Skip to main content
Log in

Data-driven computational method for growth-induced deformation problems of soft materials

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This paper presents a data-driven solver (DDS) for the growth-induced deformation problems of soft materials. Contrary to the over-reliance of traditional numerical methods on material constitutive models, the DDS requires only a discrete material dataset of stress–strain pairs to describe the stress–strain relationship. With the multiplicative decomposition of the gradient tensor, the growth effects are introduced. The growth-induced deformation problems are then solved as the pre-strain problems. To overcome the difficulty in determining the growth-induced pre-stress without an explicit constitutive model, a strain-driven searching scheme is thus proposed. Several numerical examples demonstrate the robustness and its good performance of the proposed DDS. In particular, the reason for choosing the strain-driven searching scheme is also illustrated according to the numerical example results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Zhao, R., Kim, Y., Chester, S.A., Sharma, P., Zhao, X.: Mechanics of hard-magnetic soft materials. J. Mech. Phys. Solids 124, 244–263 (2019)

    MathSciNet  Google Scholar 

  2. Jacques, S.L.: Optical properties of biological tissues: A review. Phys. Med. Biol. 58, R37 (2013)

    Google Scholar 

  3. Chen, D.T.N., Wen, Q., Janmey, P.A., Crocker, J.C., Yodh, A.G.: Rheology of soft materials. Annu. Rev. Condens. Matter Phys. 1, 301–322 (2010)

    Google Scholar 

  4. Li, K., He, L.H.: Deformation and buckling of a pre-stretched soft elastic film induced by spatially modulated electric fields. Int. J. Solids Struct. 47, 2784–2789 (2010)

    Google Scholar 

  5. Miriyev, A., Stack, K., Lipson, H.: Soft material for soft actuators. Nat. Commun. 8, 596 (2017)

    Google Scholar 

  6. Qiu, Y., Zhang, S., Zhang, W., Ye, H., Zhang, H., Zheng, Y.: Coupling moving morphable voids and components based topology optimization of hydrogel structures involving large deformation. J. Appl. Mech. 89, (2021)

  7. Arazoe, H., Miyajima, D., Akaike, K., Araoka, F., Sato, E., Hikima, T., Kawamoto, M., Aida, T.: An autonomous actuator driven by fluctuations in ambient humidity. Nat. Mater. 15, 1084–1089 (2016)

    Google Scholar 

  8. Mccoy, C.P., Stomeo, F., Plush, S.E., Gunnlaugsson, T.: Soft matter pH sensing: From luminescent lanthanide pH switches in solution to sensing in hydrogels. Chem. Mater. 18, 4336–4343 (2006)

    Google Scholar 

  9. Zhou, L., Fu, J., He, Y.: A review of 3D printing technologies for soft polymer materials. Adv. Funct. Mater. 30, 2000187 (2020)

    Google Scholar 

  10. Rausch, M.K., Kuhl, E.: On the mechanics of growing thin biological membranes. J. Mech. Phys. Solids 63, 128–140 (2014)

    MathSciNet  Google Scholar 

  11. Peña, E., Martinez, M.A., Calvo, B., Doblaré, M.: On the numerical treatment of initial strains in biological soft tissues. Int. J. Numer. Methods Eng. 68, 836–860 (2006)

    Google Scholar 

  12. Li, B., Cao, Y., Feng, X., Gao, H.: Surface wrinkling of mucosa induced by volumetric growth: Theory, simulation and experiment. J. Mech. Phys. Solids 59, 758–774 (2011)

    MathSciNet  Google Scholar 

  13. Du, P., Li, Z., Chen, X., Wang, J.: A general multi-layered hyperelastic plate theory for growth-induced deformations in soft material samples. Appl. Math. Model. 115, 300–336 (2023)

    Google Scholar 

  14. Liu, Y., Zhang, H., Zheng, Y., Zhang, S., Chen, B.: A nonlinear finite element model for the stress analysis of soft solids with a growing mass. Int. J. Solids Struct. 51, 2964–2978 (2014)

