Skip to main content
Log in

Peroxisomal targeting signals in green algae

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Peroxisomal enzymatic proteins contain targeting signals (PTS) to enable their import into peroxisomes. These targeting signals have been identified as PTS1 and PTS2 in mammalian, yeast, and higher plant cells; however, no PTS2-like amino acid sequences have been observed in enzymes from the genome database of Cyanidiochyzon merolae (Bangiophyceae), a primitive red algae. In studies on the evolution of PTS, it is important to know when their sequences came to be the peroxisomal targeting signals for all living organisms. To this end, we identified a number of genes in the genome database of the green algae Chlamydomonas reinhardtii, which contains amino acid sequences similar to those found in plant PTS. In order to determine whether these sequences function as PTS in green algae, we expressed modified green fluorescent proteins (GFP) fused to these putative PTS peptides under the cauliflower mosaic virus 35S promoter. To confirm whether granular structures containing GFP–PTS fusion proteins accumulated in the peroxisomes of Closterium ehrenbergii, we observed these cells after the peroxisomes were stained with 3, 3′-diaminobenzidine. Our results confirm that the GFP–PTS fusion proteins indeed accumulated in the peroxisomes of these green algae. These findings suggest that the peroxisomal transport system for PTS1 and PTS2 is conserved in green algal cells and that our fusion proteins can be used to visualize peroxisomes in live cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Albertini M, Rehling P, Erdmann R, Girzalsky W, Kiel JA, Veenhuis M, Kunau WH (1997) Pex14 p, a peroxisomal membrane protein binding both receptors of the two PTS-dependent import pathways. Cell 89:83–92

    Article  PubMed  CAS  Google Scholar 

  • Assaad FF, Signer ER (1990) Cauliflower mosaic virus P35S promoter activity in Escherichia coli. Mol Gen Genet 223:517–520

    Article  PubMed  CAS  Google Scholar 

  • Baker A (1996) In vitro systems in the study of peroxisomal protein import. Experienti 52:1055–1062

    Article  CAS  Google Scholar 

  • Beevers H (1979) Microbodies in higher plants. Annu Rev Plant Physiol 30:159–193

    Article  CAS  Google Scholar 

  • Berger F, Linstead P, Dolan L, Haseloff J (1998) Stomata patterning on the hypocotyl of Arabidopsis thaliana is controlled by genes involved in the control of root epidermis patterning. Dev Biol 194:226–234

    Article  PubMed  CAS  Google Scholar 

  • Blattner J, Swinkels B, Dorsam H, Prospero T, Subramani S, Clayton C (1992) Glycosome assembly in trypanosomes:variation in the acceptable degeneracy of a COOH-terminal microbody targeting signal. J Cell Biol 119:1129–1136

    Article  PubMed  CAS  Google Scholar 

  • Blattner J, Dorsam H, Clayton CE (1995) Function of N-terminal import signals in trypanosome microbodies. FEBS Lett 360:310–314

    Article  PubMed  CAS  Google Scholar 

  • Burke C, Yu XB, Marchitelli L, Davis EA, Ackerman S (1990) Transcription factor IIA of wheat and human function similarly with plant and animal viral promoters. Nucleic Acids Res 18:3611–3620

    Article  PubMed  CAS  Google Scholar 

  • Cavalier-Smith T (1997) Cell and genome coevolution: facultative anaerobiosis, glycosomes and kinetoplastan RNA editing. Trends Genet 13:6–9

    Article  PubMed  CAS  Google Scholar 

  • Chiu W-1, Niwa Y, Zeng W, Hirano T, Kobayashi H, Sheen J (1996) Engineered GFP as a vital reporter in plants. Curr Biol 6:325–330

    Article  PubMed  CAS  Google Scholar 

  • Cooke R, Penon P (1990) In vitro transcription from cauliflower mosaic virus promoters by a cell-free extract from tobacco cells. Plant Mol Biol 14:391–405

    Article  PubMed  CAS  Google Scholar 

  • De Duve CD, Baudhuin P (1966) Peroxisomes (microbodies and related particles). Physiol Rev 46:323–357

    PubMed  Google Scholar 

  • De Bellis L, Nishimura M (1991) Development of enzymes of the glyoxylate cycle during senescence of pumpkin cotyledons. Plant Cell Physiol 32:555–561

    Google Scholar 

  • Erdmann R, Blobel G (1996) Identification of Pex13 p a peroxisomal membrane receptor for the PTS1 recognition factor. J Cell Biol 135:111–121

    Article  PubMed  CAS  Google Scholar 

  • Faber KN, Haima P, Gietl C, Harder W, Ab G, Veenhuis M (1994) The methylotrophic yeast Hansenula polymorpha contains an inducible import pathway for peroxisomal matrix 26 proteins with an N-terminal targeting signal (PTS2 proteins). Proc Natl Acad Sci USA 91:12985–12989

    Article  PubMed  CAS  Google Scholar 

  • Gietl C (1990) Glyoxysomal malate dehydrogenase from watermelon is synthesized with an amino-terminal transit peptide. Proc Natl Acad Sci USA 87:5773–5777

