Skip to main content
Log in

Bilinear-form and similarity-reduction visit to a variable-coefficient generalized dispersive water-wave system concerning Acta Mech. 233, 2527 and 233, 2415

  • Letter to the Editor
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Getting enthusiastic from two Acta Mech. water-wave advances, this Letter proposes to visit a variable-coefficient generalized dispersive water-wave system for certain long-weakly nonlinear and weakly-dispersive surface waves of variable depth in a shallow water. In regard to the height modeling the deviation from the equilibrium position of the water and to the surface velocity of water waves along a horizontal direction, we symbolically compute out the following: (1) bilinear forms, the same as those published but by way of a different method; (2) similarity reductions, each of which to a known ordinary differential equation. Results are related to the fluid density, velocity and viscosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Notes

  1. Information on the scaling and other physics issues can be found in Refs. [10,11,12]

  2. similar to those in Refs. [44,45,46,47]

  3. Remark 3 in Ref. [44] has been briefed in the Appendix.

  4. instead of the binary Bell polynomials used in Ref. [10]

References

  1. Abdel-Gawad, H.I., Abou-Dina, M.S., Ghaleb, A.F., Tantawy, M.: Heat traveling waves in rigid thermal conductors with phase lag and stability analysis. Acta Mech. 233, 2527–2539 (2022)

    Article  MathSciNet  Google Scholar 

  2. Murschenhofer, D.: Circular undular hydraulic jumps in turbulent free-surface flows. Acta Mech. 233, 2415–2438 (2022)

    Article  MathSciNet  Google Scholar 

  3. Gao, X.Y.: Oceanic shallow-water investigations on a generalized Whitham–Broer–Kaup–Boussinesq–Kupershmidt system. Phys. Fluids 35, 127106 (2023)

    Article  Google Scholar 

  4. Gao, X.Y.: In the shallow water: Auto-Bäcklund, hetero-Bäcklund and scaling transformations via a (2+1)-dimensional generalized Broer-Kaup system. Qual. Theory Dyn. Syst. 23, 184 (2024)

  5. Gao, X.Y.: Auto-Bäcklund transformation with the solitons and similarity reductions for a generalized nonlinear shallow water wave equation. Qual. Theory Dyn. Syst. 23, 181 (2024)

  6. Feng, C.H., Tian, B., Yang, D.Y., Gao, X.T.: Lump and hybrid solutions for a \((3+1)\)-dimensional Boussinesq-type equation for the gravity waves over a water surface. Chin. J. Phys. 83, 515–526 (2023)

    Article  MathSciNet  Google Scholar 

  7. Shen, Y., Tian, B., Cheng, C.D., Zhou, T.Y.: Pfaffian solutions and nonlinear waves of a \((3+1)\)-dimensional generalized Konopelchenko-Dubrovsky-Kaup-Kupershmidt system in fluid mechanics. Phys. Fluids 35, 025103 (2023)

    Article  Google Scholar 

  8. Wu, X.H., Gao, Y.T., Yu, X., Ding, C.C.: \(N\)-fold generalized Darboux transformation and asymptotic analysis of the degenerate solitons for the Sasa–Satsuma equation in fluid dynamics and nonlinear optics. Nonlinear Dyn. 111, 16339–16352 (2023)

    Article  Google Scholar 

  9. Zhou, T.Y., Tian, B., Shen, Y., Gao, X.T.: Auto-Bäcklund transformations and soliton solutions on the nonzero background for a \((3+1)\)-dimensional Korteweg–de Vries–Calogero–Bogoyavlenskii–Schiff equation in a fluid. Nonlinear Dyn. 111, 8647–8658 (2023)

    Article  Google Scholar 

  10. Liu, L., Tian, B., Zhen, H.L., Liu, D.Y., Xie, X.Y.: Soliton interactions, Bäcklund transformations, Lax pair for a variable-coefficient generalized dispersive water-wave system. Wave. Random Complex 28, 343–355 (2018)

  11. Meng, D.X., Gao, Y.T., Wang, L., Xu, P.B.: Elastic and inelastic interactions of solitons for a variable-coefficient generalized dispersive water-wave system. Nonlinear Dyn. 69, 391–398 (2012)

