Skip to main content
Log in

Thermal vibration and buckling analysis of magneto-electro-elastic functionally graded porous higher-order nanobeams using nonlocal strain gradient theory

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this paper, free vibration analysis and temperature-dependent buckling behavior of porous functionally graded magneto-electro-thermo-elastic material consisting of cobalt ferrite and barium titanate were modeled and analyzed. A high-order sinusoidal shear deformation theory was used to accurately model the anisotropic material behavior. The study examined the porosity role variation across thickness in the buckling and free vibration behavior of nanobeams, as well as the effects of magneto-electro-elastic coupling, thermal stresses, nonlocal properties, externally applied electric and magnetic field potential, and porosity volume fraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Ebrahimi, F., Rastgo, A.: An analytical study on the free vibration of smart circular thin FGM plate based on classical plate theory. Thin-Walled Struct. 46, 1402–1408 (2008). https://doi.org/10.1016/j.tws.2008.03.008

    Article  Google Scholar 

  2. Esen, I., Özmen, R.: Free and forced thermomechanical vibration and buckling responses of functionally graded magneto-electro-elastic porous nanoplates. Mech. Based Des. Struct. Mach. (2022). https://doi.org/10.1080/15397734.2022.2152045

    Article  Google Scholar 

  3. Eringen, A.C., Edelen, D.G.B.: On nonlocal elasticity. Int. J. Eng. Sci. 10, 233–248 (1972). https://doi.org/10.1016/0020-7225(72)90039-0

    Article  MathSciNet  Google Scholar 

  4. Yang, F., Chong, A.C.M., Lam, D.C.C., Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39, 2731–2743 (2002). https://doi.org/10.1016/S0020-7683(02)00152-X

    Article  Google Scholar 

  5. Akgöz, B., Civalek, Ö.: Longitudinal vibration analysis for microbars based on strain gradient elasticity theory. J. Vib. Control 20, 606–616 (2014). https://doi.org/10.1177/1077546312463752

    Article  MathSciNet  Google Scholar 

  6. Kong, S., Zhou, S., Nie, Z., Wang, K.: The size-dependent natural frequency of Bernoulli-Euler micro-beams. Int. J. Eng. Sci. 46, 427–437 (2008). https://doi.org/10.1016/j.ijengsci.2007.10.002

    Article  CAS  Google Scholar 

  7. Lim, C.W., Zhang, G., Reddy, J.N.: A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. J. Mech. Phys. Solids 78, 298–313 (2015). https://doi.org/10.1016/j.jmps.2015.02.001

    Article  ADS  MathSciNet  Google Scholar 

  8. Apuzzo, A., Barretta, R., Faghidian, S.A., Luciano, R., Marotti de Sciarra, F.: Nonlocal strain gradient exact solutions for functionally graded inflected nano-beams. Compos. B Eng. 164, 667–674 (2019). https://doi.org/10.1016/j.compositesb.2018.12.112

  9. Esen, I., Abdelrhmaan, A.A., Eltaher, M.A.: Free vibration and buckling stability of FG nanobeams exposed to magnetic and thermal fields. Eng. Comput. (2021). https://doi.org/10.1007/s00366-021-01389-5

    Article  Google Scholar 

  10. Esen, I.: Response of a micro-capillary system exposed to a moving mass in magnetic field using nonlocal strain gradient theory. Int. J. Mech. Sci. 188, 105937 (2020). https://doi.org/10.1016/j.ijmecsci.2020.105937

    Article  Google Scholar 

  11. Sladek, J., Sladek, V., Hrcek, S., Pan, E.: The nonlocal and gradient theories for a large deformation of piezoelectric nanoplates. Compos. Struct. 172, 119–129 (2017). https://doi.org/10.1016/j.compstruct.2017.03.080

    Article  Google Scholar 

  12. Abdelrahman, A.A., Esen, I., Daikh, A.A., Eltaher, M.A.: Dynamic analysis of FG nanobeam reinforced by carbon nanotubes and resting on elastic foundation under moving load. Mech. Based Des. Struct. Mach. (2021). https://doi.org/10.1080/15397734.2021.1999263

    Article  Google Scholar 

  13. Eringen, A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54, 4703–4710 (1983). https://doi.org/10.1063/1.332803

    Article  ADS  Google Scholar 

  14. Ebrahimi, F., Barati, M.R.: Buckling analysis of smart size-dependent higher order magneto-electro-thermo-elastic functionally graded nanosize beams. J. Mech. 33, 23–33 (2017). https://doi.org/10.1017/jmech.2016.46

    Article  Google Scholar 

  15. Zhong, R., Qin, B., Wang, Q., Shao, W., Shuai, C.: Investigation on flutter instability of magnetic-electric-thermo-elastic functionally graded plates in the supersonic airflow with any yawed angle. Int. J. Mech. Sci. (2021). https://doi.org/10.1016/j.ijmecsci.2021.106356

    Article  Google Scholar 

  16. Akgöz, B., Civalek, Ö.: Thermo-mechanical buckling behavior of functionally graded microbeams embedded in elastic medium. Int. J. Eng. Sci. 85, 90–104 (2014). https://doi.org/10.1016/j.ijengsci.2014.08.011

    Article  Google Scholar 

  17. Akgöz, B., Civalek, Ö.: A novel microstructure-dependent shear deformable beam model. Int. J. Mech. Sci. 99, 10–20 (2015). https://doi.org/10.1016/j.ijmecsci.2015.05.003

    Article  Google Scholar 

  18. Akgöz, B., Civalek, Ö.: A size-dependent beam model for stability of axially loaded carbon nanotubes surrounded by Pasternak elastic foundation. Compos. Struct. 176, 1028–1038 (2017). https://doi.org/10.1016/j.compstruct.2017.06.039

