Skip to main content
Log in

Energy supply into a semi-infinite \(\beta \)-Fermi–Pasta–Ulam–Tsingou chain by periodic force loading

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

We deal with dynamics of the \(\beta \)-Fermi–Pasta–Ulam–Tsingou chain with one free end, subjected to the sudden sinusoidal force. We examine the evolution of the total energy supplied into the chain at large times. In the harmonic case (\(\beta =0\)), the energy grows in time linearly at the driving frequencies, corresponding to nonzero group velocities. The rate of energy supply is shown to decrease with increasing excitation frequency. Loading with the cut-off frequency, corresponding to zero group velocity, results in the energy growth proportionally to \(\sqrt{t}\). Explanation of behavior in time of the energy is proposed by analysis of the obtained approximate closed-form expressions for the particle velocity. In the weak anharmonic case, large-time asymptotic approximation for the total energy is obtained by using the renormalized dispersion relation. The approximation allows one to estimate rate of the energy supply at the driving frequencies, which belong both in the pass-band and in the stop-band of the harmonic chain. Consistency of the asymptotic estimates with the results of numerical simulations is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Often in literature ILMs are referred either to as the discrete breathers, see, e.g., [7] or to as the self-localized modes, see, e.g., [8].

  2. We note that the potential itself is unphysical, although the \(\beta \)-FPUT models are systematically used for estimation of manifestation of nonlinearity on the dynamical processes and, for this reason, we consider interactions (between the particles) via this potential here. We suppose that obtained in the current paper results, concerning the process of energy supply, will improve comprehension of the latter for a possible generalization of the results to cases of the interactions via more realistic potentials.

  3. This is the monoatomic harmonic chain of identical particles, connected by the linear identical springs, see [46].

  4. Eq. for \({\hat{u}}\) is calculated by the Duhamel integral: convolution of the fundamental solution of the homogeneous part of Eq. (7) and its right part.

  5. This point becomes singular at \(\eta \rightarrow 0+\).

  6. A boundary condition for the right end plays no role for the large enough number of particles.

  7. The similar effect is regularly observed in the continuum systems, see, e.g., [58].

  8. Aforesaid is further shown to be valid only in the harmonic approximation.

  9. This process is shown in [36] for the case of kinematic loading (see Fig. (2)) therein. Evolution of the total energy in the case of force loading is qualitatively similar.

  10. Otherwise, time scale of oscillations of the total energy, \(2\pi /\Omega \), is much greater than \(2\pi /\omega _e\) and therefore the second term in (30) cannot be ignored. The growth of the total energy is then slower than for the situations, considered below.

  11. The renormalized dispersion relation may correspond either to expansion spectrum (for the \(\beta \)-FPUT chain, see below) or to the shifted one (for the nonlinear Klein-Gordon equation, see [62]).

  12. See Sect. 4.2.1 in [66] for details. Expansion of Eq. (4.2.15) with respect to the nonlinear parameter yields equation for the period in the form, represented in Eq. (44).

  13. Choice of range of the driving frequencies is explained in Sect. 6.2

References

  1. Pupin, M.: Propagation of long electrical waves. Trans. AIEE 16, 91–142 (1899)

    Google Scholar 

  2. Mead, D.J.: Vibration response and wave propagation in periodic structures. J. Math. Phys. 93(3), 783–792 (1971). https://doi.org/10.1115/1.3428014

    Article  Google Scholar 

  3. Svidlov, A., Drobotenko, M., et al.: Dna dynamics under periodic force effects. Int. J. Mol. Sci. 22(15), 1–10 (2021). https://doi.org/10.3390/ijms22157873

    Article  Google Scholar 

  4. Shkurinov, A.P., Sinko, A.S., et al.: Impact of the dipole contribution on the terahertz emission of air-based plasma induced by tightly focused femtosecond laser pulses. Phys. Rev. E 95(043209), 1–8 (2017). https://doi.org/10.1103/PhysRevE.95.043209

    Article  Google Scholar 

  5. Ovchinnikov, A.A.: Localized long-lived vibrational states in molecular crystals. Sov. Phys. JETP 30(1), 147–150 (1970)

    Google Scholar 

  6. Sievers, A., Takeno, S.: Intrinsic localized modes in anharmonic crystals. Phys. Rev. Lett. 61(8), 970–973 (1988). https://doi.org/10.1103/PhysRevLett.61.970

    Article  Google Scholar 

  7. Flach, S., Willis, C.R.: Discrete breathers. Phys. Rep. 295(5), 181–264 (1998). https://doi.org/10.1016/S0370-1573(97)00068-9

    Article  MathSciNet  Google Scholar 

  8. Kosevich, A.M., Kovalev, A.S.: Selflocalization of vibrations in a one-dimensional anharmonic chain. Sov. Phys. JETP 67, 1793–1804 (1974)

    Google Scholar 

  9. Dolgov, A.S.: On the localization of vibrations in a nonlinear crystal structure. Fizika Tverdogo Tela 28(6), 1641–1644 (1986)

    Google Scholar 

  10. Sato, M., Mukaide, T., et al.: Inductive intrinsic localized modes in a one-dimensional nonlinear electric transmission line. Phys. Rev. E 94(1) (2016)

  11. Saadatmand, D., Xiong, D., Kuzkin, V.A., Krivtsov, A.M., Savin, A.V., Dmitriev, S.V.: Discrete breathers assist energy transfer to ac-driven nonlinear chains. Phys. Rev. E 97(2), 1–12 (2018). https://doi.org/10.1103/PhysRevE.97.022217

    Article  MathSciNet  Google Scholar 

  12. Evazzade, I., Lobzenko, I., Korznikova, E., et al.: Energy transfer in strained graphene assisted by discrete breathers excited by external ac driving. Phys. Rev. B 95(3), 1–8 (2017). https://doi.org/10.1103/PhysRevB.95.035423