  12. Zayed, E.M.: Exact traveling wave volutions for a variable-coefficient generalized dispersive water-wave system using the generalized (G’/G)-expansion method. Math. Sci. Lett. 3, 9–15 (2014)

    Article  Google Scholar 

  13. Bell, E.T.: Exponential polynomials. Ann Math. 35, 258–277 (1934)

    Article  MathSciNet  Google Scholar 

  14. Lambert, F., Loris, I., Springael, J., Willer, R.: On a direct bilinearization method: Kaup’s higher-order water wave equation as a modified nonlocal Boussinesq equation. J. Phys. A. 27, 5325–5334 (1994)

    Article  MathSciNet  Google Scholar 

  15. Lambert, F., Springael, J.: On a direct procedure for the disclosure of Lax pairs and Backlund transformations. Chaos Solitons Fract. 12, 2821–2832 (2001)

  16. Vizcarra, V.S., Fame, R.M., Hablitz, L.M.: Circadian mechanisms in brain fluid biology. Circ. Res. 134, 711–726 (2024)

    Article  Google Scholar 

  17. Africa, P.C., Fumagalli, I., Bucelli, M., Zingaro, A., Fedele, M., Quarteroni, A.: lifex-cfd: An open-source computational fluid dynamics solver for cardiovascular applications. Comput. Phys. Commun. 296, 109039 (2024)

    Article  Google Scholar 

  18. Gao, X.Y., Guo, Y.J., Shan, W.R.: Theoretical investigations on a variable-coefficient generalized forced-perturbed Korteweg-de Vries-Burgers model for a dilated artery, blood vessel or circulatory system with experimental support. Commun. Theor. Phys. 75, 115006 (2023)

    Article  MathSciNet  Google Scholar 

  19. Wu, X.H., Gao, Y.T., Yu, X., Liu, F.Y.: On a variable-coefficient AB system in a baroclinic flow: Generalized Darboux transformation and non-autonomous localized waves. Wave Motion 122, 103184 (2023)

    Article  MathSciNet  Google Scholar 

  20. Cheng, C.D., Tian, B., Ma, Y.X., Zhou, T.Y., Shen, Y.: Pfaffian, breather and hybrid solutions for a (2+1)-dimensional generalized nonlinear system in fluid mechanics and plasma physics. Phys. Fluids 34, 115132 (2022)

    Article  Google Scholar 

  21. Cheng, C.D., Tian, B., Zhou, T.Y., Shen, Y.: Wronskian solutions and Pfaffianization for a (3+1)-dimensional generalized variable-coefficient Kadomtsev-Petviashvili equation in a fluid or plasma. Phys. Fluids 35, 037101 (2023)

    Article  Google Scholar 

  22. Zhou, T.Y., Tian, B., Shen, Y., Cheng, C.D.: Lie symmetry analysis, optimal system, symmetry reductions and analytic solutions for a (2+1)-dimensional generalized nonlinear evolution system in a fluid or a plasma. Chin. J. Phys. 84, 343–356 (2023)

    Article  MathSciNet  Google Scholar 

  23. Oelsmann, J., Marcos, M., Passaro, M., Sanchez, L., Dettmering, D., Dangendorf, S., Seitz, F.: Regional variations in relative sea-level changes influenced by nonlinear vertical land motion. Nat. Geosci. 17, 137–144 (2024)

    Article  Google Scholar 

  24. Wu, X.H., Gao, Y.T., Yu, X., Liu, F.Y.: Generalized Darboux transformation and solitons for a Kraenkel-Manna-Merle system in a ferromagnetic saturator. Nonliner Dyn. 111, 14421–14433 (2023)

    Article  Google Scholar 

  25. Chen, S.J., Yin, Y.H., Lü, X.: Elastic collision between one lump wave and multiple stripe waves of nonlinear evolution equations. Commun. Nonlinear Sci. Numer. Simul. 130, 107205 (2024)

    Article  MathSciNet  Google Scholar 

  26. Shen, Y., Tian, B., Yang, D.Y., Zhou, T.Y.: Hybrid relativistic and modified Toda lattice-type system: equivalent form, \(N\)-fold Darboux transformation and analytic solutions. Eur. Phys. J. Plus 138, 744 (2023)

    Article  Google Scholar 

  27. Peng, X., Zhao, Y.W., Lü, X.: Data-driven solitons and parameter discovery to the (2+1)-dimensional NLSE in optical fiber communications. Nonlinear Dyn. 112, 1291–1306 (2024)