    Google Scholar 

  15. Kennaway, R., Coen, E.: Volumetric finite-element modelling of biological growth. Open Biol. 9, 190057 (2019)

    Google Scholar 

  16. Zhang, Z., Pan, Y., Wang, J., Zhang, H., Chen, Z., Zheng, Y., Ye, H.: A total-Lagrangian material point method for coupled growth and massive deformation of incompressible soft materials. Int. J. Numer. Methods Eng. 122, 6180–6202 (2021)

    MathSciNet  Google Scholar 

  17. Zhang, Z., Qiu, Y., Hu, Z., Ye, H., Zhang, H., Zheng, Y.: Explicit phase-field total Lagrangian material point method for the dynamic fracture of hyperelastic materials. Comput. Methods Appl. Mech. Eng. 398, 115234 (2022)

    MathSciNet  Google Scholar 

  18. Lejeune, E., Linder, C.: Modeling tumor growth with peridynamics. Biomech. Model. Mechanobiol. 16, 1141–1157 (2017)

    Google Scholar 

  19. Li, C., Zhang, H., Ye, H., Zhang, H., Zheng, Y.: An improved stabilized peridynamic correspondence material model for the crack propagation of nearly incompressible hyperelastic materials. Comput. Methods Appl. Mech. Eng. 404, 115840 (2023)

    MathSciNet  Google Scholar 

  20. Montáns, F.J., Chinesta, F., Gómez-Bombarelli, R., Kutz, J.N.: Data-driven modeling and learning in science and engineering. CR. Mecanique. 347, 845–855 (2019)

    Google Scholar 

  21. Xiang, Y., Zhong, D., Rudykh, S., Zhou, H., Qu, S., Yang, W.: A review of physically based and thermodynamically based constitutive models for soft materials. J. Appl. Mech. 87, (2020)

  22. Wang, Z., Martin, B., Weickenmeier, J., Garikipati, K.: An inverse modelling study on the local volume changes during early morphoelastic growth of the fetal human brain. Brain Multiphysics. 2, 100023 (2021)

    Google Scholar 

  23. Prachaseree, P., Lejeune, E.: Learning mechanically driven emergent behavior with message passing neural networks. Comput. Struct. 270, 106825 (2022)

    Google Scholar 

  24. Lee, T., Bilionis, I., Tepole, A.B.: Propagation of uncertainty in the mechanical and biological response of growing tissues using multi-fidelity Gaussian process regression. Comput. Methods Appl. Mech. Eng. 359, 112724 (2020)

    MathSciNet  Google Scholar 

  25. Duan, X., Huang, J.: Deep learning-based digital volume correlation. Extreme Mech. Lett. 53, 101710 (2022)

    Google Scholar 

  26. Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Comput. Methods Appl. Mech. Eng. 304, 81–101 (2016)

    MathSciNet  Google Scholar 

  27. Eggersmann, R., Kirchdoerfer, T., Reese, S., Stainier, L., Ortiz, M.: Model-free data-driven inelasticity. Comput. Methods Appl. Mech. Eng. 350, 81–99 (2019)

    MathSciNet  Google Scholar 

  28. Stainier, L., Leygue, A., Ortiz, M.: Model-free data-driven methods in mechanics: Material data identification and solvers. Comput. Mech. 64, 381–393 (2019)

    MathSciNet  Google Scholar 

  29. Kirchdoerfer, T., Ortiz, M.: Data-driven computing in dynamics. Int. J. Numer. Methods Eng. 113, 1697–1710 (2018)

    MathSciNet  Google Scholar 

  30. Zheng, Z., Ye, H., Zhang, H., Zheng, Y., Chen, Z.: Multi-level K-d tree-based data-driven computational method for the dynamic analysis of multi-material structures. Int. J. Multiscale Comput. Eng. 18, (2020)

  31. Zheng, Z., Zhang, H., Ye, H., Zheng, Y.: Distance minimizing-based data-driven computational plasticity method with fixed dataset. Int. J. Appl. Mech. 14, 2250083 (2022)