    Article  Google Scholar 

  19. Roque, C.M.C., Ferreira, A.J.M., Reddy, J.N.: Analysis of Timoshenko nanobeams with a nonlocal formulation and meshless method. Int. J. Eng. Sci. 49, 976–984 (2011). https://doi.org/10.1016/j.ijengsci.2011.05.010

    Article  Google Scholar 

  20. Xu, X.J., Wang, X.C., Zheng, M.L., Ma, Z.: Bending and buckling of nonlocal strain gradient elastic beams. Compos. Struct. 160, 366–377 (2017). https://doi.org/10.1016/j.compstruct.2016.10.038

    Article  Google Scholar 

  21. Li, L., Hu, Y.: Buckling analysis of size-dependent nonlinear beams based on a nonlocal strain gradient theory. Int. J. Eng. Sci. 97, 84–94 (2015). https://doi.org/10.1016/j.ijengsci.2015.08.013

    Article  MathSciNet  Google Scholar 

  22. Nematollahi, M.S., Mohammadi, H., Nematollahi, M.A.: Thermal vibration analysis of nanoplates based on the higher-order nonlocal strain gradient theory by an analytical approach. Superlattices Microstruct. 111, 944–959 (2017). https://doi.org/10.1016/j.spmi.2017.07.055

    Article  ADS  CAS  Google Scholar 

  23. Karami, B., Janghorban, M., Rabczuk, T.: Static analysis of functionally graded anisotropic nanoplates using nonlocal strain gradient theory. Compos. Struct. 227, 111249 (2019). https://doi.org/10.1016/j.compstruct.2019.111249

    Article  Google Scholar 

  24. Żur, K.K., Arefi, M., Kim, J., Reddy, J.N.: Free vibration and buckling analyses of magneto-electro-elastic FGM nanoplates based on nonlocal modified higher-order sinusoidal shear deformation theory. Compos. B Eng. (2020). https://doi.org/10.1016/j.compositesb.2019.107601

    Article  Google Scholar 

  25. Pradhan, S.C., Phadikar, J.K.: Nonlocal elasticity theory for vibration of nanoplates. J. Sound Vib. 325, 206–223 (2009). https://doi.org/10.1016/j.jsv.2009.03.007

    Article  ADS  Google Scholar 

  26. Monaco, G.T., Fantuzzi, N., Fabbrocino, F., Luciano, R.: Trigonometric solution for the bending analysis of magneto-electro-elastic strain gradient nonlocal nanoplates in hygro-thermal environment. Mathematics (2021). https://doi.org/10.3390/math9050567

    Article  Google Scholar 

  27. Farajpour, A., Hairi Yazdi, M.R., Rastgoo, A., Loghmani, M., Mohammadi, M.: Nonlocal nonlinear plate model for large amplitude vibration of magneto-electro-elastic nanoplates. Compos. Struct. 140, 323–336 (2016). https://doi.org/10.1016/j.compstruct.2015.12.039

    Article  Google Scholar 

  28. Arefi, M., Zenkour, A.M.: Size-dependent free vibration and dynamic analyses of piezo-electro-magnetic sandwich nanoplates resting on viscoelastic foundation. Phys. B Condens. Matter. 521, 188–197 (2017). https://doi.org/10.1016/j.physb.2017.06.066

    Article  ADS  CAS  Google Scholar 

  29. Li, L., Li, X., Hu, Y.: Free vibration analysis of nonlocal strain gradient beams made of functionally graded material. Int. J. Eng. Sci. 102, 77–92 (2016). https://doi.org/10.1016/j.ijengsci.2016.02.010

    Article  Google Scholar 

  30. Chen, Y., Ye, T., Jin, G., Li, S., Yang, C.: Vibration analysis of rotating pretwist FG sandwich blades operating in thermal environment. Int. J. Mech. Sci. 205, 106596 (2021). https://doi.org/10.1016/j.ijmecsci.2021.106596

    Article  Google Scholar 

  31. Bagheri, E., Asghari, M., Kargarzadeh, A., Badiee, M.: Small-scale oriented elasticity modeling of functionally graded rotating micro-disks with varying angular velocity in the context of the strain gradient theory. Acta Mech. 232, 2395–2416 (2021). https://doi.org/10.1007/s00707-021-02945-2

    Article  MathSciNet  Google Scholar 

  32. Albas, ŞD., Ersoy, H., Akgöz, B., Civalek, Ö.: Dynamic analysis of a fiber-reinforced composite beam under a moving load by the ritz method. Mathematics (2021). https://doi.org/10.3390/math9091048

    Article  Google Scholar 

  33. Civalek, Ö., Uzun, B., Yaylı, M.Ö.: An effective analytical method for buckling solutions of a restrained FGM nonlocal beam. Comput. Appl. Math. 41, 1–20 (2022). https://doi.org/10.1007/s40314-022-01761-1

    Article  MathSciNet  Google Scholar 

  34. Xu, Y., Wei, P., Zhao, L.: Flexural waves in nonlocal strain gradient high-order shear beam mounted on fractional-order viscoelastic Pasternak foundation. Acta Mech. 233, 4101–4118 (2022). https://doi.org/10.1007/s00707-022-03334-z

    Article  MathSciNet  Google Scholar 

  35. Li, G.E., Kuo, H.Y.: Effects of strain gradient and electromagnetic field gradient on potential and field distributions of multiferroic fibrous composites. Acta. Mech. 232, 1353–1378 (2021). https://doi.org/10.1007/s00707-020-02910-5

