Skip to main content
Log in

Investigation of electrically actuated geometrically nonlinear clamped circular nanoplate

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this paper, oscillations of the electrically actuated nonlinear clamped circular nanoplate are considered. The pull-in phenomenon, i.e., the transition of the oscillatory regime to the attraction one, is studied. Original PDE takes into account Coulomb, Casimir and van der Waals forces and geometrical nonlinearity of plate. A simple and physically clear algorithm for determining the DC voltage values at which the system suddenly collapses is proposed. This algorithm is based on the criterion consisting in the merging of points of a stable equilibrium (center) and an unstable equilibrium (saddle). Comparisons with the results obtained by other authors show sufficient accuracy of the proposed algorithm. The influence of geometric nonlinearity on pull-in values is studied. It is shown that neglect of this factor can lead to significant errors. Influence of Casimir and van der Waals forces on the pull-in value is estimated. It is shown that the dependence of the pull-in value on the initial displacements in the radial direction is almost linear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data are contained within the article.

References

  1. Younis, M.I.: MEMS: Linear and Nonlinear Statics and Dynamics. Springer, Berlin (2011)

    Book  Google Scholar 

  2. Zhang, W.M., Yan, H., Peng, Z.K., Meng, G.: Electrostatic pull-in instability in MEMS/NEMS: A review. Sens. Actuators A Phys. 214, 187–218 (2014)

    Article  CAS  Google Scholar 

  3. Khaniki, H.B., Ghayesh, M.H., Amabili, M.: A review on the statics and dynamics of electrically actuated nano and micro structures. Int. J. Non-Lin. Mech. 129, 103658 (2021)

    Article  Google Scholar 

  4. Khan, F., Younis, M.I.: RF MEMS electrostatically actuated tunable capacitors and their applications: a review. J. Micromech. Microeng. 32(1), 013002 (2002)

    Article  Google Scholar 

  5. Harjanto, E., van Horssen, W.T., Tuwankotta, J.M.: On resonances in a weakly nonlinear microbeam due to an electric actuation. Nonlin. Dyn. 104(4), 3157–3185 (2021)

    Article  Google Scholar 

  6. Andrianov, I.V., Awrejcewicz, J., Koblik, S.G., Starushenko, G.A.: Nonlinear oscillation of a microbeam due to an electric actuation – Comparison of approximate model. ZAMM (2023). https://doi.org/10.1002/zamm.202300091

    Article  Google Scholar 

  7. Caruntu, D.I., Beatriz, J.S.: Quantum dynamics effects on amplitude-frequency response of superharmonic resonance of second-order of electrostatically actuated NEMS circular plates. In: Giorgio, I., et al. (eds.) Theoretical Analyses, Computations, and Experiments of Multiscale Materials, Advanced Structured Materials, pp. 69–104. Springer, Cham (2023)

    Google Scholar 

  8. Liao, L.D., Chao, P.C., Huang, C.W., Chiu, C.W.: DC dynamic and static pull-in predictions and analysis for electrostatically actuated clamped circular micro-plates based on a continuous model. J. Micromech. Microeng. 20(2), 025013 (2009)

    Article  Google Scholar 

  9. Vogl, G.W.V., Nayfeh, A.H.: A reduced-order model for electrically actuated clamped circular plates. J. Micromech. Microeng. 15, 684–690 (2005)

    Article  ADS  Google Scholar 

  10. Batra, R.C., Porfiri, M., Spinello, D.: Reduced-order models for microelectromechanical rectangular and circular plates incorporating the Casimir force. Int. J. Solids Struct. 45(11–12), 3558–3583 (2008)

    Article  CAS  Google Scholar 

  11. Batra, R.C., Porfiri, M., Spinello, D.: Effect of van der Waals force and thermal stress on pull-in instability of microplates. Sensors 8(2), 1048–1069 (2008)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  12. Caruntu, D.I., Oyervides, R.: Frequency response reduced order model of primary resonance of electrostatically actuated MEMS circular plate resonators. Comm. Nonl. Sc. Numer. Simul. 43(5), 261–270 (2016)

    Google Scholar 

  13. Caruntu, D.I., Oyervides, R.: Voltage response of primary resonance of electrostatically actuated MEMS clamped circular plate resonators. J. Comput. Nonl. Dyn. 11(4), 041021 (2016)

    Article  Google Scholar 

  14. Caruntu, D.I., Oyervides, R.: Amplitude-frequency response of parametric resonance of electrostatically actuated MEMS clamped circular plate. Int. J. Non-Linear Mech. 149(6), 104310 (2022)