    Google Scholar 

  32. Karapiperis, K., Stainier, L., Ortiz, M., Andrade, J.E.: Data-driven multiscale modeling in mechanics. J. Mech. Phys. Solids 147, 104239 (2021)

    MathSciNet  Google Scholar 

  33. Xu, R., Yang, J., Yan, W., Huang, Q., Giunta, G., Belouettar, S., Zahrouni, H., Zineb, T.B., Hu, H.: Data-driven multiscale finite element method: From concurrence to separation. Comput. Methods Appl. Mech. Eng. 363, 112893 (2020)

    MathSciNet  Google Scholar 

  34. Mora-Macías, J., Ayensa-Jiménez, J., Reina-Romo, E., Doweidar, M.H., Domínguez, J., Doblaré, M., Sanz-Herrera, J.A.: A multiscale data-driven approach for bone tissue biomechanics. Comput. Methods Appl. Mech. Eng. 368, 113136 (2020)

    MathSciNet  Google Scholar 

  35. Carrara, P., De Lorenzis, L., Stainier, L., Ortiz, M.: Data-driven fracture mechanics. Comput. Methods Appl. Mech. Eng. 372, 113390 (2020)

    MathSciNet  Google Scholar 

  36. Liu, Z., Zhang, J., Zhang, H., Ye, H., Zhang, H., Zheng, Y.: Time-discontinuous state-based peridynamics for elasto-plastic dynamic fracture problems. Eng. Fract. Mech. 266, 108392 (2022)

    Google Scholar 

  37. Carrara, P., Ortiz, M., De Lorenzis, L.: Data-driven rate-dependent fracture mechanics. J. Mech. Phys. Solids 155, 104559 (2021)

    MathSciNet  Google Scholar 

  38. Nguyen, L.T.K., Keip, M.-A.: A data-driven approach to nonlinear elasticity. Comput. Struct. 194, 97–115 (2018)

    Google Scholar 

  39. Platzer, A., Leygue, A., Stainier, L., Ortiz, M.: Finite element solver for data-driven finite strain elasticity. Comput. Methods Appl. Mech. Eng. 379, 113756 (2021)

    MathSciNet  Google Scholar 

  40. Zheng, Z., Zhang, Z., Ye, H., Zhang, H., Zheng, Y.: Distance minimizing based data-driven computational method for the finite deformation of hyperelastic materials. Int. J. Numer. Methods Eng. 124, 2315–2340 (2023)

    MathSciNet  Google Scholar 

  41. Nguyen, L.T.K., Rambausek, M., Keip, M.-A.: Variational framework for distance-minimizing method in data-driven computational mechanics. Comput. Methods Appl. Mech. Eng. 365, 112898 (2020)

    MathSciNet  Google Scholar 

  42. Rodriguez, E.K., Hoger, A., Mcculloch, A.D.: Stress-dependent finite growth in soft elastic tissues. J. Biomech. 27, 455–467 (1994)

    Google Scholar 

  43. Kadapa, C., Li, Z., Hossain, M., Wang, J.: On the advantages of mixed formulation and higher-order elements for computational morphoelasticity. J. Mech. Phys. Solids 148, 104289 (2021)

    MathSciNet  Google Scholar 

  44. Zheng, Y., Wang, J., Ye, H., Liu, Y., Zhang, H.: A solid-shell based finite element model for thin-walled soft structures with a growing mass. Int. J. Solids Struct. 163, 87–101 (2019)

    Google Scholar 

  45. Ganghoffer, J.-F.: A kinematically and thermodynamically consistent volumetric growth model based on the stress-free configuration. Int. J. Solids Struct. 50, 3446–3459 (2013)

    Google Scholar 

  46. Menzel, A., Kuhl, E.: Frontiers in growth and remodeling. Mech. Res. Commun. 42, 1–14 (2012)

    Google Scholar 

  47. Hossain, M., Possart, G., Steinmann, P.: A finite strain framework for the simulation of polymer curing. Part I: elasticity. Comput. Mech. 44, 621–630 (2009)