    Article  MathSciNet  Google Scholar 

  36. Abouelregal, A.E., Akgöz, B., Civalek, O.: Magneto-thermoelastic interactions in an unbounded orthotropic viscoelastic solid under the Hall current effect by the fourth-order Moore-Gibson-Thompson equation. Comput. Math. Appl. 141, 102–115 (2023). https://doi.org/10.1016/j.camwa.2023.04.001

    Article  MathSciNet  Google Scholar 

  37. Akgöz, B., Civalek, Ö.: Bending analysis of embedded carbon nanotubes resting on an elastic foundation using strain gradient theory. Acta Astronaut. 119, 1–12 (2016). https://doi.org/10.1016/j.actaastro.2015.10.021

    Article  ADS  CAS  Google Scholar 

  38. Demir, Ç., Mercan, K., Numanoglu, H.M., Civalek, Ö.: Bending response of nanobeams resting on elastic foundation. J. Appl. Comput. Mech. 4, 105–114 (2018). https://doi.org/10.22055/jacm.2017.22594.1137

  39. Liu, G., Wu, S., Shahsavari, D., Karami, B., Tounsi, A.: Dynamics of imperfect inhomogeneous nanoplate with exponentially-varying properties resting on viscoelastic foundation. Eur. J. Mech. A/Solids. 95, 104649 (2022). https://doi.org/10.1016/j.euromechsol.2022.104649

    Article  ADS  MathSciNet  Google Scholar 

  40. Cuong-Le, T., Nguyen, K.D., Le-Minh, H., Phan-Vu, P., Nguyen-Trong, P., Tounsi, A.: Nonlinear bending analysis of porous sigmoid FGM nanoplate via IGA and nonlocal strain gradient theory. Adv. Nano Res. 12, 441–455 (2022). https://doi.org/10.12989/anr.2022.12.5.441

    Article  Google Scholar 

  41. Kumar, Y., Gupta, A., Tounsi, A.: Size-dependent vibration response of porous graded nanostructure with FEM and nonlocal continuum model. Adv. Nano Res. 11, 1–17 (2021). https://doi.org/10.12989/anr.2021.11.1.001

    Article  Google Scholar 

  42. Addou, F.Y., Bourada, F., Meradjah, M., Bousahla, A.A., Tounsi, A., Ghazwani, M.H., Alnujaie, A.: Impact of porosity distribution on static behavior of functionally graded plates using a simple quasi-3D HSDT. Comput. Concr. 32, 87–97 (2023)

    Google Scholar 

  43. Alsubaie, A.M., Alfaqih, I., Al-Osta, M.A., Tounsi, A., Chikh, A., Mudhaffar, I.M., Tahir, S.: Porosity-dependent vibration investigation of functionally graded carbon nanotube-reinforced composite beam. Comput. Concr. 32, 75–85 (2023)

    Google Scholar 

  44. Bourada, F., Bousahla, A.A., Tounsi, A., Tounsi, A., Tahir, S.I., Al-Osta, M.A., Do-Van, T.: An integral quasi-3D computational model for the hygro-thermal wave propagation of imperfect FGM sandwich plates. Comput. Concr. 32, 61–74 (2023)

    Google Scholar 

  45. Khorasani, M., Lampani, L., Tounsi, A.: A refined vibrational analysis of the FGM porous type beams resting on the silica aerogel substrate. Steel Compos. Struct. 47, 633–644 (2023). https://doi.org/10.12989/scs.2023.47.5.633

    Article  Google Scholar 

  46. Mesbah, A., Belabed, Z., Amara, K., Tounsi, A., Bousahla, A.A., Bourada, F.: Formulation and evaluation a finite element model for free vibration and buckling behaviours of functionally graded porous (FGP) beams. Struct. Eng. Mech. 86, 291–309 (2023). https://doi.org/10.12989/sem.2023.86.3.291

    Article  Google Scholar 

  47. Xia, L., Wang, R.W., Chen, G.C., Asemi, K., Tounsi, A.: The finite element method for dynamics of FG porous truncated conical panels reinforced with graphene platelets based on the 3 3-D elasticity. Adv. Nano Res. 14, 375–389 (2023). https://doi.org/10.12989/anr.2023.14.4.375

    Article  Google Scholar 

  48. Hadji, M., Bouhadra, A., Mamen, B., Menasria, A.: Combined influence of porosity and elastic foundation parameters on the bending behavior of advanced sandwich structures. Steel Compos. Struct. 46, 1–13 (2023)

    Google Scholar 

  49. Katiyar, V., Gupta, A., Tounsi, A.: Microstructural/geometric imperfection sensitivity on the vibration response of geometrically discontinuous bi-directional functionally graded plates (2D-FGPs) with partial supports by using FEM. Steel Compos. Struct. 35, 621–640 (2022). https://doi.org/10.12989/scs.2022.45.5.621

    Article  Google Scholar 

  50. Van Vinh, P., Van Chinh, N., Tounsi, A.: Static bending and buckling analysis of bi-directional functionally graded porous plates using an improved first-order shear deformation theory and FEM. Eur. J. Mech. A/Solids. 96, 104743 (2022). https://doi.org/10.1016/j.euromechsol.2022.104743

    Article  ADS  MathSciNet  Google Scholar 

  51. Arshid, E., Khorasani, M., Soleimani-Javid, Z., Amir, S., Tounsi, A.: Porosity-dependent vibration analysis of FG microplates embedded by polymeric nanocomposite patches considering hygrothermal effect via an innovative plate theory. Eng. Comput. 38, 4051–4072 (2022). https://doi.org/10.1007/s00366-021-01382-y

