Skip to main content
Log in

Interactions due to Hall current and photothermal effect in a magneto-thermoelastic medium with diffusion and gravity

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Aim of the present study is to investigate the effects of mass diffusion, gravity and magnetic field with Hall current on a photothermoelastic semiconducting medium in the context of Lord-Shulman (L-S) theory. The normal mode analysis method is used to obtain the expressions of physical quantities such as stress, temperature, displacement, concentration and carrier density. A moving mechanical load is applied at the outer free surface of the medium and a complete solution of the physical field distributions is obtained. The numerical results of physical quantities for a particular material are obtained using MATLAB software and illustrated graphically. The nature of variations of the physical quantities with spatial co-ordinate is analyzed. The theory and numerical computations are found to be in close agreement. Some special cases of interest have been inferred from the present study for validation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Biot, M.A.: Mechanics of Incremental Deformation. Wiley, New York (1965)

    Book  Google Scholar 

  2. Lord, H.W., Shulman, Y.: A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids 15, 299–309 (1967)

    Article  Google Scholar 

  3. Green, A.E., Lindsay, K.A.: Thermoelasticity. J. Elast. 2, 1–7 (1972)

    Article  Google Scholar 

  4. Green, A.E., Naghdi, P.M.: A re-examination of the basic postulates of thermomechanics. Proc. R. Soc. Lond. Ser. A 432, 171–194 (1991)

    Article  MathSciNet  Google Scholar 

  5. Green, A.E., Naghdi, P.M.: On undamped heat waves in an elastic solid. J. Therm. Stresses 15, 253–264 (1992)

    Article  MathSciNet  Google Scholar 

  6. Green, A.E., Naghdi, P.M.: Thermoelasticity without energy dissipation. J. Elast. 31, 189–208 (1993)

    Article  MathSciNet  Google Scholar 

  7. Song, Y., Bai, J., Ren, Z.: Study on the reflection of photothermal waves in a semiconducting medium under generalized thermoelastic theory. Acta. Mech. 223, 1545–1557 (2012)

    Article  MathSciNet  Google Scholar 

  8. Othman, M.I.A., Tantawi, R.S., Eraki, E.E.: Effect of the gravity on the photothermal waves in a semiconducting medium with an internal heat source and one relaxation time. Waves Rand. Comp. Media. 27, 711–731 (2017)

    Article  Google Scholar 

  9. Lotfy, K.H., Kumar, R., Hassan, W., Gabr, M.: Thermomagnetic effect with microtemperature in a semiconducting photothermal excitation medium. Appl. Math. Mech. 39, 783–796 (2018)

    Article  MathSciNet  Google Scholar 

  10. Mabrouk, N., Yasein, M.D., Lotfy, K.H., El-Bary, A.A.: Effect of magneto-rotator-diffusive waves on the photothermal excitation medium of a dual-phase-lag model and variable thermal conductivity. J. Electromagn. Waves. Appl. 34, 330–348 (2020)

    Article  Google Scholar 

  11. Youssef, H.M., Al-Lehaibi, E.A.: The photothermal interaction of a semiconducting solid sphere based on three Green-Naghdi theories due to the fractional-order strain and ramp-type heating. Mech. Time. Depend. Mater. 17, 1–20 (2022)

    Google Scholar 

  12. Nowacki, W.: Dynamic problems of thermoelastic diffusion in solids-I. Bull. de. l’Acad. Pol. des. Sci. Ser. des. Sci. Tech. 22, 55–64 (1974)

    Google Scholar 

  13. Nowacki, W.: Dynamic problems of thermoelastic diffusion in solids-II. Bull. de. l’Acad. Pol. des. Sci. Ser. des. Sci. Tech. 22, 129–135 (1974)

    Google Scholar 

  14. Nowacki, W.: Dynamic problems of thermoelastic diffusion in solids III. Bull. de. l’Acad. Pol. des. Sci. Ser. des. Sci. Tech. 22, 266–275 (1974)

    Google Scholar 

  15. Aouadi, M.: Generalized theory of thermoelastic diffusion for anisotropic media. J. Therm. Stresses. 31, 270–285 (2008)

    Article  Google Scholar 

  16. Choudhary, S., Deswal, S.: Mechanical loads on a generalized thermoelastic medium with diffusion. Meccanica. 45, 401–413 (2010)

    Article  MathSciNet  Google Scholar 

  17. Othman, M.I.A., Atwa, S.Y., Farouk, R.M.: The effect of diffusion on two-dimensional problem of generalized thermoelasticity with Green-Naghdi theory. Int. Commun. Heat. Mass. Transf. 36, 857–864 (2009)

