Skip to main content
Log in

Multiscale medalist learning algorithm and its application in engineering

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This paper presents the Multiscale Medalist Learning Algorithm (MMLA) as a novel heuristic approach for complex engineering optimization problems. By extending the Medalist Learning Algorithm, MMLA offers enhanced solution efficiency. The algorithm divides the learning process into successive periods with reduced search spaces, enabling focused search efforts in promising areas. Within each period, predefined learning stages are implemented. Top performers, known as medalists, engage in self-improvement operations through neighborhood searches, while common learners either learn from medalists or adapt based on the current state using neighborhood fluctuation. The MMLA balances exploration and exploitation capabilities through a natural growth curve that determines the learning efficiency. The MMLA's effectiveness and robustness are illustrated through the solution of a two-dimensional benchmark optimization problem and the successful resolution of ten well-known engineering design optimization problems. Comparative analysis demonstrates that the MMLA consistently outperforms other algorithms, providing competitive solutions with strict feasibility and minimal variation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon request.

References

  1. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1, 67–82 (1997)

    Google Scholar 

  2. He, S.-X.: Truss optimization with frequency constraints using the medalist learning algorithm. Structures 55, 1–15 (2023)

    CAS  Google Scholar 

  3. Holland, J.H.: Genetic algorithms. Sci. Am. 267, 66–73 (1992)

    ADS  Google Scholar 

  4. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN'95 - International Conference on Neural Networks, pp. 1942–8, vol.4 (1995)

  5. He, S., Prempain, E., Wu, Q.H.: An improved particle swarm optimizer for mechanical design optimization problems. Eng. Optim. 36, 585–605 (2004)

    MathSciNet  Google Scholar 

  6. Storn, R., Price, K.: Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11, 341–359 (1997)

    MathSciNet  Google Scholar 

  7. Mezura-Montes, E., Coello, C.A.C.: A simple multimembered evolution strategy to solve constrained optimization problems. IEEE Trans. Evol. Comput. 9, 1–17 (2005)

    Google Scholar 

  8. Karaboğa, D.: An idea based on honey bee swarm for numerical optimization (2005)

  9. Dorigo, M., Birattari, M., Stutzle, T.: Ant colony optimization. IEEE Comput. Intell. Mag. 1, 28–39 (2006)

    Google Scholar 

  10. Eusuff, M., Lansey, K., Pasha, F.: Shuffled frog-leaping algorithm: a memetic meta-heuristic for discrete optimization. Eng. Optim. 38, 129–154 (2006)

    MathSciNet  Google Scholar 

  11. Simon, D.: Biogeography-based optimization. IEEE Trans. Evol. Comput. 12, 702–713 (2008)

    Google Scholar 

  12. Yang, X.-S., Deb, S.: Cuckoo search via Lévy flights. In: 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC): IEEE, pp. 210–4 (2009)

  13. Oftadeh, R., Mahjoob, M.J., Shariatpanahi, M.: A novel meta-heuristic optimization algorithm inspired by group hunting of animals: Hunting search. Comput. Math. Appl. 60, 2087–2098 (2010)

    Google Scholar 

  14. Yang, X.-S.: A new metaheuristic bat-inspired algorithm. In: Nature inspired cooperative strategies for optimization (NICSO 2010). Springer, pp. 65–74 (2010)

  15. Yang, X.S., Hossein, G.A.: Bat algorithm: a novel approach for global engineering optimization. Eng. Comput. 29, 464–483 (2012)

    Google Scholar 

  16. Yang, X.-S.: Firefly algorithm, stochastic test functions and design optimisation. arXiv preprint arXiv:100314092010, pp. 1–12

  17. Yang, X.-S.: Flower pollination algorithm for global optimization. In: International Conference on Unconventional Computation and Natural Computation (2012)

  18. Yang, X.-S., Karamanoglu, M., He, X.: Flower pollination algorithm: a novel approach for multiobjective optimization. Eng. Optim. 46, 1222–1237 (2014)

    MathSciNet  Google Scholar 

  19. Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014)