    Article  Google Scholar 

  52. Al-Osta, M.A., Saidi, H., Tounsi, A., Al-Dulaijan, S.U., Al-Zahrani, M.M., Sharif, A., Tounsi, A.: Influence of porosity on the hygro-thermo-mechanical bending response of an AFG ceramic-metal plates using an integral plate model. Smart Struct. Syst. 28, 499–513 (2021). https://doi.org/10.12989/sss.2021.28.4.499

    Article  Google Scholar 

  53. Bellifa, H., Selim, M.M., Chikh, A., Bousahla, A.A., Bourada, F., Tounsi, A., Benrahou, K.H., Al-Zahrani, M.M., Tounsi, A.: Influence of porosity on thermal buckling behavior of functionally graded beams. Smart Struct. Syst. 27, 719–728 (2021). https://doi.org/10.12989/sss.2021.27.4.719

    Article  Google Scholar 

  54. Bekkaye, T.H.L., Fahsi, B., Bousahla, A.A., Bourada, F., Tounsi, A., Benrahou, K.H., Tounsi, A., Al-Zahrani, M.M.: Porosity-dependent mechanical behaviors of FG plate using refined trigonometric shear deformation theory. Comput. Concr. 26, 439–450 (2020). https://doi.org/10.12989/cac.2020.26.5.439

    Article  Google Scholar 

  55. Cheshmeh, E., Karbon, M., Eyvazian, A., Jung, D. won, Habibi, M., Safarpour, M.: Buckling and vibration analysis of FG-CNTRC plate subjected to thermo-mechanical load based on higher order shear deformation theory. Mech. Based Des. Struct. Mach. 50, 1137–1160 (2022). https://doi.org/10.1080/15397734.2020.1744005

  56. Esen, I., Özmen, R.: Thermal vibration and buckling of magneto-electro-elastic functionally graded porous nanoplates using nonlocal strain gradient elasticity. Compos. Struct. (2022). https://doi.org/10.1016/j.compstruct.2022.115878

    Article  Google Scholar 

  57. Vaezi, M., Shirbani, M.M., Hajnayeb, A.: Free vibration analysis of magneto-electro-elastic microbeams subjected to magneto-electric loads. Phys. E Low-Dimension. Syst. Nanostruct. 75, 280–286 (2016). https://doi.org/10.1016/j.physe.2015.09.019

    Article  ADS  CAS  Google Scholar 

  58. Toro, R.D., Bacigalupo, A., Lepidi, M., Mazzino, A.: Dispersive waves in magneto-electro-elastic periodic waveguides. Int. J. Mech. Sci. 236, 107759 (2022). https://doi.org/10.1016/j.ijmecsci.2022.107759

    Article  Google Scholar 

  59. Dat, N.D., Quan, T.Q., Mahesh, V., Duc, N.D.: Analytical solutions for nonlinear magneto-electro-elastic vibration of smart sandwich plate with carbon nanotube reinforced nanocomposite core in hygrothermal environment. Int. J. Mech. Sci. 186, 105906 (2020). https://doi.org/10.1016/j.ijmecsci.2020.105906

    Article  Google Scholar 

  60. Ke, L.L., Wang, Y.S., Wang, Z.D.: Thermal effect on free vibration and buckling of size-dependent microbeams. Phys. E Low-Dimension. Syst. Nanostruct. 43, 1387–1393 (2011). https://doi.org/10.1016/j.physe.2011.03.009

    Article  ADS  CAS  Google Scholar 

  61. Eltaher, M.A., Emam, S.A., Mahmoud, F.F.: Free vibration analysis of functionally graded size-dependent nanobeams. Appl. Math. Comput. 218, 7406–7420 (2012). https://doi.org/10.1016/j.amc.2011.12.090

    Article  MathSciNet  Google Scholar 

  62. Monaco, G.T., Fantuzzi, N., Fabbrocino, F., Luciano, R.: Critical temperatures for vibrations and buckling of magneto-electro-elastic nonlocal strain gradient plates. Nanomaterials 11, 1–18 (2021). https://doi.org/10.3390/nano11010087

    Article  CAS  Google Scholar 

  63. Chen, B., Xu, Q., Zhu, B., Yang, Y., Li, Y.: Buckling and postbuckling behaviors of symmetric/asymmetric double-beam systems. Int. J. Mech. Sci. (2022). https://doi.org/10.1016/j.ijmecsci.2022.107712

    Article  Google Scholar 

  64. Daghigh, H., Daghigh, V., Milani, A., Tannant, D., Lacy, T.E., Reddy, J.N.: Nonlocal bending and buckling of agglomerated CNT-Reinforced composite nanoplates. Compos. B Eng. 183, 107716 (2020). https://doi.org/10.1016/j.compositesb.2019.107716

    Article  CAS  Google Scholar 

  65. Boyina, K., Piska, R., Natarajan, S.: Nonlocal strain gradient model for thermal buckling analysis of functionally graded nanobeams. Acta Mech. (2023). https://doi.org/10.1007/s00707-023-03637-9

    Article  MathSciNet  Google Scholar 

  66. Quan, T.Q., Dat, N.D., Duc, N.D.: Static buckling, vibration analysis and optimization of nanocomposite multilayer perovskite solar cell. Acta Mech. 234, 3893–3915 (2023). https://doi.org/10.1007/s00707-023-03588-1

    Article  MathSciNet  Google Scholar 

  67. Kiran, M.C., Kattimani, S.C.: Assessment of porosity influence on vibration and static behaviour of functionally graded magneto-electro-elastic plate: A finite element study. Eur. J. Mech. A/Solids. 71, 258–277 (2018). https://doi.org/10.1016/j.euromechsol.2018.04.006