    Article  Google Scholar 

  18. Deswal, S., Kalkal, K.K., Sheoran, S.S.: Axi-symmetric generalized thermoelastic diffusion problem with two-temperature and initial stress under fractional order heat conduction. Physica. B: Condensed. Matter. 496, 57–68 (2016)

    Article  Google Scholar 

  19. Lotfy, K.H.: A novel model of magneto photothermal diffusion (MPD) on polymer nano-composite semiconductor with initial stress. Waves Rand. Comp. Media. 31, 83–100 (2021)

    Article  MathSciNet  Google Scholar 

  20. Paria, G.: On magneto-thermoelastic plane waves. Math. Proc. Cambridge. Philos. 58, 527–531 (1962)

    Article  MathSciNet  Google Scholar 

  21. Deswal, S., Sheoran, S.S., Kalkal, K.K.: A two-dimensional problem in magnetothermoelasticity with laser pulse under different boundary conditions. J. Mech. Mater. Struct. 8, 441–459 (2013)

    Article  Google Scholar 

  22. Pal, P., Das, P., Kanoria, M.: Magneto-thermoelastic response in a functionally graded rotating medium due to a periodically varying heat source. Acta. Mech. 226, 2103–2120 (2015)

    Article  MathSciNet  Google Scholar 

  23. Deswal, S., Punia, B.S., Kalkal, K.K.: Propagation of waves at an interface between a transversely isotropic rotating thermoelastic solid half space and a fiber-reinforced magneto-thermoelastic rotating solid half space. Acta Mech. 230, 2669–2686 (2019)

    Article  MathSciNet  Google Scholar 

  24. Hall, E.H.: On a new action of the magnet on electric currents. Amer. J. Math. 2, 287–292 (1879)

    Article  MathSciNet  Google Scholar 

  25. Kumar, R., Sharma, N., Lata, P.: Thermomechanical interactions due to Hall current in transversely isotropic thermoelastic with and without energy dissipation with two temperatures and rotation. J. Solid. Mech. 8, 840–858 (2016)

    Google Scholar 

  26. Othman, M.I.A., Abd-Elaziz, E.M.E.: Effect of initial stress and Hall current on a magneto-thermoelastic porous medium with microtemperatures. Indian. J. Phy. 93, 475–485 (2019)

    Article  Google Scholar 

  27. Lotfy, K.H., El-Bary, A.A., Hassan, W., Ahmed, M.H.: Hall current influence of microtemperature magneto-elastic semiconductor material. Superlattices. Microstruct. 139, 106428 (2020)

    Article  Google Scholar 

  28. Kaur, I., Lata, P., Singh, K.: Effect of Hall current in transversely isotropic magneto-thermoelastic rotating medium with fractional-order generalized heat transfer due to ramp-type heat. Indian. J. Phys. 95, 1165–1174 (2021)

    Article  Google Scholar 

  29. Bromwich, T.J.I.A.: On the influence of gravity on elastic waves and in particular on the vibrations of an elastic globe. Proc. London. Math. Soc. 30, 98–165 (1898)

    Article  MathSciNet  Google Scholar 

  30. Sengupta, P.R.: The influence of gravity on the propagation of wave in thermoelastic layer. Rev. Roumaine. Sci. Tech. Mec. Appl. 24, 395–406 (1979)

    MathSciNet  Google Scholar 

  31. Othman, M.I.A., Tantawi, R.S.: The effect of a laser pulse and gravity field on a thermoelastic medium under Green-Naghdi theory. Acta. Mech. 227, 3571–3583 (2016)

    Article  MathSciNet  Google Scholar 

  32. Deswal, S., Punia, B.S., Kalkal, K.K.: Thermodynamical interactions in a two-temperature dual-phase-lag micropolar thermoelasticity with gravity. Multidiscip. Model. Mater. Struct. 14, 102–124 (2018)

    Article  Google Scholar 

  33. Sheokand, S.K., Kalkal, K.K., Deswal, S.: Thermoelastic interactions in a functionally graded material with gravity and rotation under dual-phase-lag heat conduction. Mech. Based. Des. Struct. Mach. 1-21 (2021)

  34. Kilany, A.A., Abd-Alla, A.N., Abd-Alla, A.M., Abo-Dahab, S.M.: On thermoelastic problem based on four theories with the efficiency of the magnetic field and gravity. J. Ocean. Eng. Sci. (2022). https://doi.org/10.1016/j.joes.2022.02.007