    Article  Google Scholar 

  13. Caputo, J., Leon, J., Spire, A., et al.: Nonlinear energy transmission in the gap. Phys. Rev. A 283(1–2), 129–135 (2001). https://doi.org/10.1016/S0375-9601(01)00192-X

    Article  Google Scholar 

  14. Watanabe, Y., Hamada, K., Sugimoto, N.: Mobile intrinsic localized modes of a spatially periodic and articulated structure. J. Phys. Soc. Jpn. 81(1), 1–5 (2012)

    Article  Google Scholar 

  15. Watanabe, Y., Nishida, T., Sugimoto, N.: Excitation of intrinsic localized modes in finite mass-spring chains driven sinusoidally at end. Proc. Est. Acad. Sci. 64(3), 417–421 (2015). https://doi.org/10.3176/proc.2015.3S.12

    Article  Google Scholar 

  16. Watanabe, Y., Nishimoto, M., Shiogama, C.: Experimental excitation and propagation of nonlinear localized oscillations in an air-levitation-type coupled oscillator array. Nonlinear Theory Appl. 8(2) (2017)

  17. Watanabe, Y., Nishida, T., Doi, Y., Sugimoto, N.: Experimental demonstration of excitation and propagation of intrinsic localized modes in a mass-spring chain. Phys. Lett. A 30(2), 1957–1961 (2018). https://doi.org/10.1016/j.physleta.2018.04.055

    Article  Google Scholar 

  18. Leon, J.: Nonlinear supratransmission as a fundamental instability. Phys. Lett. A 319(1–2), 130–136 (2003). https://doi.org/10.1016/j.physleta.2003.10.012

    Article  Google Scholar 

  19. De Santis, D., Guarcello, C., et al.: Supratransmission-induced traveling breathers in long Josephson junctions. Commun. Nonlinear Sci. Numer. Simul. 115, 106736 (2022). https://doi.org/10.1016/j.cnsns.2022.106736

    Article  MathSciNet  Google Scholar 

  20. Khomeriki, R., Lepri, S., Ruffo, S.: Nonlinear supratransmission and bistability in the Fermi–Pasta–Llam model. Phys. Rev. E 70(6), 066626 (2004). https://doi.org/10.1103/PhysRevE.70.066626

    Article  Google Scholar 

  21. Khomeriki, R., Leon, J., Chevriaux, D.: Quantum hall bilayer digital amplifier. Eur. Phys. J. B-Condens. Matter Complex Syst. 49, 213–218 (2006). https://doi.org/10.1140/epjb/e2006-00053-9

    Article  Google Scholar 

  22. Geniet, F., Leon, J.: Energy transmission in the forbidden band gap of a nonlinear chain. Phys. Rev. Lett. 89(13), 1–4 (2002). https://doi.org/10.1103/PhysRevLett.89.134102

    Article  Google Scholar 

  23. Geniet, F., Leon, J.: Nonlinear supratransmission. J. Phys.: Condens. Matter 15(17), 2933–2949 (2003). https://doi.org/10.1088/0953-8984/15/17/341

    Article  Google Scholar 

  24. Macías-Díaz, J.E.: Numerical study of the transmission of energy in discrete arrays of sine-Gordon equations in two space dimensions. Phys. Rev. E 77(1), 1–9 (2008). https://doi.org/10.1103/PhysRevE.77.016602

    Article  MathSciNet  Google Scholar 

  25. Macías-Díaz, J.E.: Numerical study of the process of nonlinear supratransmission in Riesz space-fractional sine-Gordon equations. Commun. Nonlinear Sci. Numer. Simul. 46, 89–102 (2017). https://doi.org/10.1016/j.cnsns.2016.11.002

    Article  MathSciNet  Google Scholar 

  26. De Santis, D., Guarcello, C., et al.: Generation of travelling sine-Gordon breathers in noisy long Josephson junctions. Chaos Solitons Fractals 158, 112039 (2022). https://doi.org/10.1016/j.chaos.2022.112039

    Article  Google Scholar 

  27. De Santis, D., Guarcello, C., et al.: Breather dynamics in a stochastic sine-Gordon equation: evidence of noise-enhanced stability. Chaos Solitons Fractals 168, 113115 (2023). https://doi.org/10.1016/j.chaos.2023.113115

    Article  MathSciNet  Google Scholar 

  28. Susanto, H.: Boundary driven waveguide arrays: supratransmission and saddle-node bifurcation. SIAM J. Appl. Math. 69(1), 111–125 (2008)

    Article  MathSciNet  Google Scholar 

  29. Motcheyo, A., Kimura, M., Doi, Y., et al.: Supratransmission in discrete one-dimensional lattices with the cubic-quintic nonlinearity. Nonlinear Dyn. 95, 2461–2468 (2019). https://doi.org/10.1007/s11071-018-4707-y

    Article  Google Scholar 

  30. Macías-Díaz, J.E.: Bountis, Anastasios: Supratransmission in \(\beta \)-Fermi–Pasta–Ulam chains with different ranges of interactions. Commun. Nonlinear Sci. Numer. Simul. 63, 307–321 (2018). https://doi.org/10.1016/j.cnsns.2018.04.007

    Article  MathSciNet  Google Scholar 

  31. Macías-Díaz, J.E.: Modified Hamiltonian Fermi–Pasta–Ulam–Tsingou arrays which exhibit nonlinear supratransmission. Results in Physics 18, 1–11 (2020). https://doi.org/10.1016/j.rinp.2020.103237