    Article  Google Scholar 

  28. Gao, X.T., Tian, B.: Similarity reductions on a (2+1)-dimensional variable-coefficient modified Kadomtsev-Petviashvili system describing certain electromagnetic waves in a thin film. Int. J. Theor. Phys. 63, 99 (2024)

    Article  MathSciNet  Google Scholar 

  29. Yin, Y.H., Lü, X., Jiang, R., Jia, B., Gao, Z.: Kinetic analysis and numerical tests of an adaptive car-following model for real-time traffic in ITS. Phys. A 635, 129494 (2024)

    Article  MathSciNet  Google Scholar 

  30. Pickering, L., del Rio Almajano, T., England, M., Cohen, K.: Explainable AI Insights for symbolic computation: A case study on selecting the variable ordering for cylindrical algebraic decomposition. J. Symb. Comput. 123, 102276 (2024)

    Article  MathSciNet  Google Scholar 

  31. Wu, X.H., Gao, Y.T., Yu, X., Li, L.Q., Ding, C.C.: Vector breathers, rogue and breather-rogue waves for a coupled mixed derivative nonlinear Schrödinger system in an optical fiber. Nonlinear Dyn. 111, 5641–5653 (2023)

    Article  Google Scholar 

  32. Shen, Y., Tian, B., Zhou, T.Y., Cheng, C.D.: Multi-pole solitons in an inhomogeneous multi-component nonlinear optical medium. Chaos Solitons Fract. 171, 113497 (2023)

    Article  MathSciNet  Google Scholar 

  33. Wu, X.H., Gao, Y.T.: Generalized Darboux transformation and solitons for the Ablowitz–Ladik equation in an electrical lattice. Appl. Math. Lett. 137, 108476 (2023)

    Article  MathSciNet  Google Scholar 

  34. Gao, X.Y., Guo, Y.J., Shan, W.R.: Ultra-short optical pulses in a birefringent fiber via a generalized coupled Hirota system with the singular manifold and symbolic computation. Appl. Math. Lett. 140, 108546 (2023)

    Article  MathSciNet  Google Scholar 

  35. Shen, Y., Tian, B., Zhou, T.Y., Gao, X.T.: \(N\)-fold Darboux transformation and solitonic interactions for the Kraenkel–Manna–Merle system in a saturated ferromagnetic material. Nonlinear Dyn. 111, 2641–2649 (2023)

  36. Hirota, R.: The Direct Method in Soliton Theory. Springer, Berlin (1980)

    Google Scholar 

  37. Zhou, T.Y., Tian, B.: Auto-Bäcklund transformations, Lax pair, bilinear forms and bright solitons for an extended (3+1)-dimensional nonlinear Schrödinger equation in an optical fiber. Appl. Math. Lett. 133, 108280 (2022)

    Article  Google Scholar 

  38. Shen, Y., Tian, B., Cheng, C.D., Zhou, T.Y.: \(N\)-soliton, \(M\)th-order breather, \(H\)th-order lump, and hybrid solutions of an extended (3+1)-dimensional Kadomtsev-Petviashvili equation. Nonlinear Dyn. 111, 10407–10424 (2023)

  39. Shen, Y., Tian, B., Zhou, T.Y., Gao, X.T.: Extended (2+1)-dimensional Kadomtsev-Petviashvili equation in fluid mechanics: Solitons, breathers, lumps and interactions. Eur. Phys. J. Plus 138, 305 (2023)

    Article  Google Scholar 

  40. Cheng, C.D., Tian, B., Shen, Y., Zhou, T.Y.: Bilinear form, auto-Bäcklund transformations, Pfaffian, soliton, and breather solutions for a (3+1)-dimensional extended shallow water wave equation. Phys. Fluids 35, 087123 (2023)

    Article  Google Scholar 

  41. Zhou, T.Y., Tian, B., Shen, Y., Cheng, C.D.: Painlevé analysis, auto-Bäcklund transformations, bilinear form and analytic solutions on some nonzero backgrounds for a (2+1)-dimensional generalized nonlinear evolution system in fluid mechanics and plasma physics. Nonlinear Dyn. (2024) in press, https://doi.org/10.1007/s11071-024-09450-w