    Article  Google Scholar 

  35. Bayones, F.S., Kilany, A.A., Abouelregal, A.E., Abo-Dahab, S.M.: A rotational gravitational stressed and voids effect on an electromagnetic photothermal semiconductor medium under three models of thermoelasticity. Mech. Based. Des. Struct. Mach. 1-27 (2021)

  36. Todorovic, D.M.: Plasma, thermal, and elastic waves in semiconductors. Rev. Sci. Instrum. 74, 582–585 (2003)

    Article  Google Scholar 

  37. Sherief, H.H., Hamza, F.A., Saleh, H.A.: The theory of generalized thermoelastic diffusion. Int. J. Eng. Sci. 42, 591–608 (2004)

    Article  MathSciNet  Google Scholar 

  38. Yadav, A.K.: Photothermal plasma wave in the theory of two-temperature with multi-phase-lag thermo-elasticity in the presence of magnetic field in a semiconductor with diffusion. Waves Rand. Comp. Media. 32, 2416–2444 (2022)

    Article  MathSciNet  Google Scholar 

  39. Othman, M.I.A., Abd-Elaziz, E.M.E., Mohamed, I.E.: Dual-phase-lag model on microstretch thermoelastic medium with diffusion under the influence of gravity and laser pulse. Struct. Eng. Mech. 75, 133–144 (2020)

    Google Scholar 

  40. Deswal, S., Choudhary, S.: Impulsive effect on an elastic solid with generalized thermodiffusion. J. Eng. Math. 63, 79–94 (2009)

    Article  MathSciNet  Google Scholar 

  41. Othman, M.I.A., Tantawi, R.S., Eraki, E.E.: Propagation of the photothermal waves in a semiconducting medium under LS theory. J. Therm. Stresses. 39, 1419–1427 (2016)

    Article  Google Scholar 

  42. Lotfy, K.H., Hassan, W., El-Bary, A.A., Kadry, M.A.: Response of electromagnetic and Thomson effect of semiconductor medium due to laser pulses and thermal memories during photothermal excitation. Results. Phys. 16, 102877 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

One of the authors, Parmender Sheokand is thankful to the University Grants Commission, New Delhi for the financial support Vide D.O. No. F.14-34/2011(CPP-II).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baljit Singh Punia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

$$\begin{aligned}{} & {} A^*=\frac{ A_{99}}{E_{10}},\;\;B^*=\frac{ B_{99}}{E_{10}},\;\; E^*=\frac{ E_{99}}{E_{10}},\\{} & {} F^*=\frac{ F_{99}}{E_{10}},\;\; L^*=\frac{ L_{99}}{E_{10}},\\{} & {} A_{99}=-E_8+(Z_1-R_3)a_4+A_{13}(Z_1-R_3),\\{} & {} B_{99}=E_5+a_4E_8-E_7+E_8 A_{13}-(Z_1-R_3)A_4 A_{13}+\beta ^2 A_{12}^2 R_3,\\{} & {} E_{99}=E_4-A_{13} E_5+E_7 a_4-E_9-a_4 E_8 A_{13}+A_{13} E_7-\beta ^2 E_1 A_{12},\\{} & {} F_{99}=E_6-A_{13} E_4+a_4 E_9-E_7 A_4 A_{13}+E_9 A_{13}-\beta ^2 A_{12} E_2,\\{} & {} L_{99}=-A_{13} E_6-A_{13} A_4 E_9-\beta ^2 A_{12} E_3,\\{} & {} E_1=A_{12}(a_5+a_3R_3)+A_{12}a_4 R_3,\\{} & {} E_2=\epsilon _{2}\epsilon _{3}R_3 A_{12}-A_{12}a_3R_3-a_4A_{12}(a_5+a_3 R_3),\\{} & {} E_3=-\epsilon _3 A_{12} \epsilon _2 a_5+a_3a_4R_3 A_{12},\\{} & {} E_4=\epsilon _3(\epsilon _2 a_5+\epsilon _2 R_3 A_{11}-a_2 a_5-a_2R_3a^2-2a^2a_1-2a^2\epsilon _2 Z_1),\\{} & {} E_5=\epsilon _3(-\epsilon _2 R_3+a_2R_3+a_1+Z_1 \epsilon _2),\\{} & {} E_6=\epsilon _3(-\epsilon _2 a_5 A_{11}+a_2 a_5 a^2+a^4 a_1+\epsilon _2 Z_1 a^4),\\{} & {} E_7=-a_3 a_5-a_1 R_1 a^2-A_{11} a_5-a_3 R_3 A_{11}-a_1R_1 A_{11}\\{} & {} \hspace{11mm}-a_2 a_5-a_2 a^2 R_3-2a^2 a_1-2a_2 R_1 a^2 Z_1+Z_1 a^4+2a^2a_3Z_1,\\{} & {} E_8=a_5+a_3 R_3+a_1 R_1+A_{11} R_3+a_2 R_3+a_1+a_2 R_1 Z_1-2 a^2 Z_1-Z_1 a_3,\\{} & {} E_9=a_3a_5 A_{11}+a_1 R_1 a^2 A_{11}+a_2 a^2 a_5+a_1 a^4+a_2 R_1 Z_1 a^4-a_3 a^4 Z_1,\\{} & {} E_{10}=Z_1-R_3. \end{aligned}$$

