Skip to main content
Log in

Deformation in a micropolar material under the influence of Hall current and initial stress fields in the context of a double-temperature thermoelastic theory involving phase lag and higher orders

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This work aims to propose a generalized micropolar thermoelastic model for the study of semisolid space. Essentially, it is intended to develop the generalized theory of thermoelasticity combined with the framework of a linear two-temperature theory to present the thermal and mechanical analysis of micropolar magneto-thermoelastic media influenced by initial stress. The higher-order derivatives thermoelasticity model has been applied to establish the model based on two-phase lags under the influence of magnetic Hall current. The normal mode analysis technique was used to solve specific boundary-value problems in the applied theory of magneto-thermostatic micropolar systems. The constitutive equations are constructed, and two distinct temperatures are obtained, respectively, conductive temperature and thermodynamic temperature, as well as displacements, partial rotation, thermal stresses and couple stresses. In addition, the critical values of the physical parameters of the Hall current and initial stress are determined, as is their influence on the wave fields, and the characteristics of such media are determined. Some points of interest highlighting the effects of the magnetic Hall current in the current context have been completed. A comparison was made between different models of thermoelastic theories of higher-order time derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. Truesdell, C.: Die Entwicklung des Drallsatzes. ZAMM. 44(4/5), 149–158 (1964)

    Google Scholar 

  2. Eringen, A.C.: Nonlinear theory of continuous media, Arts. 32,40. MCGraw-Hill (1962).

  3. Eringen, A.C., Suhubi, E.: Nonlinear theory of simple micro-elastic solids—I. Int. J. Eng. Sci. 2(2), 189–203 (1964)

    Article  MathSciNet  Google Scholar 

  4. Eringen, A.C.: Linear theory of micropolar elasticity. J. Math. Mech. 1, 909–923 (1966)

    MathSciNet  Google Scholar 

  5. Eringen, A., C.: Foundation of micropolar thermo-elasticity Springer-Verlag. Viena (1970)

  6. Nowacki, W.: Couple Stresses in the Theory of Thermoelasticity. Bull. Acad. Polon. Sci Ser. Sci. Tec. 14, 97–106 (1966)

    Google Scholar 

  7. Boschi, E., Ieşan, D.: A generalized theory of linear micropolar thermoelasticity. Meccanica 8, 154–157 (1973)

    Article  Google Scholar 

  8. Dost, S., Tabarrok, B.: Generalized micropolar thermoelasticity. Int. J. Eng. Sci. 16, 173–183 (1978)

    Article  MathSciNet  Google Scholar 

  9. Pouget, J., Askar, A., Maugin, G., A.: Lattice model for elastic ferroelectric crystals: microscopic approach. Phy Rev B.; 33(9), 6304 (1986).

  10. Scalia, A.: A grade consistent micropolar theory of thermoelastic materials with voids. ZAMM. 72, 133–140 (1992). https://doi.org/10.1002/zamm.19920720209

    Article  MathSciNet  Google Scholar 

  11. Ciarletta, M., Scalia, A., Svanadze, M.: Fundamental solution in the theory of micropolar thermoelastic materials with voids. J. Therm. Stress 30, 213–229 (2007). https://doi.org/10.1080/01495730601130901

    Article  Google Scholar 

  12. Ciarletta, M., Svanadze, M., Buonanno, L.: Plane waves and vibrations in the theory of micropolar thermoelasticity for materials with voids. Eur. J. Mech. A/Solids. 28, 897–903 (2009). https://doi.org/10.1016/j.euromechsol.2009.03.008

    Article  MathSciNet  Google Scholar 

  13. Deswal, S., Kalkal, K.: Plane waves in a fractional order micropolar magneto-thermoelastic half-space. Wave Motion 51, 100–113 (2014)

    Article  MathSciNet  Google Scholar 

  14. Marin, M., Florea, O.: On temporal behaviour of solutions in thermoelasticity of porous micropolar bodies. Analele Univ Ovidius Constanta Seria Mat. 22(1), 169–188 (2014)