    MathSciNet  Google Scholar 

  48. Hossain, M., Possart, G., Steinmann, P.: A finite strain framework for the simulation of polymer curing Part II Viscoelasticity and shrinkage. Comput. Mech. 46, 363–375 (2010)

    Google Scholar 

  49. Chaves, E.W.: Notes on Continuum Mechanics. Springer Science & Business Media, Netherlands (2013)

    Google Scholar 

  50. Kadapa, C., Hossain, M.: A linearized consistent mixed displacement-pressure formulation for hyperelasticity. Mech. Adv. Mater. Struc. 29, 267–284 (2022)

    Google Scholar 

  51. Rong, T., Lu, A.: Generalized mixed variational principles and solutions of ill-conditioned problems in computational mechanics: Part I Volumetric locking. Comput. Methods Appl. Mech. Eng. 191, 407–422 (2001)

    Google Scholar 

  52. Rong, T., Lu, A.: Generalized mixed variational principles and solutions of ill-conditioned problems in computational mechanics Part II: Shear locking. Comput. Methods Appl. Mech. Eng. 192, 4981–5000 (2003)

    Google Scholar 

  53. Belytschko, T., Liu, W.K., Moran, B., Elkhodary, K.: Nonlinear finite elements for continua and structures. John Wiley & Sons, Chichester (2014)

    Google Scholar 

  54. Zheng, Y., Wang, J., Ye, H., Jiang, S., Zhang, H.: A mixed isogeometric analysis approach for the transient swelling of hydrogel. Comput. Methods Appl. Mech. Eng. 372, 113384 (2020)

    MathSciNet  Google Scholar 

  55. Hughes, T.J.R.: The finite element method: linear static and dynamic finite element analysis. Prentice-Hall, New Jersey (1987)

    Google Scholar 

  56. Leygue, A., Coret, M., Réthoré, J., Stainier, L., Verron, E.: Data-based derivation of material response. Comput. Methods Appl. Mech. Eng. 331, 184–196 (2018)

    MathSciNet  Google Scholar 

  57. Bentley, J.L.: Multidimensional binary search trees used for associative searching. Commun. ACM 18, 509–517 (1975)

    Google Scholar 

  58. Friedman, J.H., Bentley, J.L., Raphael, A.F.: An algorithm for finding best matches in logarithmic expected time. ACM T. Math. Software. 3, 209–226 (1977)

    Google Scholar 

  59. Nguyen, L.T.K., Aydin, R.C., Cyron, C.J.: Accelerating the distance-minimizing method for data-driven elasticity with adaptive hyperparameters. Comput. Mech. 70, 621–638 (2022)

    MathSciNet  Google Scholar 

Download references

Acknowledgments

The supports from the National Key R&D Program of China (No. 2022YFB4201200) and the National Natural Science Foundation of China (Nos. 12072062, 12072061 and 11972108) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonggang Zheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1 The strain–displacement matrix in the nonlinear elasticity

Appendix 1 The strain–displacement matrix in the nonlinear elasticity

In the nonlinear elasticity, the strain–displacement matrix concludes linear and nonlinear parts. The strain–displacement matrix for the 2D plane-strain problems have been formulated in the work of Nguyen [38]. In this work, the strain–displacement matrix for the case of 3D continuum body is further rpovided. Discretizing the 3D continuum body with the eight-node brick elements, and the displacement \(\mathbf{u}={\left\{\begin{array}{ccc}{u}_{x}& {u}_{y}& {u}_{z}\end{array}\right\}}^{\mathrm{T}}\) of any point in element \(e\) can be expressed in the interpolation form of node displacement \({\mathbf{u}}^{e}={\left\{\begin{array}{ccc}\begin{array}{ccc}{{u}_{x}^{e}}_{1}& {{u}_{y}^{e}}_{1}& {{u}_{z}^{e}}_{1}\end{array}& \cdots & \begin{array}{ccc}{{u}_{x}^{e}}_{8}& {{u}_{y}^{e}}_{8}& {{u}_{y}^{e}}_{8}\end{array}\end{array}\right\}}^{\mathrm{T}}\) as

