Skip to main content
Log in

Stress function and its finite element implementation for elastostatic plain strain orthotropic problems of modified couple stress theory

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this work, the stress function of the orthotropic plane strain problems in the modified couple stress theory (MCST) is first proposed and its polynomial analytical solutions are derived. Then, the stress function is used for developing a new 4-node membrane element for the MCST in that the C1 continuity requirement is satisfied in weak sense using the penalty function method. In the element formulation, the stress function is adopted as the primary parameter for designing element’s stress and couple stress trial functions instead of assuming them directly. Therefore, the deduced stress and couple stress trial functions can satisfy both the equilibrium equations and deformation compatibility equations of the relevant problems a priori. Several numerical tests are examined and the results show that the element has good numerical accuracy and mesh distortion tolerance in simulating the size-dependent behaviors of small-scale orthotropic materials, proving that the usage of analytic trial function in the finite element implementation of the MCST can effectively improve element’s performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data are available on request from the authors.

References

  1. Schmidt, F., Krüger, M., Keip, M.A., Hesch, C.: Computational homogenization of higher-order continua. Int. J. Numer. Meth. Eng. 123(11), 2499–2529 (2022)

    Article  MathSciNet  Google Scholar 

  2. Chen, X., Yvonnet, J., Yao, S., Park, H.S.: Topology optimization of flexoelectric composites using computational homogenization. Comput. Methods Appl. Mech. Eng. 381, 113819 (2021)

    Article  MathSciNet  ADS  Google Scholar 

  3. Zhi, J., Poh, L.H., Tay, T.E., Tan, V.B.C.: Direct FE2 modeling of heterogeneous materials with a micromorphic computational homogenization framework. Comput. Methods Appl. Mech. Eng. 393, 114837 (2022)

    Article  ADS  Google Scholar 

  4. Apostolakis, G., Dargush, G.F.: Size-dependent couple stress natural frequency analysis via a displacement-based variational method for two- and three-dimensional problems. Acta Mech. 234(3), 891–910 (2023)

    Article  MathSciNet  Google Scholar 

  5. Sahrawat, R.K., Duhan, A., Kumar, K.: Study of vibrations in micro-scale piezothermoelastic beam resonator utilizing modified couple stress theory. Acta Mech. 234(8), 3557–3573 (2023)

    Article  MathSciNet  Google Scholar 

  6. Mao, Y.H., Shang, Y., Wang, Y.D.: Non-conforming Trefftz finite element implementation of orthotropic Kirchhoff plate model based on consistent couple stress theory. Acta Mech. 234(5), 1857–1887 (2023)

    Article  MathSciNet  Google Scholar 

  7. Liu, J., Peng, Y.: Phenomenon of sharp change and concise solutions for Timoshenko beam based on modified couple stress theory. Acta Mech. 233(7), 2595–2613 (2022)

    Article  MathSciNet  Google Scholar 

  8. Toupin, R.A.: Elastic materials with couple-stresses. Arch. Ration. Mech. Anal. 11(1), 385–414 (1962)

    Article  MathSciNet  Google Scholar 

  9. Mindlin, R.D., Tiersten, H.F.: Effects of couple-stresses in linear elasticity. Arch. Ration. Mech. Anal. 11(1), 415–448 (1962)

    Article  MathSciNet  Google Scholar 

  10. Koiter, W. (1964). Couple-stress in the theory of elasticity. In: Proc. K. Ned. Akad. Wet (Vol. 67, pp. 17-44). North Holland Pub.

  11. Yang, F., Chong, A.C.M., Lam, D.C.C., Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39(10), 2731–2743 (2002)

    Article  Google Scholar 

  12. Hadjesfandiari, A.R., Dargush, G.F.: Couple stress theory for solids. Int. J. Solids Struct. 48(18), 2496–2510 (2011)

    Article  Google Scholar 

  13. Neff, P., Münch, I., Ghiba, I.D., Madeo, A.: On some fundamental misunderstandings in the indeterminate couple stress model. A comment on recent papers of AR Hadjesfandiari and GF Dargush. Int. J. Solids Struct. 81, 233–243 (2016)