    Article  MathSciNet  Google Scholar 

  15. Othman, M.I., Alharbi, A.M., Al-Autabi, A.A.: Micropolar thermoelastic medium with voids under the effect of rotation concerned with 3PHL model. Geomech. Eng. 21(5), 447–459 (2020). https://doi.org/10.12989/GAE.2020.21.5.447

    Article  Google Scholar 

  16. Othman, M.I.A., Hasona, W.M., Abd-Elaziz, E.M.: Effect of rotation on micropolar generalized thermoelasticity with two temperatures using a dual-phase lag model. Can. J. Phys. 92, 149 (2014)

    Article  Google Scholar 

  17. Othman, M.I., Hasona, W.M., Abd-Elaziz, E.M.: Effect of rotation and initial stress on generalized micropolar thermoelastic medium with three-phase-lag. J. Comput. Theor. Nanosci. 12(9), 2030–2040 (2015)

    Article  Google Scholar 

  18. Fahmy, M.A., Shaw, S., Mondal, S., Abouelregal, A.E., Lotfy, K., Kudinov, I.A., Soliman, A.H.: Boundary element modeling for simulation and optimization of three-temperature anisotropic micropolar magneto-thermoviscoelastic problems in porous smart structures using NURBS and genetic algorithm. Int. J. Thermophys. 42, 1–28 (2021). https://doi.org/10.1007/s10765-020-02777-7

    Article  Google Scholar 

  19. Othman, M.I., Abd-alla, A.E., Abd-Elaziz, E.M.: Effect of heat laser pulse on wave propagation of generalized thermoelastic micropolar medium with energy dissipation. Indian J. Phys. 94, 309–317 (2020). https://doi.org/10.1007/s12648-019-01453-3

    Article  Google Scholar 

  20. Singh, B., Kaur, B.: Rayleigh surface wave at an impedance boundary of an incompressible micropolar solid half-space. Mech. Adv. Mater. Struct. (2021). https://doi.org/10.1080/15376494.2021.1914795

    Article  Google Scholar 

  21. Khachatryan, M.V., Sargsyan, S.H.: Thermostatics of micropolar elastic thin beams with a circular axis with independent fields of displacements and rotations and the finite element method. J. Thermal Stress. 45(12), 993–1008 (2022). https://doi.org/10.1080/01495739.2022.2131664

    Article  Google Scholar 

  22. Sheoran, D., Kumar, R., Punia, B.S., Kalkal, K.K.: Propagation of waves at an interface between a nonlocal micropolar thermoelastic rotating half-space and a nonlocal thermoelastic rotating half-space. Waves Random Complex Med. (2022). https://doi.org/10.1080/17455030.2022.2087118

    Article  Google Scholar 

  23. Duhamel, J.M.: Second memoire sur les phenomenes thermo-mecaniques. J. de l’École Polytech. 15(25), 1–57 (1837)

    Google Scholar 

  24. Zener, C.: Internal friction in solids II. general theory of thermoelastic internal friction, physical review. Am. Phys. Soc. APS. 53(1), 90–99 (1938). https://doi.org/10.1103/PhysRev.53.90.hal-03437261

    Article  Google Scholar 

  25. Biot, M.A.: Thermoelasticity and Irreversible thermodynamics. J. Appl. Phys. 27, 240–253 (1956)

    Article  MathSciNet  Google Scholar 

  26. Lord, H., Shulman, Y.: A generalized dynamic theory of thermoelasticity. J. Mech. Phys. Solids 15, 299–309 (1967). https://doi.org/10.1016/0022-5096(67)90024-5

    Article  Google Scholar 

  27. Cattaneo, C.: Sur une forme de l’équation de la chaleur éliminant le paradoxe d’une propagation instantanée (A form of heat conduction equation which eliminates the paradox of instantaneous propagationh). Comp. Rend. Hebd. Séances Acad. Sci. Paris 247(4), 431–433 (1958)

    Google Scholar 

  28. Vernotte, P.: Les paradoxes de la theorie continue de l’equation de la chaleur. Comptes. Rendus. 246, 3154 (1958)

    Google Scholar 

  29. Green, A.E., Lindsay, K.A.: Thermoelasticity. J. Elast. 2(1), 1–7 (1972). https://doi.org/10.1007/BF00045689

    Article  Google Scholar 

  30. Green, A.E., Naghdi, P.M.: A re-examination of the basic properties of thermomechanics. Proc. R. Soc. Lond. Series. A 432(1885), 171–194 (1991). https://doi.org/10.1098/rspa.1991.0012