    Article  Google Scholar 

  32. Kenmogne, F., et al.: Nonlinear supratransmission in a discrete nonlinear electrical transmission line: modulated gap peak solitons. Chaos Solitons Fractals 75, 263–271 (2015). https://doi.org/10.1016/j.chaos.2015.02.026

    Article  MathSciNet  Google Scholar 

  33. Motcheyo, A., Tchawoua, C., et al.: Supratransmission induced by waves collisions in a discrete electrical lattice. Phys. Rev. E 88(4), 040901 (2013). https://doi.org/10.1103/PhysRevE.88.040901

    Article  Google Scholar 

  34. Bader, A., Gendelman, O.V.: Supratransmission in a vibro-impact chain. J. Sound Vib. 547, 117493 (2023). https://doi.org/10.1016/j.jsv.2022.117493

    Article  Google Scholar 

  35. Kuzkin, V.A., Krivtsov, A.M.: Energy transfer to a harmonic chain under kinematic and force loadings: Exact and asymptotic solutions. J. Micromech. Mol. Phys. 3(01n02), 1850004 (2018). https://doi.org/10.1142/S2424913018500042

  36. Cannas, S.A., Prato, D.: Externally excited semi-infinite one-dimensional models. Am. J. Phys. 59(10), 915–920 (1991). https://doi.org/10.1119/1.16671

    Article  Google Scholar 

  37. Mokole, E.L., Mullikin, A.L., Sledd, M.B.: Exact and steady-state solutions to sinusoidally excited, half-infinite chains of harmonic oscillators with one isotopic defect. J. Math. Phys. 31(8), 1902–1913 (1990). https://doi.org/10.1063/1.528689

    Article  MathSciNet  Google Scholar 

  38. Cherednichenko, A.I., Zakharov, P.V., Starostenkov, M.D., Sysoeva, M.O., Eremin, A.M.: Nonlinear supratransmission in a pt _3 al crystal at intense external influence. Comput. Res. Model. 11(1), 109–117 (2019). (in Russian)

    Article  Google Scholar 

  39. Dhar, A.: Heat transport in low-dimensional systems. Adv. Phys. 57(5), 457–537 (2008). https://doi.org/10.1080/00018730802538522

    Article  Google Scholar 

  40. Chen, G.: Non-Fourier phonon heat conduction at the microscale and nanoscale. Nat. Rev. Phys. 3(8), 555–569 (2021). https://doi.org/10.1038/s42254-021-00334-1

    Article  Google Scholar 

  41. Lepri, S., Livi, R., Politi, A.: Heat transport in low dimensions: introduction and phenomenology. In: S., L. (ed.) Thermal Transport in Low Dimensions: From Statistical Physics to Nanoscale Heat Transfer, pp. 1–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29261-8_1

  42. Podolskaya, E.A., Krivtsov, A.M., Kuzkin, V.A.: Discrete thermomechanics: From thermal echo to ballistic resonance (a review). Mech. Control Solids Struct. 501–533 (2022). https://doi.org/10.1007/978-3-030-93076-9_24

  43. Benenti, G., Donadio, D., Lepri, S., Livi, R.: Non-fourier heat transport in nanosystems. La Rivista del Nuovo Cimento 46(3), 105–161 (2023). https://doi.org/10.1007/s40766-023-00041-w

    Article  Google Scholar 

  44. Bao, H., Chen, J., Gu, X., Cao, B.: A review of simulation methods in micro/nanoscale heat conduction. ES Energy Environ. 1(39), 16–55 (2018). https://doi.org/10.30919/esee8c149

    Article  Google Scholar 

  45. Ai, B.-Q., He, D., Hu, B., et al.: Heat conduction in driven Frenkel–Kontorova lattices: thermal pumping and resonance. Phys. Rev. E 81(3), 031124 (2010). https://doi.org/10.1103/PhysRevE.81.031124

    Article  Google Scholar 

  46. Krivtsov, A.M.: Dynamics of matter and energy. ZAMM (2022). https://doi.org/10.1002/zamm.202100496

    Article  Google Scholar 

  47. Alekseev, V.V., Indeitsev, D.A., Mochalova, Y.A.: Resonant oscillations of an elastic membrane on the bottom of a tank containing a heavy liquid. Tech. Phys. 44, 903–907 (1999). https://doi.org/10.1134/1.1259402

    Article  Google Scholar 

  48. Vladimirov, V.: Equations of Mathematical Physics. Marcel Dekker, New York (1971)

    Google Scholar 

  49. Lee, K.H.: Propagation of a general disturbance along a semi-infinite linear chain. Am. J. Phys. 40(7), 1032–1034 (1972). https://doi.org/10.1119/1.1986737

    Article  Google Scholar 

  50. Lee, K.H., Kim, H.: Exact solutions for dynamics of finite, semi-infinite, and infinite chains with general boundary and initial conditions. J. Chem. Phys. 57(12), 5037–5044 (1972)

    Article  Google Scholar 

  51. Nayfeh, A.H., Rice, M.H.: On the propagation of disturbances in a semi-infinite one-dimensional lattice. Am. J. Phys. 40(3), 469–470 (1972)

    Article  Google Scholar 

  52. Prato, D., Lamberti, P.W.: Quantum dynamics of a semi-infinite homogeneous harmonic chain. Physica A 197(1–2), 232–242 (1993). https://doi.org/10.1016/0378-4371(93)90470-O

    Article  Google Scholar 

  53. Ahmed, H., Nataryan, T., Rao, K.R.: Discrete cosine transform. IEEE Trans. Comput. C-23(1), 90–93 (1974). https://doi.org/10.1109/T-C.1974.223784

  54. Hemmer, P.C.: Dynamic and stochastic types of motion in the linear chain. Norges tekniske hoiskole (58) (1959)

  55. Shishkina, E.V., Gavrilov, S.N.: Unsteady ballistic heat transport in a 1d harmonic crystal due to a source on an isotopic defect. Continuum Mech. Thermodyn. 35(2), 431–456 (2023). https://doi.org/10.1007/s00161-023-01188-x