    Article  Google Scholar 

  14. Münch, I., Neff, P., Madeo, A., Ghiba, I.D.: The modified indeterminate couple stress model: Why Yang et al.’s arguments motivating a symmetric couple stress tensor contain a gap and why the couple stress tensor may be chosen symmetric nevertheless. ZAMM-J. Appl. Math. Mech./Zeitschrift für Angewandte Mathematik und Mechanik 97(12), 1524–1554 (2017)

    Article  MathSciNet  ADS  Google Scholar 

  15. Deng, G., Dargush, G.: Mixed convolved Lagrange multiplier variational formulation for size-dependent elastodynamic couple stress response. Acta Mech. 233(5), 1837–1863 (2022)

    Article  MathSciNet  Google Scholar 

  16. Nasiri-Khouzani, H., Salmani-Tehrani, M., Farrokhian, A.: Dynamic stability of smart sandwich nanotubes based on modified couple stress theory using differential quadrature method (DQM). Acta Mech. 234(10), 5147–5170 (2023)

    Article  MathSciNet  Google Scholar 

  17. Wang, S.H., Shang, Y., Qian, Z.H.: Size-dependent analysis of porous multi-directional FG shell structures based on the modified couple stress theory using the unsymmetric finite element method. Acta Mech. 233, 5105–5136 (2022)

    Article  MathSciNet  Google Scholar 

  18. Papanicolopulos, S.A., Zervos, A., Vardoulakis, I.: A three dimensional C1 finite element for gradient elasticity. Int. J. Numer. Meth. Eng. 77(10), 1396–1415 (2009)

    Article  Google Scholar 

  19. Zervos, A., Papanicolopulos, S.A., Vardoulakis, I.: Two finite-element discretizations for gradient elasticity. J. Eng. Mech. 135(3), 203–213 (2009)

    Article  Google Scholar 

  20. Fan, F., Xu, Y., Sahmani, S., Safaei, B.: Modified couple stress-based geometrically nonlinear oscillations of porous functionally graded microplates using NURBS-based isogeometric approach. Comput. Methods Appl. Mech. Eng. 372, 113400 (2020)

    Article  MathSciNet  ADS  Google Scholar 

  21. Kolo, I., Askes, H., de Borst, R.: Convergence analysis of Laplacian-based gradient elasticity in an isogeometric framework. Finite Element Anal. Design 135, 56–67 (2017)

    Article  Google Scholar 

  22. Kolo, I., de Borst, R.: An isogeometric analysis approach to gradient-dependent plasticity. Int. J. Numer. Meth. Eng. 113(2), 296–310 (2018)

    Article  MathSciNet  Google Scholar 

  23. Roque, C., Ferreira, A., Reddy, J.: Analysis of Mindlin micro plates with a modified couple stress theory and a meshless method. Appl. Math. Model. 37(7), 4626–4633 (2013)

    Article  MathSciNet  Google Scholar 

  24. Saitta, S., Luciano, R., Vescovini, R., Fantuzzi, N., Fabbrocino, F.: Optimization of a radial point interpolation meshless strategy for strain gradient nanoplates. Eng. Anal. Boundary Elem. 140, 70–78 (2022)

    Article  MathSciNet  Google Scholar 

  25. Yuan, W., Sze, K.Y.: Eight-node hexahedral elements for gradient elasticity analysis. Int. J. Numer. Meth. Eng. 123(6), 1385–1409 (2022)

    Article  MathSciNet  Google Scholar 

  26. Hadjesfandiari, A.R., Dargush, G.F.: Boundary element formulation for plane problems in couple stress elasticity. Int. J. Numer. Meth. Eng. 89(5), 618–636 (2012)

    Article  MathSciNet  Google Scholar 

  27. Hattori, G., Trevelyan, J., Gourgiotis, P.A.: An isogeometric boundary element formulation for stress concentration problems in couple stress elasticity. Comput. Methods Appl. Mech. Eng. 407, 115932 (2023)

    Article  MathSciNet  ADS  Google Scholar 

  28. Lei, J., Ding, P.S., Zhang, C.Z.: Boundary element analysis of static plane problems in size-dependent consistent couple stress elasticity. Eng. Anal. Boundary Elem. 132, 399–415 (2021)

