Skip to main content
Log in

Study of frequency shift and thermoelastic damping in transversely isotropic nano-beam with GN III theory and two temperature

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

This article has been updated

Abstract

In this study, a nanoscale beam of transversely isotropic thermoelastic (TIT) medium with two temperature and with Green–Naghdi (GN) III theory of thermoelasticity for free vibrations with simply supported boundaries have been examined. Euler–Bernoulli (EB) beam theory is used to formulate a mathematical model of the nanoscale beam in a closed form. The lateral deflection, frequency shift, thermal moment and thermoelastic damping have been solved. A program in MATLAB software is developed to find the numerical values for different physical quantities. The lateral deflection, frequency shift, thermal moment and thermoelastic damping for the varying two temperature, different modes, frequency of time harmonic sources, thickness of nano-beam, and material medium of nano-beam has been represented graphically and discussed. The results for some particular cases have also been compared to some earlier work done.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Change history

  • 12 January 2021

    Journal abbreviated title on top of the page has been corrected to “Arch Appl Mech”

Abbreviations

\(\delta_{ij}\) :

Kronecker delta

\(C_{ijkl}\) :

Elastic parameters (Nm−2)

\(\beta_{ij}\) :

Thermal elastic coupling tensor (Nm−2K−1)

T :

Absolute temperature (K)

\(T_{0}\) :

Reference temperature (K)

\(\varphi\) :

Conductive temperature (K)

\(t_{ij}\) :

Stress tensors (Nm−2)

\(e_{ij}\) :

Strain tensors (m m−1)

\(u_{i}\) :

Components of displacement (m)

\(\rho\) :

Medium density (kgm−3)

\(C_{E}\) :

Specific heat (J kg−1 K−1)

\(a_{ij}\) :

Two temperature parameters,

\(\alpha_{ij}\) :

Linear thermal expansion coefficient (K−1)

\(K_{ij}\) :

Thermal conductivity (Wm−1K−1)

\(K_{ij}^{*}\) :

Materialistic constant (Ns−2K−1)

\(\omega\) :

Frequency (Hz)

I :

Moment of inertia (m4)

\(C_{11} I\) :

Flexural rigidity of the nano-beam (Nm2)

s :

Laplace transform parameter

\(\varepsilon_{T}\) :

Thermoelastic coupling

A :

Area of cross section(m2)

\(M_{T}\) :

Thermal moment (Km2)

\(M\left( {x,t} \right)\) :

Flexural moment

\(w\left( {x,t} \right)\) :

Lateral deflection (m)

t :

Time (s)

References

  1. Kazemnia Kakhki, E., Hosseini, S.M., Tahani, M.: An analytical solution for thermoelastic damping in a micro-beam based on generalized theory of thermoelasticity and modified couple stress theory. Appl. Math. Model. 40, 3164–3174 (2016). https://doi.org/10.1016/j.apm.2015.10.019

    Article  MathSciNet  MATH  Google Scholar 

  2. Rezazadeh, G., Vahdat, A.S., Tayefeh-rezaei, S., Cetinkaya, C.: Thermoelastic damping in a micro-beam resonator using modified couple stress theory. Acta Mech. 223, 1137–1152 (2012). https://doi.org/10.1007/s00707-012-0622-3

    Article  MathSciNet  MATH  Google Scholar 

  3. Guo, X., Yi, Y.-B., Pourkamali, S.: A finite element analysis of thermoelastic damping in vented MEMS beam resonators. Int. J. Mech. Sci. 74, 73–82 (2013). https://doi.org/10.1016/j.ijmecsci.2013.04.013

    Article  Google Scholar 

  4. Şimşek, M., Reddy, J.N.: Bending and vibration of functionally graded microbeams using a new higher order beam theory and the modified couple stress theory. Int. J. Eng. Sci. 64, 37–53 (2013). https://doi.org/10.1016/j.ijengsci.2012.12.002

    Article  MathSciNet  MATH  Google Scholar 

  5. Shaat, M., Mahmoud, F.F., Gao, X.-L., Faheem, A.F.: Size-dependent bending analysis of Kirchhoff nano-plates based on a modified couple-stress theory including surface effects. Int. J. Mech. Sci. 79, 31–37 (2014). https://doi.org/10.1016/j.ijmecsci.2013.11.022

    Article  Google Scholar 

  6. Allam, M.N.M., Abouelregal, A.E.: The thermoelastic waves induced by pulsed laser and varying heat of inhomogeneous microscale beam resonators. J. Therm. Stress. 37, 455–470 (2014). https://doi.org/10.1080/01495739.2013.870858