    Google Scholar 

  20. Mirjalili, S.: Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl.-Based Syst. 89, 228–249 (2015)

    Google Scholar 

  21. Mirjalili, S., Lewis, A.: The whale optimization algorithm. Adv. Eng. Softw. 95, 51–67 (2016)

    Google Scholar 

  22. Mirjalili, S., Gandomi, A.H., Mirjalili, S.Z., Saremi, S., Faris, H., Mirjalili, S.M.: Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 114, 163–191 (2017)

    Google Scholar 

  23. Azizyan, G., Miarnaeimi, F., Rashki, M., Shabakhty, N.: Flying Squirrel Optimizer (FSO): a novel SI-based optimization algorithm for engineering problems. Iran. J. Optim. 11, 177–205 (2019)

    Google Scholar 

  24. Heidari, A.A., Mirjalili, S., Faris, H., Aljarah, I., Mafarja, M., Chen, H.: Harris hawks optimization: algorithm and applications. Futur. Gener. Comput. Syst. 97, 849–872 (2019)

    Google Scholar 

  25. Abdollahzadeh, B., Gharehchopogh, F.S., Mirjalili, S.: African vultures optimization algorithm: a new nature-inspired metaheuristic algorithm for global optimization problems. Comput. Ind. Eng. 158, 107408 (2021)

    Google Scholar 

  26. Zhao, W., Wang, L., Mirjalili, S.: Artificial hummingbird algorithm: a new bio-inspired optimizer with its engineering applications. Comput. Methods Appl. Mech. Eng. 388, 114194 (2022)

    ADS  MathSciNet  Google Scholar 

  27. Ghosh, A., Deb, K., Goodman, E., Averill, R.: A user-guided innovization-based evolutionary algorithm framework for practical multi-objective optimization problems. Eng. Optim. 1–13 (2022)

  28. Liu, Z., Wang, W., Shi, G., Zhu, P.: A modified crow search algorithm based on group strategy and adaptive mechanism. Eng. Optim. 1–19 (2023)

  29. Li, J.-R., Li, H.-Y., Lim, M.K., Chiu, A.S.F., Tseng, M.-L.: Improved artificial jellyfish search algorithm: virtual synchronous generator control strategy. Eng. Optim. 1–20 (2023)

  30. Ray, T., Liew, K.M.: Society and civilization: an optimization algorithm based on the simulation of social behavior. IEEE Trans. Evol. Comput. 7, 386–396 (2003)

    Google Scholar 

  31. Lee, K.S., Geem, Z.W.: A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice. Comput. Methods Appl. Mech. Eng. 194, 3902–3933 (2005)

    ADS  Google Scholar 

  32. Geem, Z.W.: Optimal cost design of water distribution networks using harmony search. Eng. Optim. 38, 259–277 (2006)

    Google Scholar 

  33. Rao, R.V., Savsani, V.J., Vakharia, D.P.: Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput. Aided Des. 43, 303–315 (2011)

    Google Scholar 

  34. Rao, R.V., Savsani, V.J., Balic, J.: Teaching–learning-based optimization algorithm for unconstrained and constrained real-parameter optimization problems. Eng. Optim. 44, 1447–1462 (2012)

    Google Scholar 

  35. Awad, R.: Sizing optimization of truss structures using the political optimizer (PO) algorithm. Structures 33, 4871–4894 (2021)

    Google Scholar 

  36. Kirkpatrick, S., D, G.C., P, V.M.: Simulated annealing. Science 220, 671–80 (1983)

  37. Lim, K.C.W., Wong, L.-P., Chin, J.F.: Simulated-annealing-based hyper-heuristic for flexible job-shop scheduling. Eng. Optim. 1–17 (2022)

  38. Formato, R.: Central force optimization: a new metaheuristic with applications in applied electromagnetics. Prog. Electromagn. Res. 77, 425–491 (2007)

    Google Scholar 

  39. Rashedi, E., Nezamabadi-pour, H., Saryazdi, S.G.S.A.: A gravitational search algorithm. Inf. Sci. 179, 2232–2248 (2009)

    Google Scholar 

  40. Kaveh, A., Talatahari, S.: A novel heuristic optimization method: charged system search. Acta Mech. 213, 267–289 (2010)