    Article  Google Scholar 

  31. Green, A.E., Naghdi, P.M.: On undamped heat waves in an elastic solid. J. Therm. Stresses 15, 252–264 (1992). https://doi.org/10.1080/01495739208946136

    Article  MathSciNet  Google Scholar 

  32. Green, A.E., Naghdi, P.M.: Thermoelasticity without energy dissipation. J. Elast. 31(3), 189–208 (1993). https://doi.org/10.1007/BF00044969

    Article  MathSciNet  Google Scholar 

  33. Chandrasekharaiah, D.S.: Hyperbolic thermoelasticity: A review of recent literature. Appl. Mech. Rev. 51(12), 705–729 (1998). https://doi.org/10.1115/1.3098984

    Article  Google Scholar 

  34. Tzou, D.Y.: A unique field approach for heat conduction from macro to micro scale. J. Heat Transfer 117(1), 8–16 (1995). https://doi.org/10.1115/1.2822329

    Article  Google Scholar 

  35. Zakaria, K., Sirwah, M.A., Abouelregal, A.E., Rashid, A.F.: Photothermoelastic Interactions in Silicon Microbeams Resting on Linear Pasternak Foundation Based on DPL Model. Int. J. of Appl. Mech. 13(07), 2150079 (2021). https://doi.org/10.1142/S1758825121500794

    Article  Google Scholar 

  36. Aouadi, M.: Some theorems in the generalized theory of thermo-magnetoelectroelasticity under Green-Lindsay’s model. Acta Mech. 200, 25–43 (2008)

    Article  Google Scholar 

  37. Ivanova, E.A.: Derivation of theory of thermoviscoelasticity by means of two-component medium. Acta Mech. 215, 261–286 (2010)

    Article  Google Scholar 

  38. Guo, S.H.: The thermo-electromagnetic waves in piezoelectric solids. Acta Mech. 219, 231–240 (2011)

    Article  Google Scholar 

  39. Guo, S.H.: The comparisons of thermo-elastic waves for Lord-Shulman mode and Green-Lindsay mode based on Guo’s eigen theory. Acta Mech. 222, 199–208 (2011)

    Article  Google Scholar 

  40. Das, P., Kanoria, M.: Magneto-thermo-elastic response in a perfectly conducting medium with three-phase-lag effect. Acta Mech. 223, 811–828 (2012)

    Article  MathSciNet  Google Scholar 

  41. Sur, A., Kanoria, M.: Fractional order two-temperature thermoelasticity with finite wave speed. Acta Mech. 223, 2685–2701 (2012)

    Article  MathSciNet  Google Scholar 

  42. Ivanova, E.A.: Description of mechanism of thermal conduction and internal damping by means of two-component Cosserat continuum. Acta Mech. 225, 757–795 (2014)

    Article  MathSciNet  Google Scholar 

  43. Ivanova, E.: Description of nonlinear thermal effects by means of a two-component Cosserat continuum. Acta Mech. 228, 2299–2346 (2017)

    Article  MathSciNet  Google Scholar 

  44. Surana, K.S., Joy, A.D., Reddy, J.: Ordered rate constitutive theories for thermoviscoelastic solids without memory incorporating internal and Cosserat rotations. Acta Mech. 229, 3189–3213 (2018)

    Article  MathSciNet  Google Scholar 

  45. Mondal, S., Pal, P., Kanoria, M.: Transient response in a thermoelastic half-space solid due to a laser pulse under three theories with memory-dependent derivative. Acta Mech. 230, 179–199 (2019)

    Article  MathSciNet  Google Scholar 

  46. Ivanova, E.: On a micropolar continuum approach to some problems of thermo-and electrodynamics. Acta Mech. 1(230), 1685–1715 (2019)

    Article  MathSciNet  Google Scholar 

  47. El-Sapa, Sh., Lotfy, Kh., El-Bary, A.: Laser short-pulse impact on magneto-photo-thermodiffusion waves in excited semiconductor medium with fractional heat equation. Acta Mech. 233, 3893–3907 (2022)