    Article  Google Scholar 

  7. Abouelregal, A.E., Zenkour, A.M.: Effect of phase lags on thermoelastic functionally graded microbeams subjected to ramp-type heating. Iran. J. Sci. Technol. Trans. Mech. Eng. 38, 321–335 (2014). https://doi.org/10.22099/ijstm.2014.2498

  8. Yu, T.X., Yang, J.L., Reid, S.R., Austin, C.D.: Dynamic behaviour of elastic-plastic free-free beams subjected to impulsive loading. Int. J. Solids Struct. 33, 2659–2680 (1996). https://doi.org/10.1016/0020-7683(95)00169-7

    Article  MATH  Google Scholar 

  9. Park, S.K., Gao, X.-L.: Bernoulli-Euler beam model based on a modified couple stress theory. J. Micromechanics Microengineering. 16, 2355–2359 (2006). https://doi.org/10.1088/0960-1317/16/11/015

    Article  Google Scholar 

  10. Sun, Y., Fang, D., Saka, M., Soh, A.K.: Laser-induced vibrations of micro-beams under different boundary conditions. Int. J. Solids Struct. 45, 1993–2013 (2008). https://doi.org/10.1016/j.ijsolstr.2007.11.006

    Article  MATH  Google Scholar 

  11. Li, Y., Cheng, C.-J.: A nonlinear model of thermoelastic beams with voids, With applications. J. Mech. Mater. Struct. 5, (2010)

  12. Sharma, J.N.: Thermoelastic damping and frequency shift in micro/nanoscale anisotropic beams. J. Therm. Stress. 34, 650–666 (2011). https://doi.org/10.1080/01495739.2010.550824

    Article  Google Scholar 

  13. Sharma, J.N., Grover, D.: Thermoelastic vibrations in micro-/nano-scale beam resonators with voids. J. Sound Vib. 330, 2964–2977 (2011). https://doi.org/10.1016/j.jsv.2011.01.012

    Article  Google Scholar 

  14. Zhang, J., Fu, Y.: Pull-in analysis of electrically actuated viscoelastic microbeams based on a modified couple stress theory. Meccanica 47, 1649–1658 (2012). https://doi.org/10.1007/s11012-012-9545-2

    Article  MathSciNet  MATH  Google Scholar 

  15. Zenkour, A.M., Abouelregal, A.E.: Thermoelastic Vibration of an Axially Moving Microbeam Subjected to Sinusoidal Pulse Heating. Int. J. Struct. Stab. Dyn. 15, 1450081 (2015). https://doi.org/10.1142/S0219455414500813

    Article  MathSciNet  MATH  Google Scholar 

  16. Kumar, R., Devi, S.: Interactions of thermoelastic beam in modified couple stress theory. Appl. Appl. Math. Int. J. 12, 910–923 (2017)

    MathSciNet  MATH  Google Scholar 

  17. Marin, M.: The Lagrange identity method in thermoelasticity of bodies with microstructure. Int. J. Eng. Sci. 32, 1229–1240 (1994). https://doi.org/10.1016/0020-7225(94)90034-5

    Article  MathSciNet  MATH  Google Scholar 

  18. Marin, M.: On existence and uniqueness in thermoelasticity of micropolar bodies. Comptes Rendus, Acad. Sci. Paris, Ser. II. 321, 475–480 (1995)

  19. Abbas, I.A., Marin, M.: Analytical solution of thermoelastic interaction in a half-space by pulsed laser heating. Phys. E Low-dimensional Syst. Nanostructures. 87, 254–260 (2017). https://doi.org/10.1016/j.physe.2016.10.048

    Article  Google Scholar 

  20. Sharma, J.N., Kaur, R.: Transverse vibrations in thermoelastic-diffusive thin micro-beam resonators. J. Therm. Stress. 37, 1265–1285 (2014). https://doi.org/10.1080/01495739.2014.936252

    Article  Google Scholar 

  21. Fantuzzi, N., Trovalusci, P., Dharasura, S.: Mechanical behavior of anisotropic composite materials as micropolar continua. Front. Mater. 6, 1–11 (2019). https://doi.org/10.3389/fmats.2019.00059

    Article  Google Scholar 

  22. Marin, M., Lupu, M.: On harmonic vibrations in thermoelasticity of micropolar bodies. J. Vib. Control 4, 507–518 (1998). https://doi.org/10.1177/107754639800400501