    Article  MathSciNet  Google Scholar 

  56. Shishkina, E.V., Gavrilov, S.N.: Localized modes in a 1d harmonic crystal with a mass-spring inclusion. In: Advances in Linear and Nonlinear Continuum and Structural Mechanics, pp. 461–479. Springer, Cham (2023)

  57. Gavrilov, S.N.: Non-stationary problems in dynamics of a string on an elastic foundation subjected to a moving load. J. Sound Vib. 222(3), 345–361 (1999)

    Article  MathSciNet  Google Scholar 

  58. Slepyan, L.I., Tsareva, O.V.: Energy flux for zero group velocity of the carrying wave. In: Soviet Physics Doklady, vol. 32, pp. 522–526 (1987)

  59. Narisetti, R.K., Leamy, M.J., Ruzzene, M.: A perturbation approach for predicting wave propagation in one-dimensional nonlinear periodic structures 132(3) (2010). https://doi.org/10.1115/1.4000775

  60. Sepehri, S., Mashhadi, M.M., Fakhrabadi, M.M.S.: Dispersion curves of electromagnetically actuated nonlinear monoatomic and mass-in-mass lattice chains. Int. J. Mech. Sci. 214, 106896 (2022). https://doi.org/10.1016/j.ijmecsci.2021.106896

    Article  Google Scholar 

  61. Zakharov, V.E., Lvov, V.S., Falkovich, G.: Kolmogorov Spectra of Turbulence I: Wave Turbulence. Springer, Berlin (2012)

    Google Scholar 

  62. Shirokoff, D.: Renormalized waves and thermalization of the Klein–Gordon equation. Phys. Rev. E 83(4), 046217 (2011). https://doi.org/10.1103/PhysRevE.83.046217

    Article  Google Scholar 

  63. Gershgorin, B., Lvov, Y.V., Cai, D.: Renormalized waves and discrete breathers in \(\beta \)-Fermi–Pasta–Ulam chains. Phys. Rev. Lett. 95(26), 264302 (2005). https://doi.org/10.1103/PhysRevLett.95.264302

    Article  Google Scholar 

  64. Gershgorin, B., Lvov, Y.V., Cai, D.: Interactions of renormalized waves in thermalized Fermi–Pasta–Ulam chains. Phys. Rev. E 75(4), 046603 (2007). https://doi.org/10.1103/PhysRevE.75.046603

    Article  MathSciNet  Google Scholar 

  65. Lee, W., Kovačič, G., Cai, D.: Renormalized resonance quartets in dispersive wave turbulence. Phys. Rev. Lett. 103(2), 024502 (2009). https://doi.org/10.1103/PhysRevLett.103.024502

    Article  Google Scholar 

  66. Kovacic, I., Brennan, M.J.: The Duffing Equation: Nonlinear Oscillators and Their Behaviour. Wiley, Chichester (2011)

    Book  Google Scholar 

  67. Panovko, Y.G.: A review of applications of the method of direct linearization. In: Applied Mechanics: Proceedings of the Eleventh International Congress of Applied Mechanics Munich (Germany) 1964, pp. 167–171. Springer (1966)

  68. Hu, H.: Solution of a quadratic nonlinear oscillator by the method of harmonic balance. J. Sound Vib. 293(1–2), 462–468 (2006). https://doi.org/10.1016/j.jsv.2005.10.002

    Article  MathSciNet  Google Scholar 

  69. Keen, B.E., Fletcher, W.H.W.: Nonlinear plasma instability effects for subharmonic and harmonic forcing oscillations. J. Phys. A: Gen. Phys. 5(1), 152 (1972). https://doi.org/10.1088/0305-4470/5/1/020

    Article  Google Scholar 

  70. Kuzkin, V.A.: Acoustic transparency of the chain-chain interface. Phys. Rev. E 107(6), 065004 (2023). https://doi.org/10.1103/PhysRevE.107.065004

    Article  MathSciNet  Google Scholar 

  71. Terraneo, M., Peyrard, M., Casati, G.: Controlling the energy flow in nonlinear lattices: a model for a thermal rectifier. Phys. Rev. Lett. 88(9), 094302 (2002). https://doi.org/10.1103/PhysRevLett.88.094302

    Article  Google Scholar 

  72. Kobayashi, W., Teraoka, Y., Terasaki, I.: An oxide thermal rectifier. Appl. Phys. Lett. 95(17) (2009). https://doi.org/10.1063/1.3253712

  73. Li, N., Ren, J., Wang, L., Zhang, G., Hänggi, P., Li, B.: Colloquium: phononics: manipulating heat flow with electronic analogs and beyond. Rev. Mod. Phys. 84(1045), 1045–1066 (2012). https://doi.org/10.1103/RevModPhys.84.1045

    Article  Google Scholar 

  74. Malik, F.K., Fobelets, K.: A review of thermal rectification in solid-state devices. J. Semicond. 43(10), 1–18 (2022). https://doi.org/10.1088/1674-4926/43/10/103101

    Article  Google Scholar 

  75. Gelfand, I., Shilov, G.: Generalized Functions: Properties and Operations. Academic Press, New York (1964)

    Google Scholar 

  76. Slepyan, L.I.: Nonstationary elastic waves, 376 (1972) (in Russian)

  77. Whitham, G.B.: Linear and Nonlinear Waves. Wiley, New York (1974)

    Google Scholar 

  78. Gavrilov, S.N.: Discrete and continuum fundamental solutions describing heat conduction in a 1d harmonic crystal: Discrete-to-continuum limit and slow-and-fast motions decoupling. Int. J. Heat Mass Transf. 194(123019), 1–4 (2022). https://doi.org/10.1016/j.ijheatmasstransfer.2022.123019

    Article  Google Scholar 

  79. Fedoryuk, M.: The Saddle-Point Method. Nauka, Moscow (1977)

    Google Scholar 

Download references

Acknowledgements

The work is supported by the Russian Science Foundation (Grant No. 22-11-00338). The author is deeply grateful to S.A. Shcherbinin, S.N. Gavrilov, V.A. Kuzkin, A.M. Krivtsov, E.A. Korznikova and S.V. Dmitriev for useful and stimulating discussions and to anonymous referees for the valuable comments. The work is dedicated to the memory of Professor Dmitry Anatolyevich Indeitsev.