$${u}_{x}=\sum_{i=1}^{8}{N}_{i}{{u}_{x}^{e}}_{i},$$
$${u}_{y}=\sum_{i=1}^{8}{N}_{i}{{u}_{y}^{e}}_{i},$$
$${u}_{z}=\sum_{i=1}^{8}{N}_{i}{{u}_{z}^{e}}_{i}.$$
(A1.1)

Writing the Green–Lagrange strain tensor \(\mathbf{E}\) in the Voigt representation (the vector dimension is \(6\times 1\)), and the components of \(\mathbf{E}\) can be expressed as

$${E}_{1}={\mathbf{Q}}_{1}^{\mathrm{T}}{\mathbf{u}}^{e}+\frac{1}{2}{{\mathbf{u}}^{e}}^{\mathrm{T}}{\mathbf{H}}_{1}{\mathbf{u}}^{e},$$
$${E}_{2}={\mathbf{Q}}_{2}^{\mathrm{T}}{\mathbf{u}}^{e}+\frac{1}{2}{{\mathbf{u}}^{e}}^{\mathrm{T}}{\mathbf{H}}_{2}{\mathbf{u}}^{e},$$
$${E}_{3}={\mathbf{Q}}_{3}^{\mathrm{T}}{\mathbf{u}}^{e}+\frac{1}{2}{{\mathbf{u}}^{e}}^{\mathrm{T}}{\mathbf{H}}_{3}{\mathbf{u}}^{e},$$
$$2{E}_{4}={\mathbf{Q}}_{4}^{\mathrm{T}}{\mathbf{u}}^{e}+\frac{1}{2}{{\mathbf{u}}^{e}}^{\mathrm{T}}{\mathbf{H}}_{4}{\mathbf{u}}^{e},$$
$$2{E}_{5}={\mathbf{Q}}_{5}^{\mathrm{T}}{\mathbf{u}}^{e}+\frac{1}{2}{{\mathbf{u}}^{e}}^{\mathrm{T}}{\mathbf{H}}_{5}{\mathbf{u}}^{e},$$
$$2{E}_{6}={\mathbf{Q}}_{6}^{\mathrm{T}}{\mathbf{u}}^{e}+\frac{1}{2}{{\mathbf{u}}^{e}}^{\mathrm{T}}{\mathbf{H}}_{6}{\mathbf{u}}^{e},$$
(A1.2)

in which the \({\mathbf{Q}}_{n}\) and \({\mathbf{H}}_{n}\) \((n=1,\cdots ,6)\) are the combinatorial operations of the directional derivatives of shape functions. \({\mathbf{Q}}_{n}\) can be written as

