butyric acid. Plant Cell 21(7):1992–2007

    Article  PubMed  CAS  Google Scholar 

  • Takano J, Miwa K, Yuan L, von Wiren N, Fujiwara T (2005) Endocytosis and degradation of BOR1, a boron transporter of Arabidopsis thaliana, regulated by boron availability. Proc Natl Acad Sci USA 102(34):12276–12281

    Article  PubMed  CAS  Google Scholar 

  • Takano J, Wada M, Ludewig U, Schaaf G, von Wiren N, Fujiwara T (2006) The Arabidopsis major intrinsic protein NIP5;1 is essential for efficient boron uptake and plant development under boron limitation. Plant Cell 18(6):1498–1509

    Article  PubMed  Google Scholar 

  • Takano J, Tanaka M, Toyoda A, Miwa K, Kasai K, Fuji K, Onouchi H, Naito S, Fujiwara T (2010) Polar localization and degradation of Arabidopsis boron transporters through distinct trafficking pathways. Proc Natl Acad Sci USA 107(11):5220–5225

    Article  PubMed  CAS  Google Scholar 

  • Tsukita S, Katsuno T, Yamazaki Y, Umeda K, Tamura A (2009) Roles of ZO-1 and ZO-2 in establishment of the belt-like adherens and tight junctions with paracellular permselective barrier function. Ann N Y Acad Sci 1165:44–52

    Article  PubMed  CAS  Google Scholar 

  • Tyree MT, Sperry JS (1989) Vulnerability of xylem to cavitation and embolism. Annu Rev Plant Physiol Plant Mol Biol 40(1):19–36

    Article  Google Scholar 

  • Valdez-Taubas J, Pelham HR (2003) Slow diffusion of proteins in the yeast plasma membrane allows polarity to be maintained by endocytic cycling. Curr Biol 13(18):1636–1640

    Article  PubMed  CAS  Google Scholar 

  • Weerdenburg CA, Peterson CA (1984) Effect of secondary growth on the conformation and permeability of the endodermis of broad bean (Vicia faba), sunflower (Helianthus annuus), and garden balsam (Impatiens balsamina). Can J Bot 62(5):907–910

    Article  Google Scholar 

  • Williamson VM, Gleason CA (2003) Plant–nematode interactions. Curr Opin Plant Biol 6(4):327–333

    Article  PubMed  CAS  Google Scholar 

  • Wysocka-Diller JW, Helariutta Y, Fukaki H, Malamy JE, Benfey PN (2000) Molecular analysis of SCARECROW function reveals a radial patterning mechanism common to root and shoot. Development 127(3):595–603

    PubMed  CAS  Google Scholar 

  • Zeeb M, Strilic B, Lammert E (2010) Resolving cell–cell junctions: lumen formation in blood vessels. Curr Opin Cell Biol 22(5):626–632

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

JA acknowledges Caroline Gutjahr for stimulating discussions. JEMV acknowledges financial support by a Marie-Curie IEF grant. Research in the group of NG is financed by grants from the European Research Council (ERC) and the Swiss National Science Foundation (SNSF).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joop E. M. Vermeer.

Additional information

Handling Editor: David Robinson

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alassimone, J., Roppolo, D., Geldner, N. et al. The endodermis—development and differentiation of the plant’s inner skin. Protoplasma 249, 433–443 (2012). https://doi.org/10.1007/s00709-011-0302-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-011-0302-5

Keywords

Navigation