    Google Scholar 

  41. Eskandar, H., Sadollah, A., Bahreininejad, A., Hamdi, M.: Water cycle algorithm—a novel metaheuristic optimization method for solving constrained engineering optimization problems. Comput. Struct. 110–111, 151–166 (2012)

    Google Scholar 

  42. Moghaddam, F.F., Moghaddam, R.F., Cheriet, M.: Curved space optimization: a random search based on general relativity theory. arXiv preprint arXiv 2012;1:12082214

  43. Hatamlou, A.: Black hole: a new heuristic optimization approach for data clustering. Inf. Sci. 222, 175–184 (2013)

    MathSciNet  Google Scholar 

  44. Sadollah, A., Bahreininejad, A., Eskandar, H., Hamdi, M.: Mine blast algorithm: a new population based algorithm for solving constrained engineering optimization problems. Appl. Soft Comput. 13, 2592–2612 (2013)

    Google Scholar 

  45. Stochastic, S.H., Search, F.: A powerful metaheuristic algorithm. Knowl.-Based Syst. 75, 1–18 (2015)

    Google Scholar 

  46. Savsani, P., Savsani, V.: Passing vehicle search (PVS): a novel metaheuristic algorithm. Appl. Math. Model. 40, 3951–3978 (2016)

    Google Scholar 

  47. Kaveh, A., Dadras, A.: A novel meta-heuristic optimization algorithm: thermal exchange optimization. Adv. Eng. Softw. 110, 69–84 (2017)

    Google Scholar 

  48. Faramarzi, A., Heidarinejad, M., Stephens, B., Mirjalili, S.: Equilibrium optimizer: a novel optimization algorithm. Knowl.-Based Syst. 191, 105190 (2020)

    Google Scholar 

  49. Zhao, W., Wang, L., Zhang, Z.: Artificial ecosystem-based optimization: a novel nature-inspired meta-heuristic algorithm. Neural Comput. Appl. 32, 9383–9425 (2020)

    Google Scholar 

  50. Ma, H., Wei, H., Tian, Y., Cheng, R., Zhang, X.: A multi-stage evolutionary algorithm for multi-objective optimization with complex constraints. Inf. Sci. 560, 68–91 (2021)

    MathSciNet  Google Scholar 

  51. Yildiz, B.S., Pholdee, N., Bureerat, S., Yildiz, A.R., Sait, S.M.: Enhanced grasshopper optimization algorithm using elite opposition-based learning for solving real-world engineering problems. Eng. Comput. 38, 4207–4219 (2022)

    Google Scholar 

  52. Zhang, Y.: Elite archives-driven particle swarm optimization for large scale numerical optimization and its engineering applications. Swarm Evol. Comput. 76, 101212 (2023)

    Google Scholar 

  53. Jamil, M., Yang, X.-S.: A literature survey of benchmark functions for global optimisation problems. Int. J. Math. Model. Numer. Optim. 4, 150–194 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng-Xue He.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Constrained benchmark mechanical and engineering design problems

Appendix A. Constrained benchmark mechanical and engineering design problems

1.1 Multiple-disk clutch brake design

Consider variable \(x=\left({r}_{i},{r}_{o},t,F,Z\right)\)

Minimize \(f\left(x\right)=\pi \left({r}_{o}^{2}-{r}_{i}^{2}\right)t\left(Z+1\right)\rho \)

Subject to:

$$ g_{1} \left( x \right) = r_{o} - r_{i} - \Delta r \ge 0, g_{2} \left( x \right) = l_{\max } - \left( {Z + 1} \right)\left( {t + \delta } \right) \ge 0, g_{3} \left( x \right) = p_{\max } - p_{rz} \ge 0, $$
$$ g_{4} \left( x \right) = p_{\max } v_{sr\max } - p_{rz} v_{sr} \ge 0, g_{5} \left( x \right) = v_{sr\max } - v_{sr} \ge 0, g_{6} \left( x \right) = T_{\max } - T \ge 0, $$
$$ g_{7} \left( x \right) = M_{h} - sM_{s} \ge 0, g_{8} \left( x \right) = T \ge 0, $$