    Article  MathSciNet  Google Scholar 

  48. Biot, M.A.: The influence of initial stress on elastic waves. J. Appl. Phys. 11(8), 522–530 (1940). https://doi.org/10.1063/1.1712807

    Article  MathSciNet  Google Scholar 

  49. Guo, X., Wei, P.: Effects of initial stress on the reflection and transmission waves at the interface between two piezoelectric half spaces. Int. J. Solids Struct. 51(21–22), 3735–3751 (2014). https://doi.org/10.1016/j.ijsolstr.2014.07.008

    Article  Google Scholar 

  50. Abd-alla, A.N., Alsheikh, F.A.: Reflection and refraction of plane quasi-longitudinal waves at an interface of two piezoelectric media under initial stresses. Arch. Appl. Mech. 79, 843–857 (2009). https://doi.org/10.1007/s00419-008-0257-y

    Article  Google Scholar 

  51. Garg, N.: Effect of initial stress on harmonic plane homogeneous waves in viscoelastic anisotropic media. J. Sound Vib. 303(3–5), 515–525 (2007). https://doi.org/10.1016/j.jsv.2007.01.013

    Article  Google Scholar 

  52. Abouelregal, A.E., Zakaria, K., Sirwah, M.A., Ahmad, H., Rashid, A.F.: Viscoelastic initially stressed microbeam heated by an intense pulse laser via photo-thermoelasticity with two-phase lag. Int. J. Modern Phys. C. 33(06), 2250073 (2022). https://doi.org/10.1142/S0129183122500735

    Article  MathSciNet  Google Scholar 

  53. Abouelregal, A.E., Mohammad-Sedighi, H., Shirazi, A.H., et al.: Computational analysis of an infinite magneto-thermoelastic solid periodically dispersed with varying heat flow based on nonlocal Moore–Gibson–Thompson approach. Continuum Mech. Thermodyn. 34, 1067–1085 (2022). https://doi.org/10.1007/s00161-021-00998-1

    Article  MathSciNet  Google Scholar 

  54. Tiwari, R., Kumar, R., Abouelregal, A.E.: Analysis of a magneto-thermoelastic problem in a piezoelastic medium using the nonlocal memory-dependent heat conduction theory involving three phase lags. Mech. Time Depend. Mater. (2021). https://doi.org/10.1007/s11043-021-09487-z

    Article  Google Scholar 

  55. Abouelregal, A.E., Ahmad, H., Aldahlan, M.A., Zhang, X.Z.: Nonlocal magneto-thermoelastic infinite half-space due to a periodically varying heat flow under Caputo–Fabrizio fractional derivative heat equation. Open Phys. 20(1), 274–288 (2022). https://doi.org/10.1515/phys-2022-0019

    Article  Google Scholar 

  56. Chen, P.J., Gurtin, M.E.: On a theory of heat conduction involving two temperatures. Z. Angew. Math. Phys. 19, 614–627 (1968)

    Article  Google Scholar 

  57. Chen, P.J., Gurtin, M.E., Williams, W.O.: On the thermodynamics of non-simple elastic materials with two temperatures. Zeitschrift für Angewandte Mathematik Und Physik ZAMP. 20, 107–112 (1969)

    Article  Google Scholar 

  58. Kaur, I., Lata, P., Singh, K.: Study of frequency shift and thermoelastic damping in transversely isotropic nano-beam with GN III theory and two temperature. Arch. Appl. Mech. 91, 1697–1711 (2021). https://doi.org/10.1007/s00419-020-01848-3

    Article  Google Scholar 

  59. Deswal, S., Kumar, S., Jain, K.: Plane wave propagation in a fiber-reinforced diffusive magneto-thermoelastic half space with two-temperature. Waves Random and Complex Med. 32(1), 43–65 (2022)

    Article  MathSciNet  Google Scholar 

  60. Hall, E.H.: On a new action of the magnet on electric currents. Am. J. Math. 2(3), 287 (1879). https://doi.org/10.2307/2369245

    Article  MathSciNet  Google Scholar 

  61. Lata, P., Singh, S.: Stoneley wave propagation in nonlocal isotropic magneto-thermoelastic solid with multi-dual-phase lag heat transfer. Steel Compos. Struct. 38(2), 141–150 (2021)