    Article  MathSciNet  MATH  Google Scholar 

  23. Abouelregal, A.E., Zenkour, A.M.: Thermoelastic response of nanobeam resonators subjected to exponential decaying time varying load. J. Theor. Appl. Mech. 55, 937–948 (2017). https://doi.org/10.15632/jtam-pl.55.3.937

  24. Aksoy, H.G.: Wave propagation in heterogeneous media with local and nonlocal material behavior. J. Elast. 122, 1–25 (2016). https://doi.org/10.1007/s10659-015-9530-9

    Article  MathSciNet  MATH  Google Scholar 

  25. Abd-Elaziz, E.M., Othman, M.I.A.: Effect of Thomson and thermal loading due to laser pulse in a magneto-thermo-elastic porous medium with energy dissipation. ZAMM J. Appl. Math. Mech./Zeitschrift für Angew. Math. und Mech. 99, (2019). https://doi.org/10.1002/zamm.201900079

  26. Abd-Elaziz, E., Marin, M., Othman, M.: On the effect of thomson and initial stress in a thermo-porous elastic solid under G-N electromagnetic theory. Symmetry (Basel). 11, 413 (2019). https://doi.org/10.3390/sym11030413

  27. Karami, Behrouz, Janghorban, Maziar, Tounsi, Abdelouahed: Nonlocal strain gradient 3D elasticity theory for anisotropic spherical nanoparticles. Steel Compos. Struct. 27, 201–216 (2018). https://doi.org/10.12989/scs.2018.27.2.201

    Article  Google Scholar 

  28. Karami, B., Janghorban, M., Rabczuk, T.: Forced vibration analysis of functionally graded anisotropic nanoplates resting on Winkler/Pasternak-foundation. Comput. Mater. Contin. 62, 607–629 (2020). https://doi.org/10.32604/cmc.2020.08032

    Article  Google Scholar 

  29. Zhang, L., Bhatti, M.M., Michaelides, E.E.: Thermally developed coupled stress particle–fluid motion with mass transfer and peristalsis. J. Therm. Anal. Calorim. (2020). https://doi.org/10.1007/s10973-020-09871-w

    Article  Google Scholar 

  30. Itu, C., Öchsner, A., Vlase, S., Marin, M.I.: Improved rigidity of composite circular plates through radial ribs. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 233, 1585–1593 (2019). https://doi.org/10.1177/1464420718768049

    Article  Google Scholar 

  31. Bhatti, M.M., Ellahi, R., Zeeshan, A., Marin, M., Ijaz, N.: Numerical study of heat transfer and Hall current impact on peristaltic propulsion of particle-fluid suspension with compliant wall properties. Mod. Phys. Lett. B 33, 1950439 (2019). https://doi.org/10.1142/S0217984919504396

    Article  MathSciNet  Google Scholar 

  32. Bhatti, M.M., Yousif, M.A., Mishra, S.R., Shahid, A.: Simultaneous influence of thermo-diffusion and diffusion-thermo on non-Newtonian hyperbolic tangent magnetised nanofluid with Hall current through a nonlinear stretching surface. Pramana 93, 88 (2019). https://doi.org/10.1007/s12043-019-1850-z

    Article  Google Scholar 

  33. Bhatti, M.M., Marin, M., Zeeshan, A., Abdelsalam, S.I.: Editorial: recent trends in computational fluid dynamics. Front. Phys. (2020). https://doi.org/10.3389/fphy.2020.593111

    Article  Google Scholar 

  34. Sharma, K., Marin, M.: Reflection and transmission of waves from imperfect boundary between two heat conducting micropolar thermoelastic solids. Analele Univ. Ovidius Constanta Ser. Mat. 22, 151–176 (2014). https://doi.org/10.2478/auom-2014-0040

    Article  MathSciNet  MATH  Google Scholar 

  35. Marin, M.: Some basic theorems in elastostatics of micropolar materials with voids. J. Comput. Appl. Math. 70, 115–126 (1996). https://doi.org/10.1016/0377-0427(95)00137-9

    Article  MathSciNet  MATH  Google Scholar 

  36. Marin, M.: On the minimum principle for dipolar materials with stretch. Nonlinear Anal. Real World Appl. 10, 1572–1578 (2009). https://doi.org/10.1016/j.nonrwa.2008.02.001

    Article  MathSciNet  MATH  Google Scholar 

  37. Marin, M.: A partition of energy in thermoelasticity of microstretch bodies. Nonlinear Anal. Real World Appl. 11, 2436–2447 (2010). https://doi.org/10.1016/j.nonrwa.2009.07.014