where \({M}_{h}=\frac{2}{3}\mu FZ\frac{{r}_{o}^{3}-{r}_{i}^{3}}{{r}_{o}^{2}-{r}_{i}^{2}}, {p}_{rz}=\frac{F}{\pi ({r}_{o}^{2}-{r}_{i}^{2})}, {M}_{h}=\frac{{2\pi n(r}_{o}^{3}-{r}_{i}^{3})}{90({r}_{o}^{2}-{r}_{i}^{2})}, T=\frac{{I}_{z}\pi n}{30({M}_{h}+{M}_{f})},\) \(\Delta r=20\,\mathrm{mm}\), \({t}_{\mathrm{max}}\)= 3 mm, \({t}_{\mathrm{min}}\)= 1.5 mm, \({l}_{\mathrm{max}}=30\,\mathrm{mm}\),\( {Z}_{\mathrm{max}}\)= 10,\({v}_{\mathrm{srmax}}\)= 10 m/s, \(\upmu =0.5\), \(\mathrm{s}=1.5, {M}_{s}\)= 40 Nm\(, {M}_{f}\)= 3 Nm\(, \mathrm{n}\)= 250 rpm\(, {p}_{\mathrm{max}}\)= 1 MPa\(, {I}_{z}\)= 55 \(\mathrm{kg }{\mathrm{mm}}^{2}, {T}_{\mathrm{max}}\)= 15 s\(, {F}_{\mathrm{max}}\)= 1000 N, \({r}_{\mathrm{min}}\)= 55 mm\(, {r}_{o \mathrm{max}}\)= 110 mm\(,\uprho =7800\,\mathrm{kg}/{m}^{3}\).

Variable range \({r}_{i}\in \left\{60, 61, 62,\dots , 80\right\}{, r}_{o}\in \left\{90, 91, 92,\dots , 110\right\}, t\in \left\{1.0, 1.5, 2.0, 2.5, 3\right\}, F\in \left\{600, 610, 620, \dots , 1000\right\}, Z\in \left\{\mathrm{2,3},\mathrm{4,5},\mathrm{6,7},\mathrm{8,9}\right\}\).

1.2 Rolling element bearing

Maximize \({C}_{d}={f}_{c}{Z}^{2/3}{D}_{b}^{1.8}\) if \({D}_{b}\le 25.4\) mm.


\({C}_{d}=3.64{f}_{c}{Z}^{2/3}{D}_{b}^{1.4}\) if \({D}_{b}>25.4\) mm.

Subject to:

$$ g_{1} \left( x \right) = \frac{{\emptyset_{o} }}{{2\sin^{ - 1} \left( {D_{b} /D_{m} } \right)}} - Z + 1 \ge 0, g_{2} \left( x \right) = 2D_{b} - K_{D\min } \left( {D - d} \right) \ge 0, $$
$$ g_{3} \left( x \right) = K_{D\max } \left( {D - d} \right) - 2D_{b} \ge 0, g_{4} \left( x \right) = \zeta B_{w} - D_{b} \le 0, $$
$$ g_{5} \left( x \right) = D_{m} - 0.5\left( {D + d} \right) \ge 0,g_{6} \left( x \right) = \left( {0.5 + e} \right)\left( {D + d} \right) - D_{m} \ge 0, $$
$$ g_{7} \left( x \right) = 0.5\left( {D - D_{m} - D_{b} } \right) - \varepsilon D_{b} \ge 0, g_{8} \left( x \right) = f_{i} \ge 0.515,\;\;g_{9} \left( x \right) = f_{o} \ge 0.515, $$