    Google Scholar 

  15. Shabani, R., Sharafkhani, N., Tariverdilo, S., Rezazadeh, G.: Dynamic analysis of an electrostatically actuated circular micro-plate interacting with compressible fluid. Acta Mech. 224(9), 2025–2035 (2013)

    Article  MathSciNet  Google Scholar 

  16. Caronti, A., Caliano, G., Iula, A., Pappalardo, M.: An accurate model for capacitive micromachined ultrasonic transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49, 159–168 (2002)

    Article  PubMed  Google Scholar 

  17. Sajadi, B., Alijani, F., Goosen, H., van Keulen, F.: Effect of pressure on nonlinear dynamics and instability of electrically actuated circular micro-plates. Nonlin. Dyn. 91, 2157–2170 (2018)

    Article  Google Scholar 

  18. Wang, Y.-G., Lin, W.-H., Li, X.-M., Feng, Z.-J.: Bending and vibration of an electrostatically actuated circular microplate in presence of Casimir force. Appl. Math. Model. 35(5), 2348–2357 (2011)

    Article  MathSciNet  Google Scholar 

  19. Ishfaque, A., Kim, B.: Analytical solution for squeeze film damping of MEMS perforated circular plates using Green’s function. Nonlin. Dyn. 87(3), 1603–1616 (2017)

    Article  Google Scholar 

  20. Lin, M.X., Lee, S.Y., et al.: Dynamic characteristic analysis of an electrostatically-actuated circular nanoplate subject to surface effects. Appl. Math. Model. 63, 18–31 (2018)

    Article  MathSciNet  Google Scholar 

  21. Berger, H.M.: A new approach to analysis of large deflections of plates. Trans. ASME J. Appl. Mech. 22(4), 465–472 (1955)

    Article  ADS  MathSciNet  Google Scholar 

  22. Krommer, M., Irschik, H.: Post-buckling of piezoelectric thin plates. Int. J. Struct. Stab. Dyn. 15(7), 1540020 (2015)

    Article  MathSciNet  Google Scholar 

  23. Andrianov, I.I., Awrejcewicz, J., van Horssen, W.T.: On the Bolotin’s reduced beam model versus various boundary conditions. Mech. Res. Commun. 105, 103505 (2020)

    Article  Google Scholar 

  24. Altenbach, H., Eremeev, V.A.: On the theories of plates and shells at the nanoscale. In: Altenbach, H., Mikhasev, G.I. (eds.) Shell and Membrane Theories in Mechanics and Biology. Advanced Structured Materials, vol. 45, pp. 25–57. Springer, Cham (2015)

    Google Scholar 

  25. Timoshenko, S.P., Young, D.H., Weaver, W., Jr.: Vibration Problems in Engineering, 4th edn. Wiley, New York (1974)

    Google Scholar 

  26. Currington, H.: The frequencies of vibration of flat circular plates fixed in circumference. Lond. Edinb. Dublin Philos. Mag. J. Sci. 50(300), 1261–1264 (1925)

    Article  Google Scholar 

  27. Kantorovich, L.V., Krylov, V.I.: Approximate Methods of Higher Analysis. Noordhoff, Groningen (1958)

    Google Scholar 

  28. Elsgolts, L.: Differential Equations and the Calculus of Variations. Mir, Moscow (1977)

    Google Scholar 

  29. Jallouli, A., Kacem, N., Bourbon, G., Le Moal, P., Walter, V., Lardies, J.: Pull-in instability tuning in imperfect nonlinear circular microplates under electrostatic actuation. Phys. Lett. A 380(46), 3886–3890 (2016)

    Article  ADS  CAS  Google Scholar 

  30. Das, M., Bhushan, A.: Investigation of an electrostatically actuated imperfect circular microplate under transverse pressure for pressure sensor applications. Eng. Res. Express 3, 045023 (2021)

    ADS  Google Scholar 

  31. Saghir, S., Younis, M.I.: An investigation of the mechanical behavior of initially curved microplates under electrostatic actuation. Acta Mech. 229, 2909–2922 (2018)

    Article  MathSciNet  Google Scholar 

  32. Benedetti, K.C.B., Goncalves, P.B., Lenci, S., Rega, G.: Parameter uncertainty and noise effects on the global dynamics of an electrically actuated microarch. J. Micromech. Microeng. 33, 064001 (2023)

    Article  ADS  Google Scholar 

Download references

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

I.A. helped in conceptualization; I.A., G.S. and S.K. helped in methodology; I.A., S.K. and G.S. worked in investigation; I.A. and S.K. contributed to writing and original draft preparation; G.S. worked in software; I.A. and S.K. contributed to writing, review and editing and G.S. and S.K. helped in formal analysis. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to I. V. Andrianov.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Institutional review board statement

Not applicable.