    Article  MathSciNet  Google Scholar 

  29. Tsinopoulos, S.V., Polyzos, D., Beskos, D.E.: Static and dynamic BEM analysis of strain gradient elastic solids and structures. CMES-Comput. Model. Eng. Sci. 86(2), 113–144 (2012)

    MathSciNet  Google Scholar 

  30. Rodopoulos, D.C., Gortsas, T.V., Tsinopoulos, S.V., Polyzos, D.: Numerical evaluation of strain gradients in classical elasticity through the boundary element method. Eur. J. Mech. A. Solids 86, 104178 (2021)

    Article  MathSciNet  ADS  Google Scholar 

  31. Rodopoulos, D.C., Atluri, S.N., Polyzos, D.: A hybrid FPM/BEM scalar potential formulation for field calculation in nonlinear magnetostatic analysis of superconducting accelerator magnets. Eng. Anal. Boundary Elem. 128, 118–132 (2021)

    Article  MathSciNet  Google Scholar 

  32. Gortsas, T.V., Tsinopoulos, S.V., Polyzos, E., Pyl, L., Fotiadis, D.I., Polyzos, D.: BEM evaluation of surface octahedral strains and internal strain gradients in 3D-printed scaffolds used for bone tissue regeneration. J. Mech. Behav. Biomed. Mater. 125, 104919 (2022)

    Article  CAS  PubMed  Google Scholar 

  33. Karlis, G.F., Tsinopoulos, S.V., Polyzos, D., Beskos, D.E.: Boundary element analysis of mode I and mixed mode (I and II) crack problems of 2-D gradient elasticity. Comput. Methods Appl. Mech. Eng. 196(49), 5092–5103 (2007)

    Article  ADS  Google Scholar 

  34. Choi, J.H., Lee, B.C., Sim, G.D.: Mixed finite elements based on superconvergent patch recovery for strain gradient theory. Comput. Methods Appl. Mech. Eng. 411, 116053 (2023)

    Article  MathSciNet  ADS  Google Scholar 

  35. Pedgaonkar, A., Darrall, B.T., Dargush, G.F.: Mixed displacement and couple stress finite element method for anisotropic centrosymmetric materials. Eur. J. Mech. A. Solids 85, 104074 (2021)

    Article  MathSciNet  ADS  Google Scholar 

  36. Papanicolopulos, S.A., Gulib, F., Marinelli, A.: A novel efficient mixed formulation for strain-gradient models. Int. J. Numer. Meth. Eng. 117(8), 926–937 (2019)

    Article  MathSciNet  Google Scholar 

  37. Chakravarty, S., Hadjesfandiari, A.R., Dargush, G.F.: A penalty-based finite element framework for couple stress elasticity. Finite Elem. Anal. Des. 130, 65–79 (2017)

    Article  Google Scholar 

  38. Garg, N., Han, C.S.: Axisymmetric couple stress elasticity and its finite element formulation with penalty terms. Arch. Appl. Mech. 85(5), 587–600 (2015)

    Article  ADS  Google Scholar 

  39. Wu, H.P., Shang, Y., Cen, S., Li, C.F.: Penalty C0 8-node quadrilateral and 20-node hexahedral elements for consistent couple stress elasticity based on the unsymmetric finite element method. Eng. Anal. Boundary Elem. 147, 302–319 (2023)

    Article  MathSciNet  Google Scholar 

  40. Choi, J.H., Lee, B.C., Sim, G.D.: A 10-node tetrahedral element with condensed Lagrange multipliers for the modified couple stress theory. Comput. Struct. 246, 106476 (2021)

    Article  Google Scholar 

  41. Kwon, Y.R., Lee, B.C.: Three dimensional elements with Lagrange multipliers for the modified couple stress theory. Comput. Mech. 62(1), 97–110 (2018)

    Article  MathSciNet  Google Scholar 

  42. Kwon, Y.R., Lee, B.C.: A mixed element based on Lagrange multiplier method for modified couple stress theory. Comput. Mech. 59(1), 1–12 (2017)