Funding

The funding was provided by the Russian Science Foundation (Grant No. 22-11-00338).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei D. Liazhkov.

Ethics declarations

Conflict of interest

None to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A Derivation of Eq. (16)

Here, we derive Eq. for the contribution \(v_{n}^\Omega \) in the closed form. Using the following approximations due to \(\eta /\omega _e\) is infinitesimal:

$$\begin{aligned} \begin{array}{l} \displaystyle \phi _2\approx \left[ \begin{aligned} \pi , \, \omega < \Omega ; \\ 0 ,\, \omega > \Omega , \\ \end{aligned} \right. , \quad \sqrt{\Omega ^2-\omega ^2\pm 2\text{ i }\eta \Omega }\approx \sqrt{\Omega ^2-\omega ^2}\pm \frac{\text{ i }\eta \Omega }{\sqrt{\Omega ^2-\omega ^2}}, \end{array} \end{aligned}$$
(A1)

rewrite the expression for \(v_{n}^\Omega \) in Eq. (15) as follows:

$$\begin{aligned} v_{n}^\Omega \approx -\frac{F_0\Omega \cos (\Omega t)H(t)}{m}\left( \text {I}_{n}+\text {I}_{n+1}+\text {c.c.}\right) ,\quad \text {I}_{n}=\frac{1}{4\pi }\int _{-\pi }^{\pi }\frac{e^{\text {i}n\theta }\text {d}\theta }{\Omega ^2-\omega ^2-\text {i}\eta \Omega }, \end{aligned}$$
(A2)

where \(\text {c.c.}\) stands for the complex conjugate terms. We transform the integral in Eq. (A2) to the unit circle integral. Put \(z=e^{\text {i}\theta }\). Then

$$\begin{aligned} \text {d}\theta =-\text {i}\frac{\text {d}z}{z}, \qquad 2\cos \theta =z+\frac{1}{z}, \end{aligned}$$
(A3)

and, therefore,

$$\begin{aligned} \text {I}_n=-\frac{\text {i}}{4 \pi }\oint _{\vert z\vert =1}\frac{z^{n}\text {d}z}{\omega _e^2z^2+(\Omega ^2-2\omega _e^2-\text {i}\eta \Omega )z+\omega _e^2 }. \end{aligned}$$
(A4)

Rewrite Eq. (A4) as

$$\begin{aligned} \text {I}_n= & {} -\frac{\text {i}}{4\pi \omega _e^2(z_1-z_2)}\left( \oint _{\vert z\vert =1}\frac{z^n\text {d}z}{z-z_1}-\oint _{\vert z\vert =1}\frac{z^n\text {d}z}{z-z_2}\right) , \end{aligned}$$
(A5)
$$\begin{aligned} z_{1,2}= & {} \frac{2\omega _e^2-\Omega ^2+\text {i}\eta \Omega \pm \text {i}\sqrt{\Omega }\sqrt{\Omega -\text {i}\eta }\sqrt{4\omega _e^2-\Omega ^2+\text {i}\eta \Omega }}{2\omega _e^2}. \end{aligned}$$
(A6)

where \(z_1\) and \(z_2\) are roots of the denominator of the integrand in Eq. (A4), i.e., poles. Rewrite the latter in the limit \(\eta \rightarrow 0+\):

$$\begin{aligned} z_{1,2}=1-\frac{\Omega ^2}{2\omega _e^2}\pm \text{ i }\left( \frac{\Omega \sqrt{4\omega _e^2-\Omega ^2}}{2\omega _e^2}\pm 0\right) . \end{aligned}$$
(A7)

Consider \(0<\Omega <2\omega _e\). In this case, the pole \(z_2\) lies inside the unit circle \(\vert z\vert <1\) only. Therefore, we take into account the residue at \(z_2\) only and the first term in (A5) equals zero. Therefore, we have

$$\begin{aligned} \text {I}_{n}=\frac{\text {i}z_2^n}{2\Omega \sqrt{4\omega _e^2-\Omega ^2}}=\frac{(-1)^ne^{2\text {i}\varphi n}}{-2\text {i}\Omega \sqrt{4\omega _e^2-\Omega ^2}},\quad \varphi =\arccos {\frac{\Omega }{2\omega _e}}. \end{aligned}$$
(A8)

Consider \(\Omega >2\omega _e\). In this case, Eqs. for \(z_{1,2}\) have the form

$$\begin{aligned} z_{1,2}=1-\frac{\Omega ^2\pm \Omega \sqrt{\Omega ^2-4\omega _e^2}}{2\omega _e^2}. \end{aligned}$$
(A9)

Substituting \(z_{1,2}\) to Eq. (A5) with taking into account \(\vert z_2 \vert <1\) yields

$$\begin{aligned} \begin{array}{l} \displaystyle \text {I}_n=\frac{z_2^n}{2\Omega \sqrt{\Omega ^2-4\omega _e^2}}=\frac{(-1)^ne^{-\gamma n}}{2\Omega \sqrt{\Omega ^2-4\omega _e^2}},\\ \displaystyle \gamma =-\ln \left( \frac{\Omega ^2-\Omega \sqrt{\Omega ^2-4\omega _e^2}}{2\omega _e^2}-1\right) =2\text {arccosh}\frac{\Omega }{2\omega _e}. \end{array} \end{aligned}$$
(A10)