where

$$ f_{c} = 37.91\left\{ {1 + \left[ {1.04\left( {\frac{1 - \gamma }{{1 + \gamma }}} \right)^{1.72} \left( {\frac{{f_{i} \left( {2f_{o} - 1} \right)}}{{f_{o} \left( {2f_{i} - 1} \right)}}} \right)^{0.41} } \right]^{10/3} } \right\}^{ - 0.3} \left( {\frac{{\gamma^{0.3} \left( {1 - \gamma } \right)^{1.39} }}{{\left( {1 + \gamma } \right)^{1/3} }}} \right)\left( {\frac{{2f_{i} }}{{2f_{i} - 1}}} \right)^{0.41} , $$
$$ \phi_{o} = 2\pi - 2\cos^{ - 1} \frac{{\left[ {\frac{{\left( {D - d} \right)}}{2} - 3\left( \frac{T}{4} \right)} \right]^{2} + \left( {\frac{D}{2} - \frac{T}{4} - D_{b} } \right)^{2} - \left( {\frac{d}{2} + \frac{T}{4}} \right)^{2} }}{{2\left[ {\frac{{\left( {D - d} \right)}}{2} - 3\left( \frac{T}{4} \right)} \right]\left( {\frac{D}{2} - \frac{T}{4} - D_{b} } \right)}}, $$
$$ {\upgamma } = \frac{{D_{b} \cos \alpha }}{{D_{m} }}, f_{i} = \frac{{r_{i} }}{{D_{b} }},\;f_{o} = \frac{{r_{o} }}{{D_{b} }}, T = D - d - 2D_{b} , D = 160, d = 90,\;,B_{w} = 30,\;{\upalpha } = 0, $$
$$ 0.5\left( {D + d} \right) \le D_{m} \le 0.6\left( {D + d} \right), 0.15\left( {D - d} \right) \le D_{b} \le 0.45\left( {D - d} \right), Z \in \left\{ {4,5,6, \ldots ,50} \right\}, $$
$$ 0.515 \le f_{i} ,f_{o} \le 0.6, 0.4 \le K_{D\min } \le 0.5, 0.6 \le K_{D\max } \le 0.7, 0.3 \le \varepsilon \le 0.4, $$
$$ 0.02 \le {\text{e}} \le 0.1,\;0.6 \le {\upzeta } \le 0.85. $$

1.3 Hydrodynamic thrust bearing

Minimize \(f(x)=\frac{Q{P}_{0}}{0.7}+{E}_{f}\)

Subject to: \({\mathrm{g}}_{1}\left(x\right)=W-{W}_{s}\ge 0,{\text{g}}_{2}\left(x\right)={P}_{\mathrm{max}}-{P}_{0}\ge 0, {\text{g}}_{3}\left(x\right)=\Delta {T}_{\mathrm{max}}-\Delta T\ge 0, {\text{g}}_{4}\left(x\right)=h-{h}_{\mathrm{min}}\ge 0\), \({\text{g}}_{5}\left(x\right)=R-{R}_{0}\ge 0\), \({\text{g}}_{6}\left(x\right)=\text{0.001-}\frac{\gamma }{g{P}_{0}}{\left(\frac{Q}{2\pi Rh}\right)}^{2}\ge 0\), \({\mathrm{g}}_{7}\left(x\right)=5000-\frac{W}{\pi \left({R}^{2}-{R}_{0}^{2}\right)}\ge 0\),

Where \(\upgamma =0.0307, \)C = 0.5, n = − 3.55\(, {C}_{1}\) = 10.04\(, {W}_{s}\) = 101,000\(, {P}_{\mathrm{max}}\) = 1000, \(\Delta {T}_{\mathrm{max}}\) = 50\(, {h}_{min}\) = 0.001, \(\mathrm{g}=386.4, \)N = 750\(, 1\le \mathrm{R},{R}_{0},Q\le 16, 1\mathrm{e}-6\le\upmu \le 16\mathrm{e}-6\).

1.4 Belleville spring

Minimize \(f\left(x\right)=0.07075\pi \left({D}_{e}^{2}-{D}_{i}^{2}\right)t\)

Subject to:

$${\text{g}}_{1}\text{(}x\text{)}=S-\frac{4E{\delta }_{\mathrm{max}}}{\left(1-{\mu }^{2}\right)\alpha {D}_{e}^{2}}\left[\beta \left(h-\frac{{\delta }_{\mathrm{max}}}{2}\right)+\gamma t\right]\ge 0,$$
$${\text{g}}_{2}\text{(}x\text{)}=\frac{4E{\delta }_{\mathrm{max}}}{\left(1-{\mu }^{2}\right)\alpha {D}_{e}^{2}}\left[\left(h-\frac{{\delta }_{\mathrm{max}}}{2}\right)\left(h-{\delta }_{\mathrm{max}}\right)t+{t}^{3}\right]-{P}_{\mathrm{max}}\ge 0,$$
$${\text{g}}_{3}\text{(}x\text{)}={\delta }_{l}-{\delta }_{\mathrm{max}}\ge 0, {\text{g}}_{4}\text{(}x\text{)=}H-h-t\ge 0, {\text{g}}_{5}\left(x\right)={D}_{\mathrm{max}}-{D}_{e}\ge 0,$$