$$\begin{gathered} {\mathbf{Q}}_{1}^{{\text{T}}} = \left[ {\begin{array}{*{20}c} {N_{11}^{\prime} } & 0 & {\begin{array}{*{20}c} 0 & {N_{12}^{\prime} } & {\begin{array}{*{20}c} 0 & {\begin{array}{*{20}c} 0 & {N_{13}^{\prime} } & {\begin{array}{*{20}c} 0 & {\begin{array}{*{20}c} 0 & {N_{14}^{\prime} } & {\begin{array}{*{20}c} 0 & 0 \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \right. \hfill \\ \qquad\quad \left. {\begin{array}{*{20}c} {N_{15}^{\prime} } & 0 & {\begin{array}{*{20}c} 0 & {N_{16}^{\prime} } & {\begin{array}{*{20}c} 0 & {\begin{array}{*{20}c} 0 & {N_{17}^{\prime} } & {\begin{array}{*{20}c} 0 & 0 & {\begin{array}{*{20}c} {N_{18}^{\prime} } & 0 & 0 \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \right], \hfill \\ \end{gathered}$$
$$\begin{gathered} {\mathbf{Q}}_{2}^{{\text{T}}} = \left[ {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 & {N_{21}^{\prime} } \\ \end{array} } & 0 & {\begin{array}{*{20}c} 0 & {N_{22}^{\prime} } & {\begin{array}{*{20}c} 0 & {\begin{array}{*{20}c} 0 & {N_{23}^{\prime} } & {\begin{array}{*{20}c} 0 & {\begin{array}{*{20}c} 0 & {N_{24}^{\prime} } & 0 \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \right. \hfill \\ \qquad\quad\left. {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 & {N_{25}^{\prime} } \\ \end{array} } & 0 & {\begin{array}{*{20}c} 0 & {N_{26}^{\prime} } & {\begin{array}{*{20}c} 0 & {\begin{array}{*{20}c} 0 & {N_{27}^{\prime} } & {\begin{array}{*{20}c} 0 & 0 & {\begin{array}{*{20}c} {N_{28}^{\prime} } & 0 \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \right], \hfill \\ \end{gathered}$$
$$\begin{gathered} {\mathbf{Q}}_{3}^{{\text{T}}} = \left[ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 & 0 \\ \end{array} } & {N_{31}^{\prime} } \\ \end{array} } & 0 & {\begin{array}{*{20}c} 0 & {N_{32}^{\prime} } & {\begin{array}{*{20}c} 0 & {\begin{array}{*{20}c} 0 & {N_{33}^{\prime} } & {\begin{array}{*{20}c} 0 & {\begin{array}{*{20}c} 0 & {N_{34}^{\prime} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \right. \hfill \\ \qquad\quad\left. {\begin{array}{*{20}c} {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 & 0 \\ \end{array} } & {N_{35}^{\prime} } \\ \end{array} } & 0 & {\begin{array}{*{20}c} 0 & {N_{36}^{\prime} } & {\begin{array}{*{20}c} 0 & {\begin{array}{*{20}c} 0 & {N_{37}^{\prime} } & {\begin{array}{*{20}c} 0 & 0 & {N_{38}^{\prime} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \right], \hfill \\ \end{gathered}$$