Consider \(\Omega =2\omega _e\). The integral for \(\text {I}_n\) and its complex conjugation, \(\bar{\text {I}}_n\), determined in (A2), can be analogously transformed into the unit circle integral and then to the form

$$\begin{aligned}{} & {} \begin{array}{l} \displaystyle \text{ I}_n=-\frac{\text{ i }}{4\pi \omega _e^2}\oint _{\vert z\vert =1}\frac{z^n\text{ d }z}{(z+1-0\text{ i})^2}=0, \end{array} \end{aligned}$$
(A11)
$$\begin{aligned}{} & {} \bar{\text{ I }}_n=-\frac{\text{ i }}{4\pi \omega _e^2}\oint _{\vert z\vert =1}\frac{z^{-n}\text{ d }z}{(z+1+0\text{ i})^2}=\frac{(-1)^{(n+1)}n}{2\omega _e^2}. \end{aligned}$$
(A12)

Here, the following identities [75]

$$\begin{aligned} \frac{1}{(z\pm 0\text{ i})^2}=\pm \text{ i }\pi \delta '(z)+\text{ p.v. }\frac{1}{z^2}, \end{aligned}$$
(A13)

where \(\text {p.v.}\) stands for the Cauchy principle value, are used. Substitution of Eqs. (A8), (A10), (A11), (A12) to Eq. (A2) with respect to the corresponding values of the driving frequency and with further simplifications yields Eq. (16). Note that the expressions (A8), (A10), (A12) were previously obtained in [54]. However, Eqs. (A8)+\(\text {c.c.}\) and (A11) were obtained in the sense of the Cauchy principal value only, while, here, we do this exactly by using the limiting absorption principle.

Appendix B Derivation of the expression (18)

Rewrite Eq. for \(v_{n}^\omega \) in Eq. (14) as follows:

$$\begin{aligned} v_{n}^\omega =\frac{2F_0\Omega e^{-\eta t} H(t)}{m\pi }\int _0^{\pi }\frac{(\Omega ^2-\omega (\theta )^2)\cos (\omega (\theta ) t)}{(\Omega ^2-\omega (\theta )^2)^2+4\eta ^2\Omega ^2}\cos \frac{(2n+1)\theta }{2} \cos \frac{\theta }{2} \text {d}\theta . \end{aligned}$$
(B14)

Here, we use the following approximations due to \(\eta /\omega _e\) is infinitesimal:

$$\begin{aligned}{} & {} \begin{array}{l} \displaystyle \phi _1\approx \left[ \begin{aligned} 0, \, \omega < \Omega ; \\ \pi ,\, \omega > \Omega , \\ \end{aligned} \right. \\ \end{array} \end{aligned}$$
(B15)
$$\begin{aligned}{} & {} \sqrt{\omega ^2-\eta ^2}\approx \omega ,\quad \sqrt{4\eta ^2(\omega ^2-\eta ^2)+(\Omega ^2-\omega ^2+2\eta ^2)^2}\approx \vert \Omega ^2-\omega ^2\vert . \end{aligned}$$
(B16)

Rewrite the wavenumber integral (B14), changing to the frequency integral:

$$\begin{aligned} \begin{array}{l} \displaystyle v_{n}^\omega =\frac{2F_0\Omega e^{-\eta t} H(t)}{m\omega _e\pi }\int _0^{2\omega _e}\frac{(\Omega ^2-\omega ^2)\cos (\omega (\theta ) t)}{(\Omega ^2-\omega ^2)^2+4\eta ^2\Omega ^2}\cos \left( (2n+1)\arcsin \frac{\omega }{2\omega _e} \right) \text {d}\omega . \end{array}{} \end{aligned}$$
(B17)

Introduce a function, \(\text {I}_n^\text {cr}\), which denotes the contribution to Eq. (B14), coming from the vicinity of the point \(\Omega =\omega \). We introduce a variable \(\epsilon =\Omega -\omega \), which is infinitesimal for infinitesimal value \(\eta /\omega _e\). Consider two cases: \(0<\Omega <2\omega _e\) and \(\Omega =2\omega _e\). In the first case, we transform (B14) using the following asymptotic expansions with respect to \(\epsilon /\omega _e\):

$$\begin{aligned}{} & {} \begin{array}{l} \displaystyle \Omega ^2-\omega ^2=2\Omega \epsilon +O\left( \left( \frac{\epsilon }{\omega _e}\right) ^2\right) ,\\ \end{array} \end{aligned}$$
(B18)
$$\begin{aligned}{} & {} \cos \left( (2n+1)\arcsin \frac{\omega }{2\omega _e}\right) =\cos \left( (2n+1)\arcsin \frac{\Omega }{2\omega _e}\right) +O\left( \frac{\epsilon }{\omega _e}\right) . \end{aligned}$$
(B19)

Based on aforesaid, we write equation for \(\text {I}^\text {cr}_n\) as the integral along the vicinity of \(\epsilon =0\):

$$\begin{aligned} \begin{array}{ll} \text{ I}^\text{ cr}_n&{}{}=\displaystyle \frac{F_0e^{-\eta t}H(t){\mathcal {T}}_{2n+1}\left( \sqrt{1-\frac{\Omega ^2}{4\omega _e^2}}\right) }{m\omega _e \pi }\Bigg [\cos (\Omega t)\int _{\Omega -2\omega _e}^{\Omega }\frac{\epsilon \cos (\epsilon t)\text{ d }\epsilon }{\epsilon ^2+\eta ^2}\\ {} &{}{}\quad +\displaystyle \sin (\Omega t)\int _{\Omega -2\omega _e}^{\Omega }\frac{\epsilon \sin (\epsilon t)\text{ d }\epsilon }{\epsilon ^2+\eta ^2}\Bigg ]. \end{array} \end{aligned}$$
(B20)