    Article  ADS  MathSciNet  Google Scholar 

  68. Liu, J., Zhang, P., Lin, G., Wang, W., Lu, S.: High order solutions for the magneto-electro-elastic plate with non-uniform materials. Int. J. Mech. Sci. 115–116, 532–551 (2016). https://doi.org/10.1016/j.ijmecsci.2016.07.033

    Article  Google Scholar 

  69. Ebrahimi, F., Jafari, A., Barati, M.R.: Vibration analysis of magneto-electro-elastic heterogeneous porous material plates resting on elastic foundations. Thin-Walled Struct. 119, 33–46 (2017). https://doi.org/10.1016/j.tws.2017.04.002

    Article  Google Scholar 

  70. Xue, Y., Jin, G., Ma, X., Chen, H., Ye, T., Chen, M., Zhang, Y.: Free vibration analysis of porous plates with porosity distributions in the thickness and in-plane directions using isogeometric approach. Int. J. Mech. Sci. 152, 346–362 (2019). https://doi.org/10.1016/j.ijmecsci.2019.01.004

    Article  Google Scholar 

  71. Wang, Y.Q., Zu, J.W.: Vibration behaviors of functionally graded rectangular plates with porosities and moving in thermal environment. Aerosp. Sci. Technol. 69, 550–562 (2017). https://doi.org/10.1016/j.ast.2017.07.023

    Article  Google Scholar 

  72. Li, Z., Xu, Y., Huang, D.: Analytical solution for vibration of functionally graded beams with variable cross-sections resting on Pasternak elastic foundations. Int. J. Mech. Sci. 191, 106084 (2021). https://doi.org/10.1016/j.ijmecsci.2020.106084

    Article  Google Scholar 

  73. Kumar, P., Harsha, S.P.: Vibration response analysis of sigmoidal functionally graded piezoelectric (FGP) porous plate under thermo-electric environment. Mech. Based Des. Struct. Mach. (2021). https://doi.org/10.1080/15397734.2021.1971090

  74. Allah Gholi, A.M., Khorshidvand, A.R., Jabbari, M., Khorsandijou, S.M.: Magneto-electro-thermo-elastic frequency response of functionally graded saturated porous annular plates via trigonometric shear deformation theory. Acta Mech. 234, 3665–3685 (2023). https://doi.org/10.1007/s00707-023-03530-5

    Article  MathSciNet  Google Scholar 

  75. Sui, Y., Wang, W., Zhang, H.: Effects of electromagnetic fields on the contact of magneto-electro-elastic materials. Int. J. Mech. Sci. 223, 107283 (2022). https://doi.org/10.1016/j.ijmecsci.2022.107283

    Article  Google Scholar 

  76. Esmaeilzadeh, M., Kadkhodayan, M.: Numerical investigation into dynamic behaviors of axially moving functionally graded porous sandwich nanoplates reinforced with graphene platelets. Mater. Res. Express. (2019). https://doi.org/10.1088/2053-1591/ab407b

    Article  Google Scholar 

  77. Bui, X., Nguyen, T., Nguyen, P.T.T.: Stochastic vibration and buckling analysis of functionally graded sandwich thin-walled beams. Mech. Based Des. Struct. Mach. (2023). https://doi.org/10.1080/15397734.2023.2165101

    Article  Google Scholar 

  78. Xu, X., Karami, B., Shahsavari, D.: Time-dependent behavior of porous curved nanobeam. Int. J. Eng. Sci. (2021). https://doi.org/10.1016/j.ijengsci.2021.103455

    Article  MathSciNet  Google Scholar 

  79. Ebrahimi, F., Hosseini, S.H.S.: Resonance analysis on nonlinear vibration of piezoelectric/FG porous nanocomposite subjected to moving load. Eur. Phys. J. Plus. 135, 1–23 (2020). https://doi.org/10.1140/epjp/s13360-019-00011-4

    Article  Google Scholar 

  80. Li, Z., Wang, Q., Qin, B., Zhong, R., Yu, H.: Vibration and acoustic radiation of magneto-electro-thermo-elastic functionally graded porous plates in the multi-physics fields. Int. J. Mech. Sci. (2020). https://doi.org/10.1016/j.ijmecsci.2020.105850

    Article  PubMed  PubMed Central  Google Scholar 

  81. Li, Z., Zhong, R., Wang, Q., Qin, B., Yu, H.: The thermal vibration characteristics of the functionally graded porous stepped cylindrical shell by using characteristic orthogonal polynomials. Int. J. Mech. Sci. 182, 105779 (2020). https://doi.org/10.1016/j.ijmecsci.2020.105779

    Article  Google Scholar 

  82. Chen, D., Yang, J., Kitipornchai, S.: Free and forced vibrations of shear deformable functionally graded porous beams. Int. J. Mech. Sci. 108–109, 14–22 (2016). https://doi.org/10.1016/j.ijmecsci.2016.01.025

    Article  Google Scholar 

  83. Majdi, A., Yasin, Y., Altalbawy, F.M.A., Mashhadani, Z.I. Al, Albahash, Z.F., Ahmadi, S., Majdi, A., Yasin, Y., Altalbawy, F.M.A.: Size-dependent vibrations of bi-directional functionally graded porous beams under moving loads incorporating thickness effect. Mech. Based Des. Struct. Mach. (2023). https://doi.org/10.1080/15397734.2023.2165098

  84. Karami, B., Janghorban, M., Rabczuk, T.: Dynamics of two-dimensional functionally graded tapered Timoshenko nanobeam in thermal environment using nonlocal strain gradient theory. Compos. Part B Eng. 182, 107622 (2020). https://doi.org/10.1016/j.compositesb.2019.107622