    Article  MathSciNet  Google Scholar 

  43. Sze, K.Y., Wu, Z.H.: Twenty-four-DOF four-node quadrilateral elements for gradient elasticity. Int. J. Numer. Meth. Eng. 119(2), 128–149 (2019)

    Article  MathSciNet  Google Scholar 

  44. Sze, K.Y., Yuan, W.C., Zhou, Y.X.: Four-node tetrahedral elements for gradient-elasticity analysis. Int. J. Numer. Meth. Eng. 121(16), 3660–3679 (2020)

    Article  MathSciNet  Google Scholar 

  45. Liu, G.R., Dai, K.Y., Nguyen, T.T.: A smoothed finite element method for mechanics problems. Comput. Mech. 39(6), 859–877 (2007)

    Article  Google Scholar 

  46. Taylor, R.L., Beresford, P.J., Wilson, E.L.: A non-conforming element for stress analysis. Int. J. Numer. Meth. Eng. 10(6), 1211–1219 (1976)

    Article  Google Scholar 

  47. Tang, L., Liu, Y.: Quasi-conforming element techniques for penalty finite element methods. Finite Elem. Anal. Des. 1(1), 25–33 (1985)

    Article  Google Scholar 

  48. Rajendran, S., Liew, K.: A novel unsymmetric 8-node plane element immune to mesh distortion under a quadratic displacement field. Int. J. Numer. Meth. Eng. 58(11), 1713–1748 (2003)

    Article  Google Scholar 

  49. Jirousek, J.: Improvement of computational-efficiency of the 9-DOF triangular hybrid-Trefftz plate bending element. Int. J. Numer. Meth. Eng. 23(11), 2167–2168 (1986)

    Article  MathSciNet  Google Scholar 

  50. Cen, S., Fu, X.R., Zhou, M.J.: 8- and 12-node plane hybrid stress-function elements immune to severely distorted mesh containing elements with concave shapes. Comput. Methods Appl. Mech. Eng. 200(29), 2321–2336 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  51. Cen, S., Fu, X.R., Zhou, G.H., Zhou, M.J., Li, C.F.: Shape-free finite element method: the plane hybrid stress-function (HS-F) element method for anisotropic materials. Sci. China Phys., Mech. Astro. 54(4), 653–665 (2011)

    Article  ADS  Google Scholar 

  52. Cen, S., Zhou, M.J., Fu, X.R.: A 4-node hybrid stress-function (HS-F) plane element with drilling degrees of freedom less sensitive to severe mesh distortions. Comput. Struct. 89(5), 517–528 (2011)

    Article  Google Scholar 

  53. Zhou, M.J., Cen, S., Bao, Y., Li, C.F.: A quasi-static crack propagation simulation based on shape-free hybrid stress-function finite elements with simple remeshing. Comput. Methods Appl. Mech. Eng. 275, 159–188 (2014)

    Article  ADS  Google Scholar 

  54. Wu, C.J., Cen, S., Ma, R.X., Li, C.F.: Shape-free arbitrary polygonal hybrid stress/displacement-function flat shell element for linear and geometrically nonlinear analyzes. Int. J. Numer. Meth. Eng. 122(16), 4172–4218 (2021)

    Article  Google Scholar 

  55. Fu, X.R., Cen, S., Li, C., Chen, X.M.: Analytical trial function method for development of new 8-node plane element based on the variational principle containing Airy stress function. Eng. Comput. 27(4), 442–463 (2010)

    Article  Google Scholar 

  56. Wang, C.S., Zhang, X.K., Hu, P.: A 4-node quasi-conforming quadrilateral element for couple stress theory immune to distorted mesh. Comput. Struct. 175, 52–64 (2016)

    Article  Google Scholar 

  57. Wang, C.S., Zhang, X.K., Hu, P.: Assumed stress quasi-conforming triangular element for couple stress theory. Acta Mech. Solida Sin. 30(4), 335–344 (2017)

    Article  Google Scholar 

  58. Shang, Y., Qian, Z.H., Cen, S., Li, C.F.: A simple unsymmetric 4-node 12-DOF membrane element for the modified couple stress theory. Int. J. Numer. Meth. Eng. 119(9), 807–825 (2019)