  42. Gao, X.T., Tian, B., Shen, Y., Feng, C.H.: Considering the shallow water of a wide channel or an open sea through a generalized (2+1)-dimensional dispersive long-wave system. Qual. Theory Dyn. Syst. 21, 104 (2022)

  43. Gao, X.T., Tian, B., Feng, C.H.: In oceanography, acoustics and hydrodynamics: investigations on an extended coupled (2+1)-dimensional Burgers system. Chin. J. Phys. 77, 2818–2824 (2022)

  44. Clarkson, P., Kruskal, M.: New similarity reductions of the Boussinesq equation. J. Math. Phys. 30, 2201–2213 (1989)

  45. Gao, X.Y.: Two-layer-liquid and lattice considerations through a (3+1)-dimensional generalized Yu-Toda-Sasa-Fukuyama system. Appl. Math. Lett. 152, 109018 (2024)

    Article  MathSciNet  Google Scholar 

  46. Gao, X.T., Tian, B.: Water-wave studies on a (2+1)-dimensional generalized variable-coefficient Boiti–Leon–Pempinelli system. Appl. Math. Lett. 128, 107858 (2022)

    Article  MathSciNet  Google Scholar 

  47. Gao, X.Y.: Considering the wave processes in oceanography, acoustics and hydrodynamics by means of an extended coupled (2+1)-dimensional Burgers system. Chin. J. Phys. 86, 572–577 (2023)

    Article  MathSciNet  Google Scholar 

  48. Ince, E.L.: Ordinary Differential Equations. Dover, New York (1956)

    Google Scholar 

  49. Zwillinger, D., Dobrushkin, V.: Handbook of Differential Equations, 4th ed., Chapman & Hall/CRC, Boca Raton, FL (2022)

  50. Gao, X.Y., Guo, Y.J., Shan, W.R.: Ocean shallow-water studies on a generalized Boussinesq-Broer-Kaup-Whitham system: Painlevé analysis and similarity reductions. Chaos Solitons Fract. 169, 113214 (2023)

  51. Gao, X.Y.: Symbolic computation on a (2+1)-dimensional generalized nonlinear evolution system in fluid dynamics, plasma physics, nonlinear optics and quantum mechanics. Qual. Theory Dyn. Syst. (2024) in press, https://doi.org/10.1007/s12346-024-01045-5

Download references

Acknowledgements

We express our sincere thanks to the Editors and Reviewers for their valuable comments.

Funding

Funding were provided by the National Natural Science Foundation of China (Grant No. 11871116) and the Fundamental Research Funds for the Central Universities (Grant No. 2019XD-A11).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xin-Yi Gao, Yong-Jiang Guo or Wen-Rui Shan.

Ethics declarations

Conflict of interest

The authors report no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Remark 3 in Ref. [44]

Appendix: Remark 3 in Ref. [44]

In line with Assumptions (19), we brief Remark 3 in Ref. [44] as follows:

Without loss of generality, there exist 3 freedoms in the resolution of \(\theta \), \(\omega \), z and r, which could help people arrange such a procedure:

  • If \(\theta (x,t)\) possesses the manner \(\theta (x,t)=\theta _0(x,t)+\omega (x,t)\Upsilon (z)\), people could adopt \(\Upsilon \equiv 0\), by replacing \(r(z)\rightarrow r(z)-\Upsilon (z)\);

  • If \(\omega (x,t)\) possesses the manner \(\omega (x,t)=\omega _0(x,t)\Upsilon (z)\), people could adopt \(\Upsilon \equiv 1\), by replacing \(r(z)\rightarrow r(z)/\Upsilon (z)\);

  • If z(xt) is decided by an equation of the manner \(\Upsilon (z)=z_0(x,t)\) with \(\Upsilon (z)\) as an invertible function, people could adopt \(\Upsilon (z)=z\), by replacing \(z\rightarrow \Upsilon ^{-1}(z)\).

Details can be seen in Ref. [44] and references therein.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, XY., Guo, YJ. & Shan, WR. Bilinear-form and similarity-reduction visit to a variable-coefficient generalized dispersive water-wave system concerning Acta Mech. 233, 2527 and 233, 2415. Acta Mech (2024). https://doi.org/10.1007/s00707-024-03948-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00707-024-03948-5

Navigation