$$\begin{gathered} {\mathbf{Q}}_{4}^{{\text{T}}} = \left[ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {N_{21}^{\prime} } & {N_{11}^{\prime} } \\ \end{array} } & 0 & {\begin{array}{*{20}c} {N_{22}^{\prime} } & {N_{12}^{\prime} } & {\begin{array}{*{20}c} 0 & {\begin{array}{*{20}c} {N_{23}^{\prime} } & {N_{13}^{\prime} } & {\begin{array}{*{20}c} 0 & {\begin{array}{*{20}c} {N_{24}^{\prime} } & {N_{14}^{\prime} } & 0 \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \right. \hfill \\ \qquad\quad\left. {\begin{array}{*{20}c} {\begin{array}{*{20}c} {N_{25}^{\prime} } & {N_{15}^{\prime} } \\ \end{array} } & 0 & {\begin{array}{*{20}c} {N_{26}^{\prime} } & {N_{16}^{\prime} } & {\begin{array}{*{20}c} 0 & {\begin{array}{*{20}c} {N_{27}^{\prime} } & {N_{17}^{\prime} } & {\begin{array}{*{20}c} 0 & {\begin{array}{*{20}c} {N_{28}^{\prime} } & {N_{18}^{\prime} } & 0 \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \right], \hfill \\ \end{gathered}$$
$$\begin{gathered} {\mathbf{Q}}_{5}^{{\text{T}}} = \left[ {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 & {N_{31}^{\prime} } \\ \end{array} } & {N_{21}^{\prime} } & {\begin{array}{*{20}c} 0 & {N_{32}^{\prime} } & {\begin{array}{*{20}c} {N_{22}^{\prime} } & {\begin{array}{*{20}c} 0 & {N_{33}^{\prime} } & {\begin{array}{*{20}c} {N_{23}^{\prime} } & {\begin{array}{*{20}c} 0 & {N_{34}^{\prime} } & {N_{24}^{\prime} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \right. \hfill \\ \qquad\quad\left. {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 & {N_{35}^{\prime} } \\ \end{array} } & {N_{25}^{\prime} } & {\begin{array}{*{20}c} 0 & {N_{36}^{\prime} } & {\begin{array}{*{20}c} {N_{26}^{\prime} } & {\begin{array}{*{20}c} 0 & {N_{37}^{\prime} } & {\begin{array}{*{20}c} {N_{27}^{\prime} } & {\begin{array}{*{20}c} 0 & {N_{38}^{\prime} } & {N_{28}^{\prime} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \right], \hfill \\ \end{gathered}$$
$$\begin{gathered} {\mathbf{Q}}_{6}^{{\text{T}}} = \left[ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {N_{31}^{\prime} } & 0 \\ \end{array} } & {N_{11}^{\prime} } & {\begin{array}{*{20}c} {N_{32}^{\prime} } & 0 & {\begin{array}{*{20}c} {N_{12}^{\prime} } & {\begin{array}{*{20}c} {N_{33}^{\prime} } & 0 & {\begin{array}{*{20}c} {N_{13}^{\prime} } & {\begin{array}{*{20}c} {N_{34}^{\prime} } & 0 & {N_{14}^{\prime} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \right. \hfill \\ \qquad\quad\left. {\begin{array}{*{20}c} {\begin{array}{*{20}c} {N_{35}^{\prime} } & 0 \\ \end{array} } & {N_{15}^{\prime} } & {\begin{array}{*{20}c} {N_{36}^{\prime} } & 0 & {\begin{array}{*{20}c} {N_{16}^{\prime} } & {\begin{array}{*{20}c} {N_{37}^{\prime} } & 0 & {\begin{array}{*{20}c} {N_{17}^{\prime} } & {\begin{array}{*{20}c} {N_{38}^{\prime} } & 0 & {N_{18}^{\prime} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \right], \hfill \\ \end{gathered}$$
(A1.3)