    Article  PubMed  CAS  Google Scholar 

  • Gould SJ, Keller GA, Schneider M, Howell SH, Garrard LJ, Goodman JM, Distel B, Tabak H, Subramani S (1990) Peroxisomal protein import is conserved between yeast, plants, insects and mammals. EMBO J 9:85–90

    PubMed  CAS  Google Scholar 

  • Hayashi M, Aoki M, Kondo M, Nishimura M (1997) Changes in targeting efficiencies of proteins to plant microbodies caoused by amino acid substitutions in carboxy-terminal tripeptide. Plant Cell Physiol 38:759–768

    PubMed  CAS  Google Scholar 

  • Hayashi M, Toriyama K, Kondo M, Nishimura M (1998) 2,4-Dichlorophenoxybutyric acid-resistant mutants of Arabidopsis have defects in glyoxysomal fatty acid β-oxidation. Plant Cell 10:183–195

    Google Scholar 

  • Hijikata M, Ishii N, Kagamiyama H, Osumi T, Hashimoto T (1987) Structural analysis of cDNA for rat peroxisomal 3-ketoacyl-COA thiolase. J Biol Chem 262:8151–8158

    PubMed  CAS  Google Scholar 

  • Ichimura T (1971) Sexual cell division and conjugationpapilla formation in sexual reproduction of Closterium strigosum. In: Nishizawa K (ed) Proc 7th Int Seaweed Symp. University of Tokyo Press, Tokyo, pp 208–214

    Google Scholar 

  • Jacob D, Lewin A, Meister B, Appel B (2002) Plant-specific promoter sequences carry elements that are recognised by the eubacterial transcription machinery. Transgenic Res 11:291–303

    Article  PubMed  CAS  Google Scholar 

  • Jansen GA, Ofman R, Ferdinandusse S, Ijlst L, Muijsers AO, Skjeldal OH, Stokke O, Jakobs C, Besley GTN, Wraith JE, Wanders RJA (1997) Refsum disease is caused by mutations in the phytanoyl-CoA hydroxylase gene. Nat Genet 17:190–193

    Google Scholar 

  • Kato A, Hayashi M, Mori H, Nishimura M (1995) Molecular characterization of a glyoxysomal citarate synthase that is synthesized as a precursor of higher molecular mass in pumpkin. Plant Mol Biol 27:377–390

    Article  PubMed  CAS  Google Scholar 

  • Kato A, Hayashi M, Kondo M, Nishimura M (1996a) Targeting and processing of a chemeric protein with the N-terminal presequence of the precursor to glyoxysomal citrate synthase. Plant Cell 8:1601–1611

    Article  PubMed  CAS  Google Scholar 

  • Kato A, Hayashi M, Takeuchi Y, Nishimura M (1996b) cDNA cloning and expression of a gene for 3-ketoacyl-CoA thiolase in pumpkin cotyledons. Plant Mol Biol 31:843–852

    Article  PubMed  CAS  Google Scholar 

  • Kato A, Takeda-YoshikawaY, Hayashi M, Kondo M, Hara-Nishimura I, Nishimura M (1998) Glyoxysomal malate dehydrogenase in pumpkin: cloning of a cDNA and functional analysis of its presequence. Plant Cell Physiol 39:186–195

  • Kato A, Hayashi M, Nishimura M (1999) Oligomeric proteins containing N-terminal targeting signal are imported intoperoxisomes in transgenic Arabidopsis. Plant Cell Physiol 40:586–591

    PubMed  CAS  Google Scholar 

  • Kehlenbeck P, Coyal A, Tolbert NE (1995) Factors affecting development of peroxisomes and glycolate metabolism among algae of different evolutionary lines of the Prasinophyceae. Plant Physiol 109:1363–1370

    PubMed  CAS  Google Scholar 

  • Komori M, Rasmussen SW, Kiel JA, Baerends RJ, Cregg JM, Klei IJV (1997) The Hansenula polymorpha PEX14 gene encodes a novel peroxisomal membrane protein essential for peroxisome biogenesis. EMBO J 16:44–53

    Article  PubMed  CAS  Google Scholar 

  • Mano S, Hayashi M, Nishimura M (1997) Light regulates alternative splicing of hydroxypyruvate reductase in pumpkin. Plant J 17:309–320

    Article  Google Scholar 

  • Mano S, Nakamori C, Hayashi M, Kato A, Kondo M, Nishimura M (2002) Distribution and characterization of peroxisomes in Arabidopsis by visualization with GFP: dynamic morphology and actin dependent movement. Plant Cell Physiol 43:331–341

    Article  PubMed  CAS  Google Scholar 

  • McNew JA, Goodman JM (1996) The targeting and assembly of peroxisomal proteins: some old rules do not apply. Trends Biochem Sci 21:54–58

    PubMed  CAS  Google Scholar 

  • Miyagishima S, Kuroiwa H, Kuroiwa T (2001) The timing and manner of disassembly of the apparatuses for chloroplast and mitochondrial division in the red alga Cyanidioschyzon merolae. Planta 212:517–528