Introduce a function \(v^\omega _{n,\text {cr}}\) such as

$$\begin{aligned} v^\omega _{n,\text{ cr }}\backsim \text{ I}^\text{ cr}_n \vert _{\Omega t\gg 1,\, \eta \rightarrow 0+}. \end{aligned}$$
(B21)

Then, tending \(\epsilon t\rightarrow \infty \) in the integrals in Eq. (B20) and using the following identities, which are true for any \(\tilde{\eta }>0\)

$$\begin{aligned} \int _{-\infty }^{\infty }\frac{x\sin x}{x^2+\tilde{\eta }^2}\text {d}x=e^{-\tilde{\eta }}\pi ,\qquad \int _{-\infty }^{\infty }\frac{x\cos x}{x^2+\tilde{\eta }^2}\text {d}x=0, \end{aligned}$$
(B22)

we write the expression for \(v^\omega _{n,\text {cr}}\) in the form

$$\begin{aligned} v^\omega _{n,\text {cr}}\approx \displaystyle \frac{F_0{\mathcal {T}}_{2n+1}\left( \sqrt{1-\frac{\Omega ^2}{4\omega _e^2}}\right) }{m\omega _e}\sin (\Omega t). \end{aligned}$$
(B23)

Consider the case when \(\Omega =2\omega _e\). Putting \(\eta =0\) and  \(\epsilon =2\omega _e-\omega \), we rewrite the asymptotic expansions (B19) as

$$\begin{aligned}{} & {} \displaystyle \Omega ^2-\omega ^2=4\omega _e\epsilon +O\left( \left( \frac{\epsilon }{\omega _e}\right) ^2\right) , \end{aligned}$$
(B24)
$$\begin{aligned}{} & {} \displaystyle \cos \left( (2n+1)\arcsin \frac{\omega }{2\omega _e}\right) =(-1)^n(2n+1)\sqrt{\frac{\epsilon }{\omega _e}}+O\left( \left( \frac{\epsilon }{\omega _e}\right) ^\frac{3}{2}\right) . \end{aligned}$$
(B25)

Therefore,

$$\begin{aligned} \text{ I}^\text{ cr}_n=\frac{(-1)^nF_0H(t)(2n+1)}{m\pi \sqrt{\omega _e^3}}\Bigg [\cos (2\omega _e t)\int _{0}^{2\omega _e}\frac{\cos (\epsilon t)\text{ d }\epsilon }{\sqrt{\epsilon }}+\sin (2\omega _e t)\int _{0}^{2\omega _e}\frac{\sin (\epsilon t)\text{ d }\epsilon }{\sqrt{\epsilon }}\Bigg ]. \end{aligned}$$
(B26)

Tending \( \epsilon t\rightarrow \infty \) in (B26) and using Eq. (B21) and the identities

$$\begin{aligned} \int _0^\infty \frac{\cos x\,\text {d}x}{\sqrt{x}}=\sqrt{\frac{\pi }{2}},\qquad \int _0^\infty \frac{\sin x\text {d}x}{\sqrt{x}}=\sqrt{\frac{\pi }{2}}, \end{aligned}$$
(B27)

we write the expression for \(v^\omega _{n,\text {cr}}\) as

$$\begin{aligned} v^\omega _{n,\text{ cr }}\approx \displaystyle \frac{(-1)^nF_0(2n+1)}{m\sqrt{2\pi \omega _e^3 t}} \left( \cos (2\omega _e t)+\sin (2\omega _e t)\right) , \end{aligned}$$
(B28)

which can be transformed to the form shown in Eq. (18).

Appendix C Derivation of the expression (19)

Put \(\eta =0\) in Eq. (14) and rewrite Eq. for \(v_{n}^\omega \) in as follows:

$$\begin{aligned} \displaystyle v_{n}^\omega= & {} \frac{F_0\Omega H(t)}{m}\left( \text {I}_1-\text {I}_2+\text {I}_3+\text {I}_4\right) , \end{aligned}$$
(C29)
$$\begin{aligned} \text {I}_{1,3}= & {} \frac{1}{\pi }\int _0^{\pi }\frac{\cos (\omega (\theta )t\pm n\theta )}{\Omega ^2-\omega (\theta )^2}\cos ^2\frac{\theta }{2}\text {d}\theta ,\quad \text {I}_{2,4}=\frac{1}{\pi }\int _0^{\pi }\frac{\sin (\omega (\theta )t\pm n\theta )}{\Omega ^2-\omega (\theta )^2}\cos \frac{\theta }{2}\sin \frac{\theta }{2}\text {d}\theta . \end{aligned}$$
(C30)

In order to estimate the large-time asymptotics of the integrals in Eq. (C29) at the moving front, firstly, we transform them to the form with the structure of the Fourier integral:

$$\begin{aligned} \tilde{\text {I}}=\int f(\theta )e^{\text {i}\varphi (\theta ) t}\text {d}\theta . \end{aligned}$$
(C31)