    Article  Google Scholar 

  85. Lu, L., Guo, X., Zhao, J.: Size-dependent vibration analysis of nanobeams based on the nonlocal strain gradient theory. Int. J. Eng. Sci. 116, 12–24 (2017). https://doi.org/10.1016/j.ijengsci.2017.03.006

    Article  MathSciNet  Google Scholar 

  86. Yang, W., Wang, S., Kang, W., Yu, T., Li, Y.: A unified high-order model for size-dependent vibration of nanobeam based on nonlocal strain/stress gradient elasticity with surface effect. Int. J. Eng. Sci. 182, 103785 (2023). https://doi.org/10.1016/j.ijengsci.2022.103785

    Article  MathSciNet  Google Scholar 

  87. Van Vinh, P., Tounsi, A.: Free vibration analysis of functionally graded doubly curved nanoshells using nonlocal first-order shear deformation theory with variable nonlocal parameters. Thin-Walled Struct. 174, 109084 (2022). https://doi.org/10.1016/j.tws.2022.109084

    Article  Google Scholar 

  88. Civalek, Ö., Ersoy, H., Uzun, B., Yaylı, M.Ö.: Dynamics of a FG porous microbeam with metal foam under deformable boundaries. Acta Mech. (2023). https://doi.org/10.1007/s00707-023-03663-7

    Article  MathSciNet  Google Scholar 

  89. Khoa, N.D.: Free vibration and nonlinear dynamic behaviors of the imperfect smart electric magnetic FG-laminated composite panel in a hygrothermal environments. Acta Mech. 234, 2617–2658 (2023). https://doi.org/10.1007/s00707-023-03505-6

    Article  MathSciNet  Google Scholar 

  90. Mellal, F., Bennai, R., Avcar, M., Nebab, M., Atmane, H.A.: On the vibration and buckling behaviors of porous FG beams resting on variable elastic foundation utilizing higher-order shear deformation theory. Acta Mech. 234, 3955–3977 (2023). https://doi.org/10.1007/s00707-023-03603-5

    Article  Google Scholar 

  91. Karami, B., Janghorban, M.: On the dynamics of porous nanotubes with variable material properties and variable thickness. Int. J. Eng. Sci. 136, 53–66 (2019). https://doi.org/10.1016/j.ijengsci.2019.01.002

    Article  MathSciNet  Google Scholar 

  92. Gogotsi, Y.: Nanomaterials Handbook. CRC Press, Second edition. Boca Raton : Taylor & Francis, CRC Press, 2017. Series: Advanced materials and technologies series (2017)

  93. Özmen, R., Kılıç, R., Esen, I.: Thermomechanical vibration and buckling response of nonlocal strain gradient porous FG nanobeams subjected to magnetic and thermal fields. Mech. Adv. Mater. Struct. (2022). https://doi.org/10.1080/15376494.2022.2124000

    Article  Google Scholar 

  94. Gao, K., Huang, Q., Kitipornchai, S., Yang, J.: Nonlinear dynamic buckling of functionally graded porous beams. Mech. Adv. Mater. Struct. (2021). https://doi.org/10.1080/15376494.2019.1567888

    Article  Google Scholar 

  95. Touloukian, Y.S.: Thermophysical properties of high temperature solid materials. Macmillan, New York (1967)

    Google Scholar 

  96. Reddy, J.N., Chin, C.D.: Thermomechanical analysis of functionally graded cylinders and plates. J. Therm. Stress. 21, 593–626 (1998). https://doi.org/10.1080/01495739808956165

    Article  Google Scholar 

  97. He, Y.: Heat capacity, thermal conductivity, and thermal expansion of barium titanate-based ceramics. Thermochim. Acta 419, 135–141 (2004). https://doi.org/10.1016/j.tca.2004.02.008

    Article  CAS  Google Scholar 

  98. Malikan, M., Wiczenbach, T., Eremeyev, V.A.: Thermal buckling of functionally graded piezomagnetic micro- and nanobeams presenting the flexomagnetic effect. Contin. Mech. Thermodyn. 34, 1051–1066 (2022). https://doi.org/10.1007/s00161-021-01038-8

    Article  ADS  MathSciNet  Google Scholar 

  99. Touloukian, Y.S., Powell, R.W., Ho, C.Y., P.G.K.: Thermophysical Properties of Matter. In: Thermal Conductivity: Nonmetallic Solids,. IFI/Plenum Press, New York (1970)

  100. Dent, A.C., Bowen, C.R., Stevens, R., Cain, M.G., Stewart, M.: Effective elastic properties for unpoled barium titanate. J. Eur. Ceram. Soc. 27, 3739–3743 (2007). https://doi.org/10.1016/j.jeurceramsoc.2007.02.031

    Article  CAS  Google Scholar 

  101. Kiani, Y., Eslami, M.R.R.: An exact solution for thermal buckling of annular FGM plates on an elastic medium. Compos. B Eng. 45, 101–110 (2013). https://doi.org/10.1016/j.compositesb.2012.09.034

    Article  Google Scholar 

  102. Zhang, D.G.: Thermal post-buckling and nonlinear vibration analysis of FGM beams based on physical neutral surface and high order shear deformation theory. Meccanica 49, 283–293 (2014). https://doi.org/10.1007/s11012-013-9793-9

    Article  MathSciNet  Google Scholar 

  103. Ebrahimi, F., Barati, M.R.: A nonlocal higher-order refined magneto-electro-viscoelastic beam model for dynamic analysis of smart nanostructures. Int. J. Eng. Sci. 107, 183–196 (2016). https://doi.org/10.1016/j.ijengsci.2016.08.001