    Article  PubMed  CAS  Google Scholar 

  • Nishimura M, Yamaguchi J, Mori H, Akazawa T, Yokota S (1986) Immunocytochemical analysis shows that glyoxysomes are directly transformed to leaf peroxisomes during greening of pumpkin cotyledon. Plant Physiol 80:313–316

    Article  Google Scholar 

  • Nishimura M, Takeuchi Y, Bellis LD, Hara-Nishimura I (1993) Leaf peroxisomes are directy transformed to glyoxysomes during senescence of pumpkin cotyledons. Protoplasma 175:131–137

    Article  Google Scholar 

  • Niwa Y, Hirano T, Yoshimoto K, Shimizu M, Kobayashi H (1999) Non-invasive quantitative detection and applications of non-toxic, S65T-type green fluorescent protein in living plants. Plant J 18:455–463

    Article  PubMed  CAS  Google Scholar 

  • Ogawa S, Hirota K (2000) Disintegration of chloroplasts during zygote maturation in Closterium ehrenbergii (Zygnematales, Chlorophyta). J Plant Sci 161:609–614

    Article  CAS  Google Scholar 

  • Olsen LJ, Harada JJ (1995) Peroxisome and their assembly in higher plants. Annu Rev Plant Physiol Plant Mol Biol 46:123–146

    Article  CAS  Google Scholar 

  • Osumi T, Tsukamoto T, Hata S, Yokota S, Miura S, Fujiki Y, Hijikata M, Miyazawa S, Hashimoto T (1991) Amino-terminal presequence of the precursor of peroxisomal 3- ketoacyl- CoA thiolase is a cleavable signal peptide for peroxisomal targeting. Biochem Biophys Res Commun 181:947–954

    Article  PubMed  CAS  Google Scholar 

  • Pobjecky N, Rosenberg GH, Dinter-Gottlieb G, Käufer NF (1990) Expression of the betaglucuronidase gene under the control of the CaMV 35 S promoter in Schizosaccharomyces pombe. Mol Gen Genet 220:314–316

    Article  PubMed  CAS  Google Scholar 

  • Preisig-Müller R, Kindl H (1993) Thiolase mRNA translated in vitro yields a peptide with a putative N-terminal presequence. Plant Mol Biol 22:59–66

    Article  PubMed  Google Scholar 

  • Saito C, Ueda T, Abe H, Wada Y, Kuroiwa T, Hisada A, Furuya M, Nakano A (2002) A complex and mobile structure forms a distinct subregion within the continuous vacuolar membrane in young cotyledons of Arabidopsis. Plant J 29: 245–255

    Google Scholar 

  • Silverberg BA (1975a) 3,3′-Diaminobenzidine (DAB) ultrastructural cytochemistry of microbodies in Chlorogonium elongatum. Protoplasma 85:373–376

    Article  PubMed  CAS  Google Scholar 

  • Silverberg BA (1975b) An ultrastructural and cytochemical characterization of microbodies in the green algae. Protoplasm 83:269–295

    Article  CAS  Google Scholar 

  • Silverberg BA, Sawa T (1974) Cytochemical localization of oxidase activities with diamino benizidine in the green algae Chlamydomonas dysosmos. Protoplasm 81:177–188

    Article  CAS  Google Scholar 

  • Stabenau H (1974) Verteilung von microbody-enzyme aus Chlamydomonas in Dichtegradienten. Planta 118:35–42

    Google Scholar 

  • Stabenau H, Säftel W (1982) Peroxisomal glycolate oxidase in the alga Mougeotia. Planta 154:165–167

    Article  CAS  Google Scholar 

  • Stabenau H, Winkler U, Säftel W (1984) Mitochondrial metabolism of glycolate in the alga Eremosphaera viridis. Z Pflanzenphysiol 29:1377–1388

    Google Scholar 

  • Subramani S (1993) Protein import into peroxisomes and biogenesis of the organelle. Annu Rev Cell Biol 9:445–478

    Article  PubMed  CAS  Google Scholar 

  • Swinkels BW, Gould SJ, Bodnar AG, Rachubinski RA, Subramani S (1991) A novel, cleavable peroxisomal targeting signal at the amino-terminus of the rat 3-ketoacyl-CoA thiolase. EMBO J 10:3255–3262

    PubMed  CAS  Google Scholar 

  • Titus DE, Becker WM (1985) Investigation of the glyoxysome-peroxisome transition in germinating cucumber cotyledons using double-label immunoelectron microscopy. J Cell Biol 101:1288–1299

    Article  PubMed  CAS  Google Scholar 

  • Tourte M (1972) Mise en evidence dune activite catalasique dans les peroxysimes de Micrasterias fimbriata. Planta 105:50–59

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr Akira Kato for providing the cDNA of pumpkin citrate synthase and Dr. Yasuo Niwa (University of Shizuoka, Shizuoka) for providing the 35S-GFP(S65T) plasmid. This work was supported by a Grant for Promotion of Niigata University Research Projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuko Hayashi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shinozaki, A., Sato, N. & Hayashi, Y. Peroxisomal targeting signals in green algae. Protoplasma 235, 57–66 (2009). https://doi.org/10.1007/s00709-009-0031-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-009-0031-1

Keywords

Navigation