Following [76,77,78], put \(n=w\omega _e t\), where w is the dimensionless constant in time speed of the observation point, \(0<w<1\). Then, we consider the following integrals:

$$\begin{aligned} \displaystyle \tilde{\text{ I }}_{1\pm }= & {} {} \frac{1}{\pi }\int _0^{\pi } f_{1}(\theta )e^{\text{ i }\varphi _\pm (\theta )\omega _e t}\text{ d }\theta ,\qquad \tilde{\text{ I }}_{2\pm }=\frac{1}{\pi }\int _0^{\pi } f_{2}(\theta )e^{\text{ i }\varphi _\pm (\theta )\omega _e t}\text{ d }\theta , \end{aligned}$$
(C32)
$$\begin{aligned} f_1(\theta )= & {} \frac{\displaystyle \cos ^2\frac{\theta }{2}}{\Omega ^2-\omega (\theta )^2},\qquad f_2(\theta )=\frac{\displaystyle \cos \frac{\theta }{2}\sin \frac{\theta }{2}}{\Omega ^2-\omega (\theta )^2},\qquad \varphi _\pm (\theta )=2\sin \frac{\theta }{2}\pm w\theta . \end{aligned}$$
(C33)

For estimation of large-time asymptotics, we use the stationary phase method [79]. The stationary points, \(\theta _s\), corresponding to the integrals in Eq. (C32) satisfy the condition \(\displaystyle \frac{\text {d}\varphi _{\pm }}{\text {d}\theta }\Big \vert _{\theta =\theta _s}=0\). As well as the negative stationary points, the stationary point \(\theta _s=2(\pi -\arccos {w})\) does not belong to the interval \((0; \pi )\). Therefore,

$$\begin{aligned} \tilde{\text {I}}_{1+}=\tilde{\text {I}}_{2+}=O((\omega _et)^{-\infty }) \end{aligned}$$
(C34)

and thus \(\text {I}_1=\text {I}_2=O((\omega _et)^{-\infty })\). Consider \(\theta _s=2\arccos w\). Then

$$\begin{aligned} \begin{array}{l} \displaystyle \varphi _{-}(\theta _s)=2\sqrt{1-w^2}-2w\arccos w,\quad \displaystyle \frac{\text {d}^2\varphi _{-}}{\text {d}\theta ^2}\Big \vert _{\theta =\theta _s}=-\frac{1}{2}\sqrt{1-w^2}<0. \end{array} \end{aligned}$$
(C35)

Since the stationary point is not degenerate, we can therefore write the following expression for the principal term of the asymptotics of the integral \(\tilde{\text {I}}_{1-}\) [79]:

$$\begin{aligned} \begin{array}{ll} \displaystyle \tilde{\text{ I }}_{1-}&{}{}\backsim \frac{1}{\pi }\sqrt{\frac{2\pi }{\omega _e t\Big \vert \frac{\text{ d}^2\varphi _{-}}{\text{ d }\theta ^2}\big \vert _{\theta =\theta _s}\Big \vert }}f_1(\theta _s)e^{\text{ i }\left( \varphi _{-}(\theta _s)\omega _e t+\frac{\pi }{4}\text{ sgn } \frac{\text{ d}^2\varphi _{-}}{\text{ d }\theta ^2}\Big \vert _{\theta =\theta _s}\right) }\\ {} &{}{}\displaystyle =\frac{2}{\sqrt{\pi \omega _e t\sqrt{1-w^2}}}\frac{w^2}{\Omega ^2-4\omega _e^2(1-w^2)}e^{\text{ i }\left( (2\sqrt{1-w^2}-2w\arccos w)\omega _et-\frac{\pi }{4}\right) }. \end{array} \end{aligned}$$
(C36)

Analogously,

$$\begin{aligned} \displaystyle \tilde{\text{ I }}_{2-}\backsim \frac{2}{\sqrt{\pi \omega _e t\sqrt{1-w^2}}}\frac{w\sqrt{1-w^2}}{\Omega ^2-4\omega _e^2(1-w^2)}e^{\text{ i }\left( (2\sqrt{1-w^2}-2w\arccos w)\omega _et-\frac{\pi }{4}\right) }. \end{aligned}$$
(C37)

The integrals \(\text {I}_3\) and \(\text {I}_4\) are calculated as

$$\begin{aligned} \text {I}_3=\Re (\tilde{\text {I}}_{1-})H(1-w),\qquad \text {I}_4=\Im (\tilde{\text {I}}_{2-})H(1-w). \end{aligned}$$
(C38)

Substitution of \(w=n/(\omega _et)\) to Eqs. (C36), (C37) and (C38) and the final result to Eq. (C29) with further simplifications yields the expressions (19) and (20).

Appendix D Solution of Eq. (51)

We seek solution of Eq. (51) with accuracy up to order of \(\beta F_0^2/c^3\). Knowing that \(\Omega _\text {cr}>2\omega _e\) but not much more, than \(2\omega _e\) we can write expression for \(\mu (\Omega _\text {cr})\) as

$$\begin{aligned} \mu (\Omega _\text {cr})=\mu (2\omega _e)+O \left( \frac{\beta F_0^2}{c^3}\right) . \end{aligned}$$
(D39)

Substituting (D39) to (51) with preserving terms of order of \(\beta F_0^2/c^3\) yields

$$\begin{aligned} \Omega _\text {cr}\left( 1-\frac{\beta F_0^2}{c^3} \mu (2\omega _e)\right) =2\omega _e, \end{aligned}$$
(D40)

whereas

$$\begin{aligned} \Omega _\text {cr}=\frac{2\omega _e}{1-\frac{\beta F_0^2}{c^3} \mu (2\omega _e)}= 2\omega _e\left( 1+\frac{\beta F_0^2}{c^3}\mu (2\omega _e)+O \left( \frac{\beta ^2 F_0^4}{c^6}\right) \right) . \end{aligned}$$
(D41)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liazhkov, S.D. Energy supply into a semi-infinite \(\beta \)-Fermi–Pasta–Ulam–Tsingou chain by periodic force loading. Acta Mech (2024). https://doi.org/10.1007/s00707-024-03929-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00707-024-03929-8

Navigation