Appendix B

$$\begin{aligned}{} & {} H_{1n}=\frac{-\beta ^2 A_{12}}{k_n^2-A_{13}},\;\;H_{2n}=\frac{Q_{1n}+Q_{2n}+Q_{3n}H_{1n}}{Q_{4n}(k_n^2-a_4)Z_1-\epsilon _3(a_1+\epsilon _2 Z_1)},\\{} & {} H_{3n}=\frac{-\epsilon _3 H_{2n}}{D^2-a_4},\;\; H_{4n}=\frac{(k_n^4+a^4-2a^2k_n^2)+R_1(k_n^2-a^2)H_{2n}}{R_3 k_n^2-A_8},\\{} & {} H_{5n}=\iota a-k_nH_{1n},\;\; H_{6n}=-k_n-\iota aH_{1n}, \end{aligned}$$
$$\begin{aligned}{} & {} S_{1n}=\beta ^2(-a^2+k_n^2-H_{2n}-H_{3n})-Z_1 H_{4n}-2(k_n^2-\iota ak_n H_{1n}),\\{} & {} S_{2n}=\beta ^2(-a^2+k_n^2-H_{2n}-H_{3n})-Z_1 H_{4n}+2(a^2+\iota ak_n H_{1n}),\\{} & {} S_{3n}=-2\iota ak_n+(k_n^2-a^2)H_{1n},\;\;Q_{1n}=a_1(k_n^2-A_{11})(k_n^2-a_4), \\{} & {} Q_{2n}=a_2 Z_1 (k_n^2-a^2)(k_n^2-a_4),\;\;Q_{3n}=-a_1 A_{12}(k_n^2-a_4),\\{} & {} Q_{4n}=a_1+(k_n^2-a_3). \end{aligned}$$