Informed consent statement

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

Berger [21] proposed an effective technique for simplifying the equations of geometrically nonlinear plates. The method is based upon the assumption of neglecting the plane inertia and strain energy associated with the second invariant of the strains in the plate middle surface. For a circular plate in the case of axial symmetry, this means

$$\frac{{\partial^{2} U}}{{\partial t^{2} }} \approx 0,\quad \varepsilon_{r} \varepsilon_{\theta } \approx 0,$$
(A1)

where \(\varepsilon_{r} = \frac{\partial U}{{\partial \overline{r}}} + \frac{1}{2}\left( {\frac{\partial W}{{\partial \overline{r}}}} \right)^{2} ,\varepsilon_{\theta } = \frac{U}{{\overline{r}}}\), \(U(t)\) is the radial displacement.

Then from equation for in-plane deformation, one obtains

$$\frac{\partial U}{{\partial \overline{r}}} + \frac{U}{{\overline{r}}} + \frac{1}{2}\left( {\frac{\partial W}{{\partial \overline{r}}}} \right)^{2} = \frac{TD}{B},$$
(A2)

so T is the function of t only.

Let the following conditions for displacements in the plane be specified at the edge of the plate:

$$U = U_{e} (t)\quad {\text{at}}\;\quad \overline{r} = R.$$
(A3)

Multiplying both sides of equation (A2) by \(\overline{r}\), integrating on \(\overline{r}\) over 0 to R and taking into account the boundary conditions (A3), as well as the symmetry conditions at \(\overline{r} = 0\), we find

$$T(t) = \frac{B}{{DR^{2} }}\left[RU_{e} (t) + \int\limits_{0}^{R} {\left( {\frac{\partial W}{{\partial \overline{r}}}} \right)^{2} \overline{r}d\overline{r}}\right ].$$
(A4)

The equation of motion in the normal direction can be written as (T is the function on t only)

$$\rho \delta \frac{{\partial^{2} W}}{{\partial t^{2} }} + D\left[ {\frac{{\partial^{4} W}}{{\partial \overline{r}^{4} }} + \frac{2}{{\overline{r}}}\frac{{\partial^{3} W}}{{\partial \overline{r}^{3} }} - \frac{1}{{\overline{r}^{2} }}\frac{{\partial^{2} W}}{{\partial \overline{r}^{2} }} + \frac{1}{{\overline{r}^{3} }}\frac{\partial W}{{\partial \overline{r}}}} \right] - DT\frac{\partial }{{\overline{r}\partial \overline{r}}}\left( {\overline{r}\frac{\partial W}{{\partial \overline{r}}}} \right) = 0.$$
(A5)

Substituting expression (A4) into equation (A5), one obtains

$$\rho \delta \frac{{\partial^{2} W}}{{\partial t^{2} }} + D\left[ {\frac{{\partial^{4} W}}{{\partial \overline{r}^{4} }} + \frac{2}{{\overline{r}}}\frac{{\partial^{3} W}}{{\partial \overline{r}^{3} }} - \frac{1}{{\overline{r}^{2} }}\frac{{\partial^{2} W}}{{\partial \overline{r}^{2} }} + \frac{1}{{\overline{r}^{3} }}\frac{\partial W}{{\partial \overline{r}}}} \right] - \frac{B}{{R^{2} }}\left[RU(R,t) + \int\limits_{0}^{R} {\left( {\frac{\partial W}{{\partial \overline{r}}}} \right)^{2} \overline{r}d\overline{r}} \right]\frac{\partial }{{\overline{r}\partial \overline{r}}}\left( {\overline{r}\frac{\partial W}{{\partial \overline{r}}}} \right) = 0.$$
(A6)

For the case of piezoelectric thin plates, Berger’s approximation is generalized in the paper [22].

Comparisons of the results with known solutions indicate that for a broad range of problems, Berger’s approach yields sufficiently accurate results.