    Article  MathSciNet  MATH  Google Scholar 

  38. Abbas, I.A.: Free vibrations of nanoscale beam under two-temperature green and Naghdi model. Int. J. Acoust. Vib. 23, 289–293 (2018). https://doi.org/10.20855/ijav.2018.23.31051

    Article  Google Scholar 

  39. Lata, P., Kaur, I.: A study of transversely isotropic thermoelastic beam with green-naghdi type-II and Type-III theories of thermoelasticity. Appl. Appl. Math. An Int. J. 14, 270–283 (2019)

    MathSciNet  MATH  Google Scholar 

  40. Kaur, I., Lata, P.: Rayleigh wave propagation in transversely isotropic magneto-thermoelastic medium with three-phase-lag heat transfer and diffusion. Int. J. Mech. Mater. Eng. (2019). https://doi.org/10.1186/s40712-019-0108-3

    Article  Google Scholar 

  41. Kaur, I., Lata, P.: Stoneley wave propagation in transversely isotropic thermoelastic medium with two temperature and rotation. GEM - Int. J. Geomathematics. 11, 1–17 (2020). https://doi.org/10.1007/s13137-020-0140-8

    Article  MathSciNet  MATH  Google Scholar 

  42. Kaur, I., Lata, P., Singh, K.: Effect of Hall current in transversely isotropic magneto-thermoelastic rotating medium with fractional-order generalized heat transfer due to ramp-type heat. Indian J. Phys. (2020). https://doi.org/10.1007/s12648-020-01718-2

    Article  Google Scholar 

  43. Kaur, I., Lata, P.: Effect of hall current on propagation of plane wave in transversely isotropic thermoelastic medium with two temperature and fractional order heat transfer. SN Appl. Sci. (2019). https://doi.org/10.1007/s42452-019-0942-1

    Article  Google Scholar 

  44. Kaur, I., Lata, P.: Transversely isotropic thermoelastic thin circular plate with constant and periodically varying load and heat source. Int. J. Mech. Mater. Eng. (2019). https://doi.org/10.1186/s40712-019-0107-4

    Article  Google Scholar 

  45. Bhatti, M.M., Michaelides, E.E.: Study of Arrhenius activation energy on the thermo-bioconvection nanofluid flow over a Riga plate. J. Therm. Anal. Calorim. (2020). https://doi.org/10.1007/s10973-020-09492-3

    Article  Google Scholar 

  46. Green, A.E., Naghdi, P.M.: On undamped heat waves in an elastic solid. J. Therm. Stress. 15, 253–264 (1992). https://doi.org/10.1080/01495739208946136

    Article  MathSciNet  Google Scholar 

  47. Youssef, H.M., El-Bary, A.A.: Theory of hyperbolic two-temperature generalized thermoelasticity. Mater. Phys. Mech. (2018). https://doi.org/10.18720/MPM.4022018_4

    Article  Google Scholar 

  48. Lata, P., Kaur, I.: Thermomechanical interactions in a transversely isotropic magneto thermoelastic solids with two temperatures and rotation due to time harmonic sources. Coupled Syst. Mech. 8, 219–245 (2019). https://doi.org/10.12989/csm.2019.8.3.219

    Article  Google Scholar 

  49. Youssef, H.M., El-Bary, A.A., Elsibai, K.A.: Vibration of gold nano beam in context of two-temperature generalized thermoelasticity subjected to laser pulse. Lat. Am. J. Solids Struct. 12, 37–59 (2015). https://doi.org/10.1590/s1679-78252014001300008

    Article  Google Scholar 

  50. Rao, S.S.: Vibration of Continuous Systems. John Wiley & sons, New York (2007)

    Google Scholar 

  51. Lifshitz, R., Roukes, M.L.: Thermoelastic damping in micro- and nanomechanical systems. Phys. Rev. B. 61, 5600–5609 (2000). https://doi.org/10.1103/PhysRevB.61.5600

    Article  Google Scholar 

  52. Dhaliwal, R.S., Singh, A.: Dynamic coupled thermoelasticity. Hindustan Publication Corporation, New Delhi (1980)

    Google Scholar 

Download references

Funding

No fund/grant/scholarship has been taken for the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iqbal Kaur.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, I., Lata, P. & Singh, K. Study of frequency shift and thermoelastic damping in transversely isotropic nano-beam with GN III theory and two temperature. Arch Appl Mech 91, 1697–1711 (2021). https://doi.org/10.1007/s00419-020-01848-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-020-01848-3

Keywords

Mathematical Subject Classification

Navigation