Appendix C

$$\begin{aligned}{} & {} \Delta = -\left[ S_{21}\frac{\Delta _1}{Q_0v_0}+S_{22}\frac{\Delta _2}{Q_0v_0}+ S_{23}\frac{\Delta _3}{Q_0v_0}+S_{24}\frac{\Delta _4}{Q_0v_0}+S_{25}\frac{\Delta _5}{Q_0v_0}\right] ,\\{} & {} \Delta _1= -Q_0v_0[S_{32}(P_3P_9P_{15}-P_3P_{10}P_{14}-P_4P_8P_{15}+P_4P_{13}P_{10}+P_5P_8P_{14}-P_5P_{13}P_9)\\{} & {} \hspace{1.1cm} -S_ {33}(P_2P_9P_{15}-P_2P_{10}P_{14}-P_4P_7P_{15}+P_4P_{12}P_{10}+P_5P_7P_{14}-P_5P_{12}P_9)\\{} & {} \hspace{1.1cm} +S_{34}(P_2P_8P_{15}-P_2P_{10}P_{13}-P_3P_7P_{15}+P_3P_{12}P_{10}+P_5P_7P_{13}-P_5P_{12}P_8)\\{} & {} \hspace{1.1cm} -S_{35}(P_2P_8P_{14}-P_2P_{13}P_9-P_3P_7P_{14}+P_3P_{12}P_9+P_4P_7P_{13}-P_4P_{12}P_8)],\\{} & {} \Delta _2=Q_0v_0[S_{31}(P_3P_9P_{15}-P_3P_{10}P_{14}-P_4P_8P_{15}+P_4P_{13}P_{10}+P_5P_8P_{14}-P_5P_{13}P_9)\\{} & {} \hspace{1.1cm} -S_{33}(P_1P_9P_{15}-P_1P_{10}P_{14}-P_4P_6P_{15}+P_4P_{11}P_{10}+P_5P_6P_{14}-P_5P_{11}P_9)\\{} & {} \hspace{1.1cm} +S_{34}(P_1P_8P_{15}-P_1P_{10}P_{13}-P_3P_6P_{15}+P_3P_{11}P_{10}+P_5P_6P_{13}-P_5P_{11}P_8)\\{} & {} \hspace{1.1cm}-S_{35}(P_1P_8P_{14}-P_1P_{13}P_9-P_3P_6P_{14}+P_3P_{11}P_9+P_4P_6P_{13}-P_4P_{11}P_8)],\\{} & {} \Delta _3=-Q_0v_0[S_{31}(P_2P_9P_{15}-P_2P_{10}P_{14}-P_4P_7P_{15}+P_4P_{12}P_{10}+P_5P_7P_{14}-P_5P_{12}P_9)\\{} & {} \hspace{1.1cm} -S_{32}(P_1P_9P_{15}-P_1P_{10}P_{14}-P_4P_6P_{15}+P_4P_{11}P_{10}+P_5P_6P_{14}-P_5P_{11}P_9)\\{} & {} \hspace{1.1cm} +S_{34}(P_1P_7P_{15}-P_1P_{10}P_{12}-P_2P_6P_{15}+P_2P_{11}P_{10}+P_5P_6P_{12}-P_5P_{11}P_7)\\{} & {} \hspace{1.1cm} -S_{35}(P_1P_7P_{14}-P_1P_{12}P_9-P_2P_6P_{14}+P_2P_{11}P_9+P_4P_6P_{12}-P_4P_{11}P_7)],\\ \Delta _4= & {} Q_0v_0[S_{31}(P_2P_8P_{15}-P_2P_{10}P_{13}-P_3P_7P_{15}+P_3P_{12}P_{10}+P_5P_7P_{13}-P_5P_{12}P_8)\\{} & {} \hspace{1.1cm} -S_{32}(P_1P_8P_{15}-P_1P_{10}P_{13}-P_3P_6P_{15}+P_3P_{11}P_{10}+P_5P_6P_{13}-P_5P_{11}P_8)\\{} & {} \hspace{1.1cm} +S_{33}(P_1P_7P_{15}-P_1P_{10}P_{12}-P_2P_6P_{15}+P_2P_{11}P_{10}+P_5P_6P_{12}-P_5P_{11}P_7)\\{} & {} \hspace{1.1cm}-S_{35}(P_1P_7P_{13}-P_1P_{12}P_8-P_2P_6P_{13}+P_2P_{11}P_8+P_3P_6P_{12}-P_3P_{11}P_7)], \\ \Delta _5= & {} -Q_0v_0[S_{31}(P_2P_8P_{14}-P_2P_9P_{13}-P_3P_7P_{14}+P_3P_{12}P_9+P_4P_7P_{13}-P_4P_{12}P_8)\\{} & {} \hspace{1.1cm} -S_{32}(P_1P_8P_{14}-P_1P_9P_{13}-P_3P_6P_{14}+P_3P_{11}P_9+P_4P_6P_{13}-P_4P_{11}P_8)\\{} & {} \hspace{1.1cm} +S_{33}(P_1P_7P_{14}-P_1P_9P_{12}-P_2P_6P_{14}+P_2P_{11}P_9+P_4P_6P_{12}-P_4P_{11}P_7)\\{} & {} \hspace{1.1cm} -S_{34}(P_1P_7P_{13}-P_1P_{12}P_8-P_2P_6P_{13}+P_2P_{11}P_8+P_3P_6P_{12}-P_3P_{11}P_7)],\\ P_i= & {} -k_iH_{2i} (i=1,2,3,4,5),\;\;P_6=(k_1+v)H_{31},\;\;P_7=(k_2+v)H_{32},\\ P_8= & {} (k_3+v)H_{33},\;\;P_9=(k_4+v)H_{34},\;\;P_{10}=(k_5+v)H_{35},\\ P_{1i}= & {} -l_iH_{4i}(i=1,2,3,4,5),\;\;m=\frac{s C_T t^*}{ D_E}. \end{aligned}$$