\({\text{g}}_{6}\left(x\right)={D}_{e}-{D}_{i}\ge 0, {\text{g}}_{7}\left(x\right)=0.3-\frac{1}{{D}_{e}-{D}_{i}}\ge 0,\) where \(\mathrm{\alpha }=\frac{6}{\pi \mathrm{ln}K}{\left(\frac{K-1}{K}\right)}^{2}, \beta =\frac{6}{\pi \mathrm{ln}K}\left(\frac{K-1}{\mathrm{ln}K}-1\right),\upgamma =\frac{6}{\pi \mathrm{ln}K}\left(\frac{K-1}{2}\right)\), \({P}_{max}=5400\,\text{lb, }{\delta }_{\mathrm{max}}=0.2\,{\text{in}}., S\) = 200 kPsi, E = 30 e6psi, \(\mu =0.3\), H = \(0.2\,{\text{in}}.\), \({D}_{\mathrm{max}}\) = 12.01 in., \(\mathrm{K}=\frac{{D}_{e}}{{D}_{i}}, {\delta }_{l}\) = \(f\left(a\right)h, a=h/t\). \(0.01\le t\le 6.0, 0.05\le h\le 0.5, 5.0\le {D}_{i},{D}_{e}\le 15.0\).

Values of \(\mathrm{f}(\mathrm{a})\) vary as shown in Table

Table 13 Variation of \(f(a)\) with \(a\)

13.

1.5 Step-cone pulley

Minimize \(f\left(x\right)=\rho w\left\{{d}_{1}^{2}\left[1+{\left(\frac{{N}_{1}}{N}\right)}^{2}\right]+{d}_{2}^{2}\left[1+{\left(\frac{{N}_{2}}{N}\right)}^{2}\right]+{d}_{3}^{2}\left[1+{\left(\frac{{N}_{3}}{N}\right)}^{2}\right]+{d}_{4}^{2}\left[1+{\left(\frac{{N}_{4}}{N}\right)}^{2}\right]\right\}\)

Subject to:

$${h}_{1}\left(x\right)={C}_{1}-{C}_{2}=0, {h}_{2}\left(x\right)={C}_{1}-{C}_{3}=0, {h}_{3}\left(x\right)={C}_{1}-{C}_{4}=0,$$
$${\text{g}}_{1,2,3,4}\left(x\right)={R}_{i}\ge 2, {\mathrm{g}}_{\mathrm{5,6},\mathrm{7,8}}\left(x\right)={P}_{i}\ge \left(0.75*745.6998\right),$$

where \({C}_{i}\) indicates the length of the belt to obtain speed \({N}_{i}\) and is given by.

$${C}_{i}=\frac{\pi {d}_{i}}{2}\left(1+\frac{{N}_{i}}{N}\right)+\frac{{\left(\frac{{N}_{i}}{N}-1\right)}^{2}{d}_{i}^{2}}{4a}+2a, {i}=\left(\mathrm{1,2},\mathrm{3,4}\right).$$

\({R}_{i}\) Is the tension ratio and is given by.

$${R}_{i}=\mathrm{exp}\left(\mu \left[\pi -2{\mathrm{sin}}^{-1}\left(\left(\frac{{N}_{i}}{N}-1\right)\frac{{d}_{i}}{2a}\right)\right]\right),{ i}=\left(\mathrm{1,2},\mathrm{3,4}\right).$$
$$ P_{i} = {\text{stw}}\left[ {1 - \exp \left[ { - \mu \left\{ {\pi - 2\sin^{ - 1} \left( {\left( {\frac{{N_{i} }}{N} - 1} \right)\frac{{d_{i} }}{2a}} \right)} \right\}} \right]} \right]\frac{{\pi d_{i} N_{i} }}{60}, i = \left( {1,2,3,4} \right). $$
$$\uprho =\frac{7200\,\mathrm{kg}}{{m}^{3}},a=3\,\mathrm{m},\upmu =0.35,\mathrm{ s}=1.75\,\mathrm{MPa},\mathrm{ t}=8\,\mathrm{mm}.$$
$$1\,\mathrm{mm}\le {d}_{1},{d}_{2},{d}_{3},{d}_{4},w\le 100\,{\text{mm}}\text{.}$$