    Article  MathSciNet  Google Scholar 

  59. Garg, N., Han, C.S.: A penalty finite element approach for couple stress elasticity. Comput. Mech. 52(3), 709–720 (2013)

    Article  MathSciNet  Google Scholar 

  60. Mindlin, R.D.: Influence of couple-stresses on stress concentrations. Exp. Mech. 3(1), 1–7 (1963)

    Article  MathSciNet  Google Scholar 

  61. Choi, J.H., Lee, B.C.: A three-node C0 triangular element for the modified couple stress theory based on the smoothed finite element method. Int. J. Numer. Meth. Eng. 114(12), 1245–1261 (2018)

    Article  Google Scholar 

  62. Tsiatas, G.C., Yiotis, A.J.: Size effect on the static, dynamic and buckling analysis of orthotropic Kirchhoff-type skew micro-plates based on a modified couple stress theory: comparison with the nonlocal elasticity theory. Acta Mech. 226(4), 1267–1281 (2015)

    Article  MathSciNet  Google Scholar 

  63. Geyer, S., Groenwold, A.A.: Two hybrid stress membrane finite element families with drilling rotations. Int. J. Numer. Meth. Eng. 53(3), 583–601 (2002)

    Article  Google Scholar 

  64. Soh, A.K., Chen, W.J.: Finite element formulations of strain gradient theory for microstructures and the C0–1 patch test. Int. J. Numer. Meth. Eng. 61(3), 433–454 (2004)

    Article  Google Scholar 

  65. Razzaque, A.: The patch test for elements. Int. J. Numer. Meth. Eng. 22(1), 63–71 (1986)

    Article  MathSciNet  Google Scholar 

  66. Taylor, R.L., Simo, J.C., Zienkiewicz, O.C., Chan, A.C.H.: The patch test-a condition for assessing FEM convergence. Int. J. Numer. Meth. Eng. 22(1), 39–62 (1986)

    Article  MathSciNet  Google Scholar 

  67. Belytschko, T., Lasry, D.: A fractal patch test. Int. J. Numer. Meth. Eng. 26(10), 2199–2210 (1988)

    Article  MathSciNet  Google Scholar 

  68. Dehrouyeh-Semnani, A.M., Nikkhah-Bahrami, M.: A discussion on evaluation of material length scale parameter based on micro-cantilever test. Compos. Struct. 122, 425–429 (2015)

    Article  Google Scholar 

  69. R.D. Cook, D.S. Malkus, M.E. Plesha, R.J. Witt, (2007) Concepts and Applications of Finite Element Analysis, John Wiley & Sons

Download references

Acknowledgements

The authors would like to thank for the financial supports from the National Natural Science Foundation of China (12072154, 12372197) and the Fundamental Research Funds for the Central Universities (ns2022006).

Funding

The Funding was provided by National Natural Science Foundation of China, 12072154, Yan Shang,12372197, Song Cen, Fundamental Research Funds for the Central Universities, ns2022006, Yan Shang

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Shang.

Ethics declarations

Conflict of interest

The authors state that there is no potential conflict of interest in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

As previously discussed, the stress function for the isotropic plane strain problems of the MCST can also be obtained by the degeneration of Mindlin’s stress functions which are proposed for the TMK-CST [60]. In Mindlin’s development [60], the stresses and couple stresses can be derived from two stress functions \(\phi^{\prime}\) and \(\psi^{\prime}\):

$$\sigma_{x} = \frac{{\partial^{2} \phi^{\prime}}}{{\partial y^{2} }} - \frac{{\partial^{2} \psi^{\prime}}}{\partial x\partial y},\;\;\;\sigma_{y} = \frac{{\partial^{2} \phi^{\prime}}}{{\partial x^{2} }} + \frac{{\partial^{2} \psi^{\prime}}}{\partial x\partial y}$$
(68)
$$\sigma_{xy} = - \frac{{\partial^{2} \phi^{\prime}}}{\partial x\partial y} - \frac{{\partial^{2} \psi^{\prime}}}{{\partial y^{2} }},\;\;\;\sigma_{yx} = - \frac{{\partial^{2} \phi^{\prime}}}{\partial x\partial y} + \frac{{\partial^{2} \psi^{\prime}}}{{\partial x^{2} }}$$
(69)
$$m_{xz} = \frac{{\partial \psi^{\prime}}}{\partial x},\;\;\;m_{yz} = \frac{{\partial \psi^{\prime}}}{\partial y}$$
(70)