Appendix D

$$\begin{aligned}{} & {} P_1^{*}=\frac{A_{00}}{E_{77}},\;\; P_2^{*}=\frac{B_{00}}{E_{77}},\;\; P_3^{*}=\frac{E_{00}}{E_{77}},\;\; P_4^{*}=\frac{F_{00}}{E_{77}},\\{} & {} A_{00}=E_{44}+A_{11} R_3+E_{22}+A_{13} R_3,\\{} & {} B_{00}=E_{55}-E_{44} A_{11}+E_{11}-A_{13} E_{44}-A_{13} E_{22}-R_3 E_6,\\{} & {} E_{00}=-A_{11} E_{55}+E_{33}-A_{13} E_{55}-E_{44} E_{66}-A_{13} E_{11},\\{} & {} F_{00}=E_{44} E_{55}-A_{13} E_{33},\\{} & {} E_{11}=(-a_2 a_5-2a_2 R_1 a^2 Z_1-a_2 a^2 R_3-2A^2 a_1),\\{} & {} E_{22}=a_2 R_3+a_2 R_1 Z_1+a_1,\\{} & {} E_{33}=a_2 a^2 a_5+a_1 a^4+a_2 R_1 Z_1 a^4,\\{} & {} E_{44}=a_5+a_3 R_3+a_1 R_1,\\{} & {} E_{55}=-a_3 a_5-a_1 R_1 a^2,\\{} & {} E_{66}=A_{11} A_{13}+\beta ^2 A_{12}^2,\\{} & {} E_{77}=-R_3, \\{} & {} B_{1n}=\frac{-\beta ^2 A_{12}}{l_n^2-A_{13}},\;\;B_{2n}=\frac{U_{1n}+U_{2n}+U_{3n}B_{1n}}{U_{4n}},\\{} & {} B_{3n}=\frac{(l_n^4+a^4-2a^2l_n^2)+R_1(l_n^2-a^2)B_{2n}}{R_3 l_n^2-A_8},\\{} & {} B_{4n}=\iota a-l_nB_{1n},\;\; B_{5n}=-l_n-\iota aB_{1n},\\{} & {} B_{6n}=\beta ^2(-a^2+l_n^2-B_{2n})-Z_1B_{3n}-2(l_n^2-\iota al_n B_{1n}),\\{} & {} B_{7n}=\beta ^2(-a^2+l_n^2-B_{2n})-Z_1B_{3n}+2(a^2+\iota al_n B_{1n}),\\{} & {} B_{8n}=-2\iota al_n+(l_n^2-a^2)B_{1n},\;\; U_{1n}=a_1(l_n^2-A_{11}),\\{} & {} U_{2n}=a_2 Z_1 (l_n^2-a^2),\;\;U_{3n}=-a_1 A_{12},\;\; U_{4n}=a_1+(l_n^2-a_3)Z_1,\\{} & {} \Delta _{0}=-B_{71}\frac{\Delta _{11}}{Q_0V_0}+B_{72}\frac{\Delta _{12}}{Q_0V_0}-B_{73}\frac{\Delta _{13}}{Q_0V_0}+B_{74}\frac{\Delta _{14}}{Q_0V_0},\\{} & {} \Delta _{11}=-Q_0 v_0[B_{82}(T_3 T_8-T_7 T_4)-B_{83}(T_2 T_8-T_6 T_4)+B_{84}(T_2 T_7-T_6 T_3)],\\{} & {} \Delta _{12}=-Q_0 v_0[B_{81}(T_3 T_8-T_7 T_4)-B_{83}(T_1 T_8-T_5 T_4)+B_{84}(T_1 T_7-T_5 T_3)],\\{} & {} \Delta _{13}=-Q_0 v_0[B_{81}(T_2 T_8-T_6T_4)-B_{82}(T_1 T_8-T_5T_4)+B_{84}(T_1 T_6-T_5T_2)],\\{} & {} \Delta _{14}=-Q_0 v_0[B_{81}(T_2 T_7-T_6 T_3)-B_{82}(T_1 T_7-T_5 T_3)+B_{83}(T_1 T_6-T_5 T_2)],\\{} & {} T_1=-l_1 B_{21},\;\;T_2=-l_2 B_{22},\;\;T_3=-l_3B_{23},\;\;T_4=-l_4B_{24},\\{} & {} T_5=-l_1B_{31},\;\;T_6=-l_2B_{32},\;\;T_7=-l_3B_{33}, \;\;T_8=-l_4B_{34}. \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deswal, S., Sheokand, P. & Punia, B.S. Interactions due to Hall current and photothermal effect in a magneto-thermoelastic medium with diffusion and gravity. Acta Mech 235, 235–254 (2024). https://doi.org/10.1007/s00707-023-03748-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03748-3

Navigation