1.6 Speed reducer design

Minimize \(f\left(x\right)=0.7854{x}_{1}{x}_{2}^{2}\left(3.3333{x}_{3}^{2}+14.9334{x}_{3}-43.0934\right)-1.508{x}_{1}\left({x}_{6}^{2}+{x}_{7}^{2}\right) +7.4777\left({x}_{6}^{3}+{x}_{7}^{3}\right)+0.7854\left({x}_{4}{x}_{6}^{2}+{x}_{5}{x}_{7}^{2}\right)\)

Subject to:

$${\mathrm{g}}_{1}\left(x\right)=\frac{27}{{x}_{1}{x}_{2}^{2}{x}_{3}}-1\le 0, {\mathrm{g}}_{2}\left(x\right)=\frac{397.5}{{x}_{1}{x}_{2}^{2}{x}_{3}^{2}}-1\le 0, {\mathrm{g}}_{3}\left(x\right)=\frac{1.93{x}_{4}^{3}}{{x}_{2}{x}_{3}{x}_{6}^{4}}-1\le 0, {\mathrm{g}}_{4}\left(x\right)=\frac{1.93{x}_{5}^{3}}{{x}_{2}{x}_{3}{x}_{7}^{4}}-1\le 0,$$
$${\text{g}}_{5}\left(x\right)=\frac{\sqrt{{\left[745{x}_{4}/\left({x}_{2}{x}_{3}\right)\right]}^{2}+16.9e6}}{110{x}_{6}^{3}}-1\le 0, {\text{g}}_{6}\left(x\right)=\frac{\sqrt{{\left[745{x}_{5}/\left({x}_{2}{x}_{3}\right)\right]}^{2}+157.5e6}}{85{x}_{7}^{3}}-1\le 0,$$
$$ g_{7} \left( x \right) = \frac{{x_{2} x_{3} }}{40} - 1 \le 0, g_{8} \left( x \right) = \frac{{5x_{2} }}{{x_{1} }} - 1 \le 0,\,g_{9} \left( x \right) = \frac{{x_{1} }}{{12x_{2} }} - 1 \le 0, $$
$${\mathrm{g}}_{10}\left(x\right)=\frac{1.5{x}_{6}+1.9}{{x}_{4}}-1\le 0, {\mathrm{g}}_{11}\left(x\right)=\frac{1.1{x}_{7}+1.9}{{x}_{5}}-1\le 0,$$

where \(2.6\le {x}_{1}\le 3.6; 0.7\le {x}_{2}\le 0.8; \) \(17\le {x}_{3}\le 28;\) \(7.3\le {x}_{4}\le 8.3; 7.8\le {x}_{5}\le 8.3\); \(2.9\le {x}_{6}\le 3.9\); \(5.0\le {x}_{7}\le 5.5\).

1.7 Cantilever beam design

Minimize \(\mathrm{f}\left(\mathrm{x}\right)=0.0624\sum_{i=1}^{5}{x}_{i}\)

Subject to: \({\mathrm{g}}_{1}\left(x\right)=\frac{61}{{x}_{1}^{3}}+\frac{37}{{x}_{2}^{3}}+\frac{19}{{x}_{3}^{3}}+\frac{7}{{x}_{4}^{3}}+\frac{1}{{x}_{5}^{3}}-1\le 0\),

Variable range \(0.01\le {x}_{i}\le 100,i=\mathrm{1,2},\mathrm{3,4},5.\)

1.8 Three-bar truss design

Minimize \(\mathrm{f}\left(\mathrm{x}\right)=\left(2\sqrt{2}{x}_{1}+{x}_{2}\right)l\)