in which \(\phi^{\prime}\) and \(\psi^{\prime}\) should satisfy

$$\frac{\partial }{\partial x}\left( {l^{2} \nabla^{2} \psi^{\prime} - \psi^{\prime}} \right) = 2\left( {1 - \nu } \right)l^{2} \frac{\partial }{\partial y}\left( {\nabla^{2} \phi^{\prime}} \right)$$
(71)
$$\frac{\partial }{\partial y}\left( {l^{2} \nabla^{2} \psi^{\prime} - \psi^{\prime}} \right) = - 2\left( {1 - \nu } \right)l^{2} \frac{\partial }{\partial x}\left( {\nabla^{2} \phi^{\prime}} \right)$$
(72)
$$\nabla^{4} \phi^{\prime} = 0,\;\;\;l^{2} \nabla^{4} \psi^{\prime} - \nabla^{2} \psi^{\prime} = 0$$
(73)

Considering the difference in the definition of the material length scale parameter l between the MCST and TMK-CST, Eqs. (71), (72) and (73) change into the following expressions for the MCST, respectively:

$$\frac{\partial }{\partial x}\left( {\frac{1}{4}l^{2} \nabla^{2} \psi^{\prime} - \psi^{\prime}} \right) = \frac{1}{2}\left( {1 - \nu } \right)l^{2} \frac{\partial }{\partial y}\left( {\nabla^{2} \phi^{\prime}} \right)$$
(74)
$$\frac{\partial }{\partial y}\left( {\frac{1}{4}l^{2} \nabla^{2} \psi^{\prime} - \psi^{\prime}} \right) = - \frac{1}{2}\left( {1 - \nu } \right)l^{2} \frac{\partial }{\partial x}\left( {\nabla^{2} \phi^{\prime}} \right)$$
(75)
$$\nabla^{4} \phi^{\prime} = 0,\;\;\frac{1}{4}l^{2} \nabla^{4} \psi^{\prime} - \nabla^{2} \psi^{\prime} = 0$$
(76)

It can be seen from Eq. (69) that the stress tensor in the TMK-CST is asymmetric. But in the MCST, the stress tensor is symmetric. By imposing the constraint \(\sigma_{xy} = \sigma_{yx}\) to Eq. (69), we can get

$$\nabla^{2} \psi^{\prime} = 0$$
(77)

and accordingly, Eqs. (74), (75) and (76) can be rewritten as

$$\frac{{\partial \psi^{\prime}}}{\partial x} = - \frac{1}{2}\left( {1 - \nu } \right)l^{2} \frac{\partial }{\partial y}\left( {\nabla^{2} \phi^{\prime}} \right)$$
(78)
$$\frac{{\partial \psi^{\prime}}}{\partial y} = \frac{1}{2}\left( {1 - \nu } \right)l^{2} \frac{\partial }{\partial x}\left( {\nabla^{2} \phi^{\prime}} \right)$$
(79)
$$\nabla^{4} \phi^{\prime} = 0$$
(80)

Thus, the relationships between the stresses, couple stresses and the stress function for the isotropic plane strain problems of the MCST are derived by inserting Eqs. (78) and (79) back into Eqs. (68), (69) and (70):