    Article  Google Scholar 

  104. Ebrahimi, F., Barati, M.R.: Hygrothermal buckling analysis of magnetically actuated embedded higher order functionally graded nanoscale beams considering the neutral surface position. J. Therm. Stress. 39, 1210–1229 (2016). https://doi.org/10.1080/01495739.2016.1215726

    Article  Google Scholar 

  105. Fleck, N.A., Muller, G.M., Ashby, M.F., Hutchinson, J.W.: Strain gradient plasticity: Theory and experiment. Acta Metall. Mater. 42, 475–487 (1994). https://doi.org/10.1016/0956-7151(94)90502-9

    Article  CAS  Google Scholar 

  106. Miandoab, E.M., Yousefi-Koma, A., Pishkenari, H.N.: Nonlocal and strain gradient based model for electrostatically actuated silicon nano-beams. Microsyst. Technol. 21, 457–464 (2015). https://doi.org/10.1007/s00542-014-2110-2

    Article  CAS  Google Scholar 

  107. Ebrahimi, F.: Dynamic modeling of a thermo – piezo-electrically actuated nanosize beam subjected to a magnetic field. Appl. Phys. A 122, 1–18 (2016). https://doi.org/10.1007/s00339-016-0001-3

    Article  CAS  Google Scholar 

  108. Rahmani, O., Pedram, O.: Analysis and modeling the size effect on vibration of functionally graded nanobeams based on nonlocal Timoshenko beam theory. Int. J. Eng. Sci. 77, 55–70 (2014). https://doi.org/10.1016/j.ijengsci.2013.12.003

    Article  MathSciNet  Google Scholar 

  109. Ebrahimi, F., Salari, E.: Thermo-mechanical vibration analysis of nonlocal temperature-dependent FG nanobeams with various boundary conditions. Compos. B Eng. 78, 272–290 (2015). https://doi.org/10.1016/j.compositesb.2015.03.068

    Article  Google Scholar 

  110. Ebrahimi, F., Salari, E.: Thermal buckling and free vibration analysis of size dependent Timoshenko FG nanobeams in thermal environments. Compos. Struct. 128, 363–380 (2015). https://doi.org/10.1016/j.compstruct.2015.03.023

    Article  Google Scholar 

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Eroğlu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

The eigenvalue equations for trigonometric solution considering general boundary conditions presented in Table 2.