Subject to:

$${\mathrm{g}}_{1}\left(x\right)=\frac{\sqrt{2}{x}_{1}+{x}_{2}}{\sqrt{2}{x}_{1}^{2}+2{x}_{1}{x}_{2}}P-\sigma \le 0, {\mathrm{g}}_{2}\left(x\right)=\frac{{x}_{2}}{\sqrt{2}{x}_{1}^{2}+2{x}_{1}{x}_{2}}P-\sigma \le 0, {\mathrm{g}}_{3}\left(x\right)=\frac{{x}_{2}}{{x}_{1}+\sqrt{2}{x}_{2}}P-\sigma \le 0,$$

where \(l\) = 10 cm, \(P=2\) KN/\({\text{cm}}^{2},\sigma =2\) KN/\({\text{cm}}^{2}\), variable range \(0\le {x}_{1},{x}_{2}\le 1\).

1.9 Welded beam design

Consider \(x=\left({x}_{1},{x}_{2},{x}_{3},{x}_{4}\right)=\left(w,l,d,h\right)\),

minimize \(f\left(x\right)=1.10471{w}^{2}l+0.04811dh(14.0+l)\),

subject to.

$${g}_{1}\left(x\right)=\tau \left(x\right)-13600\le 0,$$
$${g}_{2}\left(x\right)=\sigma \left(x\right)-30000\le 0,$$
$${g}_{3}\left(x\right)=w-h\le 0,$$
$${g}_{4}\left(x\right)=0.10471{w}^{2}+0.04811hd\left(14+l\right)-5.0\le 0,$$
$${g}_{5}\left(x\right)=0.125-w\le 0,$$
$${g}_{6}\left(x\right)=\delta \left(x\right)-0.25\le 0,$$
$${g}_{7}\left(x\right)=6000-P\left(x\right)\le 0,$$

where

$$\upsigma \left(x\right)=\frac{504000}{h{d}^{2}}, \delta \left(x\right)=\frac{65856}{30000h{d}^{3}}, Q=6000\left(14+\frac{l}{2}\right), D=\frac{1}{2}\sqrt{{l}^{2}+{\left(w+d\right)}^{2}},$$
$$J=\sqrt{2}wl\left[\frac{{l}^{2}}{6}+\frac{{\left(w+d\right)}^{2}}{2}\right], \beta =\frac{QD}{J}, \alpha =\frac{6000}{\sqrt{2}wl}, \tau \left(x\right)=\sqrt{{\alpha }^{2}+\frac{\alpha \beta l}{D}+{\beta }^{2}},$$
$$P\left(x\right)=0.61423\times {10}^{6}\frac{d{h}^{3}}{6}\left(1-\frac{d\sqrt{30/48}}{28}\right),$$

With the variable range.

$$ 0.1 \le l,d \le 10,\,0.1 \le w,h \le 2.0. $$

1.10 The pressure vessel design

Consider \(x=\left({x}_{1},{x}_{2},{x}_{3},{x}_{4}\right)=\left({T}_{s},{T}_{h},R,L\right)\),

Minimize \(f\left(x\right)=0.6224{x}_{1}{x}_{3}{x}_{4}+1.7781{x}_{2}{x}_{3}^{2}+3.1661{x}_{1}^{2}{x}_{4}+19.84{x}_{1}^{2}{x}_{3}\),

Subject to \({g}_{1}\left(x\right)=-{x}_{1}+0.0193{x}_{3}\le 0\)

$${g}_{2}\left(x\right)=-{x}_{2}+0.00954{x}_{3}\le 0,$$
$${g}_{3}\left(x\right)=-\pi {x}_{3}^{2}{x}_{4}-\frac{4}{3}\pi {x}_{3}^{3}+1296000\le 0$$
$${g}_{4}\left(x\right)={x}_{4}-240\le 0,$$
$$0\le {x}_{1},{x}_{2}\le 99, 10\le {x}_{3},{x}_{4}\le 200.$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, SX., Cui, YT. Multiscale medalist learning algorithm and its application in engineering. Acta Mech 235, 751–777 (2024). https://doi.org/10.1007/s00707-023-03773-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03773-2

Navigation