$$\sigma_{x} = \frac{{\partial^{2} \phi^{\prime}}}{{\partial y^{2} }} + \frac{1}{2}\left( {1 - \nu } \right)l^{2} \frac{{\partial^{2} }}{{\partial y^{2} }}\left( {\nabla^{2} \phi^{\prime}} \right),\;\;\;\sigma_{y} = \frac{{\partial^{2} \phi^{\prime}}}{{\partial x^{2} }} - \frac{1}{2}\left( {1 - \nu } \right)l^{2} \frac{{\partial^{2} }}{{\partial y^{2} }}\left( {\nabla^{2} \phi^{\prime}} \right)$$
(81)
$$\sigma_{xy} = \sigma_{yx} = - \frac{{\partial^{2} \phi^{\prime}}}{\partial x\partial y} - \frac{1}{2}\left( {1 - \nu } \right)l^{2} \frac{{\partial^{2} }}{\partial x\partial y}\left( {\nabla^{2} \phi^{\prime}} \right)$$
(82)
$$m_{xz} = - \frac{1}{2}\left( {1 - \nu } \right)l^{2} \frac{\partial }{\partial y}\left( {\nabla^{2} \phi^{\prime}} \right),\;\;\;m_{yz} = \frac{1}{2}\left( {1 - \nu } \right)l^{2} \frac{\partial }{\partial x}\left( {\nabla^{2} \phi^{\prime}} \right)$$
(83)

in which \(\phi^{\prime}\) needs to satisfy Eq. (80).

Finally, it can be easily proved that the above relations are equivalent to those given in Eqs. (15), (30) and (31) in Sect. 2.2, although they have different expressions. For the given deformation state determined by a stress function \(\phi^{\prime}\) in accordance with Eqs. (81) to (83), we can find one stress function \(\phi\) to describe it in accordance with Eqs. (15), (30) and (31) in Sect. 2.2:

$$\phi = \phi^{\prime} + \frac{1}{2}\left( {1 - \nu } \right)l^{2} \nabla^{2} \phi^{\prime}$$
(84)

More specifically, if \(\phi^{\prime}\) is the linear combination of the polynomials that can satisfy Eq. (80) and guarantee the completeness of fourth order as follows:

$$\begin{gathered} \phi^{\prime} = a_{1} x^{2} + a_{2} xy + a_{3} y^{2} + a_{4} x^{3} + a_{5} x^{2} y + a_{6} xy^{2} + a_{7} y^{3} + a_{8} x^{3} y \\ + a_{9} xy^{3} + a_{10} \left( {x^{4} - y^{4} } \right) + a_{11} \left( {6x^{2} y^{2} - x^{4} - y^{4} } \right) \\ \end{gathered}$$
(85)

\(\phi\) takes the coming form according to Eq. (84):

$$\begin{gathered} \phi = \left( {a_{1} + 6\eta a_{10} } \right)x^{2} + \left( {a_{2} + 3\eta a_{8} + 3\eta a_{9} } \right)xy + \left( {a_{3} - 6\eta a_{10} } \right)y^{2} + a_{4} x^{3} + a_{5} x^{2} y \\ + a_{6} xy^{2} + a_{7} y^{3} + a_{8} x^{3} y + a_{9} xy^{3} + a_{10} \left( {x^{4} - y^{4} } \right) + a_{11} \left( {6x^{2} y^{2} - x^{4} - y^{4} } \right) \\ \end{gathered}$$
(86)

with

$$\eta = \left( {1 - \nu } \right)l^{2}$$
(87)

Alternatively, Eq. (86) can be expressed as

$$\begin{gathered} \phi = b_{1} x^{2} + b_{2} xy + b_{3} y^{2} + b_{4} x^{3} + b_{5} x^{2} y + b_{6} xy^{2} + b_{7} y^{3} + b_{8} x^{3} y \\ + b_{9} xy^{3} + b_{10} \left( {x^{4} - y^{4} } \right) + b_{11} \left( {6x^{2} y^{2} - x^{4} - y^{4} } \right) \\ \end{gathered}$$
(88)

Note that the constant and linear terms have been ignored in Eq. (86) because they don’t produce stress and couple stress. As could be seen from Eqs. (85) and (88), the two functions \(\phi\) and \(\phi^{\prime}\) are actually made up of the same polynomials, but with different coefficients.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shang, Y., Liu, SX. & Cen, S. Stress function and its finite element implementation for elastostatic plain strain orthotropic problems of modified couple stress theory. Acta Mech (2024). https://doi.org/10.1007/s00707-024-03864-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00707-024-03864-8

Navigation