Appendix 2

Integrals:

$$I_{1} {\text{ }} = \int\limits_{0}^{1} {\frac{{\left( {1 - r^{2} } \right)^{2} }}{{\left[ {1 - u\, \left( {1 - r^{2} } \right)^{2} } \right]^{2} }}} \, dr{\text{ }} = \frac{1}{{4u\left( {1 - u} \right)}} - \frac{1}{8}\frac{{\left( {1 - 2u^{{1/2}} } \right)\arctan \left( {\frac{{u^{{1/4}} }}{{\sqrt {1 - u^{{1/2}} } }}} \right)}}{{u^{{5/4}} \left( {1 - u^{{1/2}} } \right)^{{3/2}} }} - \frac{1}{{16}}\frac{{\left( {1 + 2u^{{1/2}} } \right)\ln \left( {\frac{{\left( {1 + u^{{1/2}} } \right)^{{1/2}} + u^{{1/4}} }}{{\left( {1 + u^{{1/2}} } \right)^{{1/2}} - u^{{1/4}} }}} \right)}}{{u^{{5/4}} \left( {1 + u^{{1/2}} } \right)^{{3/2}} }};$$
$$I_{2} = \int\limits_{0}^{1} {\frac{{\left( {1 - r^{2} } \right)^{2} }}{{\left[ {1 - u\, \left( {1 - r^{2} } \right)^{2} } \right]^{3} }}} \, dr = \frac{3}{{32}}\frac{{1 + u}}{{u\left( {1 - u} \right)^{2} }} + \frac{1}{{64}}\frac{{\left( {10u^{{1/2}} - 4u - 3} \right)\arctan \left( {\frac{{u^{{1/4}} }}{{\sqrt {1 - u^{{1/2}} } }}} \right)}}{{u^{{5/4}} \left( {1 - u^{{1/2}} } \right)^{{5/2}} }}\quad - \frac{1}{{128}}\frac{{\left( {4u + 10u^{{1/2}} + 3} \right)\ln \left( {\frac{{\left( {1 + u^{{1/2}} } \right)^{{1/2}} + u^{{1/4}} }}{{\left( {1 + u^{{1/2}} } \right)^{{1/2}} - u^{{1/4}} }}} \right)}}{{u^{{5/4}} \left( {1 + u^{{1/2}} } \right)^{{5/2}} }};$$
$$I_{3} = \int\limits_{0}^{1} {\frac{{\left( {1 - r^{2} } \right)^{2} }}{{\left[ {1 - u\, \left( {1 - r^{2} } \right)^{2} } \right]^{4} }}} \, dr = - \frac{1}{{512}}\frac{1}{{u^{{5/4}} \left( {1 + u^{{1/2}} } \right)^{{7/2}} }}\quad \ln \left( {\frac{{\left( {1 + u^{{1/2}} } \right)^{{1/2}} - u^{{1/4}} }}{{\left( {1 + u^{{1/2}} } \right)^{{1/2}} + u^{{1/4}} }}} \right)\left( {40u^{{3/2}} + 140u + 172u^{{1/2}} + 77} \right)\quad + \frac{1}{{512}}\frac{1}{{u^{{5/4}} \left( { - 1 + u^{{1/2}} } \right)^{{7/2}} }}\ln \left( {\frac{{\left( { - 1 + u^{{1/2}} } \right)^{{1/2}} - u^{{1/4}} }}{{\left( { - 1 + u^{{1/2}} } \right)^{{1/2}} + u^{{1/4}} }}} \right)\left( {40u^{{3/2}} - 140u + 172u^{{1/2}} - 77} \right)\quad - \frac{1}{{384}}\frac{{14u^{2} - 53u - 21}}{{u\left( {1 - u} \right)^{{3}} }} + \frac{3}{{64}}\frac{{\arctan \left( {\frac{{u^{{1/4}} }}{{\sqrt {1 - u^{{1/2}} } }}} \right)\left( { - 4u + 10u^{{1/2}} - 7} \right)}}{{u^{{5/4}} \left( {1 - u^{{1/2}} } \right)^{{5/2}} }}\quad - \frac{3}{{128}}\frac{{\ln \left( {\frac{{\left( {1 + u^{{1/2}} } \right)^{{1/2}} + u^{{1/4}} }}{{\left( {1 + u^{{1/2}} } \right)^{{1/2}} - u^{{1/4}} }}} \right)\left( {4u + 10u^{{1/2}} + 7} \right)}}{{u^{{5/4}} \left( {1 + u^{{1/2}} } \right)^{{5/2}} }}.$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andrianov, I.V., Koblik, S.G. & Starushenko, G.A. Investigation of electrically actuated geometrically nonlinear clamped circular nanoplate. Acta Mech 235, 1015–1026 (2024). https://doi.org/10.1007/s00707-023-03783-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03783-0

Navigation