    Google Scholar 

  62. Othman, M.I.A., Abd-Elaziz, E.M.: Effect of initial stress and Hall current on a magneto-thermoelastic porous medium with microtemperatures. Indian J. Phys. 93, 475–485 (2019). https://doi.org/10.1007/s12648-018-1313-2

    Article  Google Scholar 

  63. Kumar, R., Abbas, I.A.: Deformation due to thermal source in micropolar thermoelastic media with thermal and conductive temperatures. J. Comput. Theor. Nanosci. 10, 2241–2247 (2013)

    Article  Google Scholar 

  64. Gurtin, M.E., Williams, W.O.: On the clausius-duhem inequality. A Angew. Math. Phys. 17, 626–633 (1966)

    Article  Google Scholar 

  65. Gurtin, M.E., Williams, W.O.: An axiomatic foundation for continuum thermodynamics. Arch. Ration. Mech. Anal. 26, 83–117 (1967)

    Article  MathSciNet  Google Scholar 

  66. Ahmadi, G.: On the two temperature theory of heat conducting fluids. Mech. Res. Commun. 4(4), 209–218 (1977)

    Article  Google Scholar 

  67. Quintanilla, R.: On existence, structural stability, convergence and spatial behavior in thermoelasticity with two temperatures. Acta Mech. 168, 61–73 (2004)

    Article  Google Scholar 

  68. Mukhopadhyay, S., Prasad, R., Kumar, R.: On the theory of two-temperature thermoelasticity with two phase-lags. J. Therm. Stress. 34(4), 352–365 (2011)

    Article  Google Scholar 

  69. Abouelregal, A.: On Green and Naghdi thermoelasticity model without energy dissipation with higher order time differential and phase-lags. J. Appl. Comput. Mech. 6(3), 445–456 (2020)

    Google Scholar 

  70. Chiriţă, S.: On the time differential dual-phase-lag thermoelastic model. Meccanica 52, 349–361 (2017)

    Article  MathSciNet  Google Scholar 

  71. Chiriţă, S., Ciarletta, M., Tibullo, V.: On the thermomechanic consistency of the time differential dual-phase-lag models of heat conduction. Int. J. Heat Mass Transfer. 114, 277–285 (2017)

    Article  Google Scholar 

  72. Chiriţă, S., Ciarletta, M., Tibullo, V.: On the wave propagation in the time differential dual-phase-lag thermoelastic model. Proceed. R. Soc. A Math. Phys. Eng. Sci. 471(2183), 20150400 (2015)

    MathSciNet  Google Scholar 

  73. Zakaria, M.: Effects of Hall current and rotation on magneto-micropolar generalized thermoelasticity due to ramp-type heating. Int. J. Electro. Appl. 2(3), 24–32 (2012)

    Google Scholar 

  74. Abouelregal, A.E.: A novel model of nonlocal thermoelasticity with time derivatives of higher order. Math. Methods Appl. Sci. 43(11), 6746–6760 (2020)

    Article  MathSciNet  Google Scholar 

  75. Youssef, H.: Theory of two-temperature-generalized thermoelasticity. J. Appl. Math. 71, 383–390 (2006)

    MathSciNet  Google Scholar 

  76. Abouelregal, A.E.: Two-temperature thermoelastic model without energy dissipation including higher order time-derivatives and two phase-lags. Mater. Res. Express. 6(11), 116535 (2019)

    Article  Google Scholar 

  77. Ezzat, M.A., Awad, E.S.: Constitutive relations, uniqueness of solution and thermal shock application in the linear theory of micropolar generalized thermoelasticity involving two temperatures. J. Therm. Stress. 33, 226–250 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the Deanship of Scientific Research at Jouf University through the Fast-track Research Funding Program.

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali F. Rashid.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abouelregal, A.E., Rashid, A.F. Deformation in a micropolar material under the influence of Hall current and initial stress fields in the context of a double-temperature thermoelastic theory involving phase lag and higher orders. Acta Mech (2024). https://doi.org/10.1007/s00707-024-03922-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00707-024-03922-1

Navigation