$$ \begin{gathered} \left[ {A_{11} \left( {r_{3} + l_{m}^{2} r_{10} } \right) + I_{0} \omega_{n}^{2} \left( {r_{1} + \left( {e_{0} a} \right)^{2} \left( {r_{3} } \right)} \right)} \right]U_{mn} - \left[ {B_{11} \left( {r_{3} + l_{m}^{2} r_{10} } \right) + I_{1} \omega_{n}^{2} r_{1} + \left( {e_{0} a} \right)^{2} I_{1} \omega_{n}^{2} (r_{3} )} \right]W_{bmn} \hfill \\ + [ - B_{11}^{s} \left( {r_{3} + l_{m}^{2} r_{10} } \right) + J_{1} \omega_{n}^{2} \left( {r_{1} + \left( {e_{0} a} \right)^{2} \left( {r_{3} } \right)} \right)W_{smn} + A_{31}^{e} \left( {r_{1} + l_{m}^{2} r_{3} } \right) \phi_{mn} + A_{31}^{m} \left( {r_{1} + l_{m}^{2} r_{3} } \right) Y_{mn} = 0 \hfill \\ \end{gathered} $$
(A.1)
$$ \begin{aligned} &\left[ {B_{11} \left( {r_{9} + l_{m}^{2} r_{11} } \right) + I_{1} \omega_{n}^{2} \left( {r_{7} + \left( {e_{0} a} \right)^{2} r_{9} } \right)} \right]U_{mn} \\&+ \left[ - D_{11} \left( {r_{9} + l_{m}^{2} r_{11} } \right) - I_{2} \omega_{n}^{2} \left( {r_{7} + \left( {e_{0} a} \right)^{2} r_{9} } \right)\right.\\ &\left.\quad + I_{0} \omega_{n}^{2} \left( {r_{5} + \left( {e_{0} a} \right)^{2} r_{7} } \right) + \left( {N^{E} + N^{H} + N^{T} } \right) \left( {r_{7}+ \left( {e_{0} a} \right)^{2} r_{9} } \right) \right]W_{bmn} \hfill \\ &\quad + \left[ - D_{11}^{s} \left( {r_{9} + l_{m}^{2} r_{11} } \right) \right.\\ &\left.\quad - I_{0} \omega_{n}^{2} \left( {r_{5} + \left( {e_{0} a} \right)^{2} r_{7} } \right)+ J_{2} \omega_{n}^{2} \left( {r_{7} + \left( {e_{0} a} \right)^{2} r_{9} } \right) + \left( {N^{E} + N^{H} + N^{T} } \right)\left( {r_{7} + \left( {e_{0} a} \right)^{2} r_{9} } \right) \right] W_{smn} \hfill \\ &\quad+ \left[ {(E_{31}^{e} - A_{15}^{e} )\left( {r_{7} + l_{m}^{2} r_{9} } \right)} \right] \phi_{mn} + \left[ {(E_{31}^{m} - A_{15}^{m} ) \left( {r_{7} + l_{m}^{2} r_{9} } \right)} \right]Y_{mn} = 0 \end{aligned} $$
(A.2)
$$ \begin{gathered} \left[ {B_{11}^{s} \left( {r_{9} + l_{m}^{2} r_{11} } \right) + J_{1} \omega_{n}^{2} \left( {r_{7} + \left( {e_{0} a} \right)^{2} r_{9} } \right)} \right]U_{mn} + \left[ { - D_{11}^{s} \left( {r_{9} + l_{m}^{2} r_{11} } \right) - J_{2} \omega_{n}^{2} \left( {r_{7} + \left( {e_{0} a} \right)^{2} r_{9} } \right) - I_{0} \omega_{n}^{2} \left( {r_{5} + \left( {e_{0} a} \right)^{2} r_{7} } \right) + )} \right. \hfill \\ \left. { - D_{11}^{s} \left( {r_{9} + l_{m}^{2} r_{11} } \right) - I_{0} \omega_{n}^{2} \left( {r_{5} + \left( {e_{0} a} \right)^{2} r_{7} } \right) + (N^{E} + N^{H} + N^{T} )\left( {r_{7} + \left( {e_{0} a} \right)^{2} r_{9} } \right)} \right]W_{bmn} \hfill \\ + \left[ {A_{44}^{s} \left( {r_{7} + l_{m}^{2} r_{9} } \right) - H_{11}^{s} \left( {r_{9} + l_{m}^{2} r_{11} } \right) + (N^{E} + N^{H} + N^{T} } \right)\left( {r_{7} + \left( {e_{0} a} \right)^{2} r_{9} } \right)) \hfill \\ \left. { - I_{0} \omega_{n}^{2} \left( {r_{5} + \left( {e_{0} a} \right)^{2} r_{7} } \right) - K_{2} \omega_{n}^{2} \left( {\left( {r_{7} + \left( {e_{0} a} \right)^{2} r_{9} } \right)} \right)} \right]W_{smn} \hfill \\ + \left[ {(F_{31}^{e} - A_{15}^{e} ) \left( {r_{7} + l_{m}^{2} r_{9} } \right)} \right]\phi_{mn} + \left( {F_{31}^{m} - A_{15}^{m} } \right) \left( {r_{7} + l_{m}^{2} r_{9} } \right)Y_{mn} = 0 \hfill \\ \end{gathered} $$
(A.3)
$$ \begin{gathered} A_{31}^{e} \left( {r_{1} + l_{m}^{2} r_{3} } \right) {\text{U}}_{mn} + \left[ { - E_{31}^{e} \left( {r_{1} + l_{m}^{2} r_{3} } \right)} \right]{\text{W}}_{bmn} + \left[ {\left( {F_{31}^{e} - A_{15}^{e} } \right) \left( {r_{7} + l_{m}^{2} r_{9} } \right)} \right]{\text{W}}_{smn} \hfill \\ + \left[ {F_{11}^{e} \left( {r_{7} + l_{m}^{2} r_{9} } \right) - F_{33}^{e} \left( {r_{5} + l_{m}^{2} r_{7} } \right)} \right]\phi_{mn} + \left[ {F_{11}^{m} \left( {r_{7} + l_{m}^{2} r_{9} } \right) - F_{33}^{m} \left( {r_{5} + l_{m}^{2} r_{7} } \right)} \right]{\text{Y}}_{mn} = 0 \hfill \\ \end{gathered} $$
(A.4)
$$ \begin{aligned} &A_{31}^{m} \left( {r_{1} + l_{m}^{2} r_{3} } \right){\text{ U}}_{mn} - E_{31}^{m} \left( {r_{1} + l_{m}^{2} r_{3} } \right){\text{W}}_{bmn} + \left( {E_{15}^{m} - F_{31}^{m} } \right)\left( {r_{7} + l_{m}^{2} r_{9} } \right){\text{W}}_{smn}\\ &\qquad + \left[ {F_{11}^{m} \left( {r_{7} + l_{m}^{2} r_{9} } \right) - F_{33}^{m} \left( {r_{5} + l_{m}^{2} r_{7} } \right)} \right]\psi_{mn} + \left[ {X_{11}^{m} \left( {r_{7} + l_{m}^{2} r_{9} } \right) - X_{33}^{m} \left( {r_{5} + l_{m}^{2} r_{7} } \right)} \right]\gamma_{mn} = 0 \hfill \\ \end{aligned} $$
(A.5)

with

$$\begin{aligned}&{r}_{1}={\int }_{0}^{L}{X}_{m}{\prime}{X}_{m}{\prime}dx, {r}_{3}={\int }_{0}^{L}{X}_{m}^{{\prime}{\prime}{\prime}}{X}_{m}{\prime}dx, {r}_{5}={\int }_{0}^{L}{X}_{m}{X}_{m}dx, {r}_{7}={\int }_{0}^{L}{X}_{m}^{{\prime}{\prime}}{X}_{m}dx, \\ &{r}_{9}={\int }_{0}^{L}{X}_{m}^{{\prime}{\prime}{\prime}{\prime}}{X}_{m}dx, {r}_{10}={\int }_{0}^{L}{X}_{m}^{{\prime}{\prime}{\prime}{\prime}{\prime}}{X}_{m}{\prime}dx, {r}_{11}={\int }_{0}^{L}{X}_{m}^{{\prime}{\prime}{\prime}{\prime}{\prime}{\prime}}{X}_{m}dx\end{aligned}$$
(A.6)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eroğlu, M., Esen, İ. & Koç, M.A. Thermal vibration and buckling analysis of magneto-electro-elastic functionally graded porous higher-order nanobeams using nonlocal strain gradient theory. Acta Mech 235, 1175–1211 (2024). https://doi.org/10.1007/s00707-023-03793-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03793-y

Navigation