in which,

$$N_{1i}^{\prime} = \frac{{\partial N_{i} }}{{\partial X_{1} }}, N_{2i}^{\prime} = \frac{{\partial N_{i} }}{{\partial X_{2} }},{ }N_{3i}^{\prime} = \frac{{\partial N_{i} }}{{\partial X_{3} }},{ }\left( {i = 1 \cdots 8} \right).$$
(A1.4)

Then, the linear part of the strain–displacement matrix can be expressed as.

$${\mathbf{B}}_{0} = \left[ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {{\mathbf{Q}}_{1} } & {{\mathbf{Q}}_{2} } & {{\mathbf{Q}}_{3} } \\ \end{array} } & {\begin{array}{*{20}c} {{\mathbf{Q}}_{4} } & {{\mathbf{Q}}_{5} } & {{\mathbf{Q}}_{6} } \\ \end{array} } \\ \end{array} } \right]^{{\text{T}}} .$$
(A1.5)

As for the nonlinear part, \({\mathbf{H}}_{n}\) can be written as

$${\mathbf{H}}_{1} = {\mathbf{r}}_{1}^{{\text{T}}} {\mathbf{r}}_{1} + {\mathbf{r}}_{4}^{{\text{T}}} {\mathbf{r}}_{4} + {\mathbf{r}}_{7}^{{\text{T}}} {\mathbf{r}}_{7} ,$$
$${\mathbf{H}}_{2} = {\mathbf{r}}_{2}^{{\text{T}}} {\mathbf{r}}_{2} + {\mathbf{r}}_{5}^{{\text{T}}} {\mathbf{r}}_{5} + {\mathbf{r}}_{8}^{{\text{T}}} {\mathbf{r}}_{8} ,$$
$${\mathbf{H}}_{3} = {\mathbf{r}}_{3}^{{\text{T}}} {\mathbf{r}}_{3} + {\mathbf{r}}_{6}^{{\text{T}}} {\mathbf{r}}_{6} + {\mathbf{r}}_{9}^{{\text{T}}} {\mathbf{r}}_{9} ,$$
$${\mathbf{H}}_{4} = {\mathbf{r}}_{1}^{{\text{T}}} {\mathbf{r}}_{2} + {\mathbf{r}}_{4}^{{\text{T}}} {\mathbf{r}}_{5} + {\mathbf{r}}_{7}^{{\text{T}}} {\mathbf{r}}_{8} + \left( {{\mathbf{r}}_{1}^{{\text{T}}} {\mathbf{r}}_{2} + {\mathbf{r}}_{4}^{{\text{T}}} {\mathbf{r}}_{5} + {\mathbf{r}}_{7}^{{\text{T}}} {\mathbf{r}}_{8} } \right)^{{\text{T}}} ,$$
$${\mathbf{H}}_{5} = {\mathbf{r}}_{2}^{{\text{T}}} {\mathbf{r}}_{3} + {\mathbf{r}}_{5}^{{\text{T}}} {\mathbf{r}}_{6} + {\mathbf{r}}_{8}^{{\text{T}}} {\mathbf{r}}_{9} + \left( {{\mathbf{r}}_{2}^{{\text{T}}} {\mathbf{r}}_{3} + {\mathbf{r}}_{5}^{{\text{T}}} {\mathbf{r}}_{6} + {\mathbf{r}}_{8}^{{\text{T}}} {\mathbf{r}}_{9} } \right)^{{\text{T}}} ,$$
$${\mathbf{H}}_{6} = {\mathbf{r}}_{3}^{{\text{T}}} {\mathbf{r}}_{1} + {\mathbf{r}}_{6}^{{\text{T}}} {\mathbf{r}}_{4} + {\mathbf{r}}_{9}^{{\text{T}}} {\mathbf{r}}_{7} + \left( {{\mathbf{r}}_{3}^{{\text{T}}} {\mathbf{r}}_{1} + {\mathbf{r}}_{6}^{{\text{T}}} {\mathbf{r}}_{4} + {\mathbf{r}}_{9}^{{\text{T}}} {\mathbf{r}}_{7} } \right)^{{\text{T}}} .$$
(A1.6)

where

$$\begin{gathered} {\mathbf{r}}_{1} = \left[ {\begin{array}{*{20}c} {N_{11}^{\prime} } & 0 & {\begin{array}{*{20}c} 0 & {N_{12}^{\prime} } & {\begin{array}{*{20}c} 0 & {\begin{array}{*{20}c} 0 & {N_{13}^{\prime} } & {\begin{array}{*{20}c} 0 & {\begin{array}{*{20}c} 0 & {N_{14}^{\prime} } & {\begin{array}{*{20}c} 0 & 0 \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \right. \hfill \\ \qquad\quad\left. {\begin{array}{*{20}c} {N_{15}^{\prime} } & 0 & {\begin{array}{*{20}c} 0 & {N_{16}^{\prime} } & {\begin{array}{*{20}c} 0 & {\begin{array}{*{20}c} 0 & {N_{17}^{\prime} } & {\begin{array}{*{20}c} 0 & 0 & {\begin{array}{*{20}c} {N_{18}^{\prime} } & 0 & 0 \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \right], \hfill \\ \end{gathered}$$
$$\begin{gathered} {\mathbf{r}}_{2} = \left[ {\begin{array}{*{20}c} {N_{21}^{\prime} } & 0 & {\begin{array}{*{20}c} 0 & {N_{22}^{\prime} } & {\begin{array}{*{20}c} 0 & {\begin{array}{*{20}c} 0 & {N_{23}^{\prime} } & {\begin{array}{*{20}c} 0 & {\begin{array}{*{20}c} 0 & {N_{24}^{\prime} } & {\begin{array}{*{20}c} 0 & 0 \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \right. \hfill \\ \qquad\quad\left. {\begin{array}{*{20}c} {N_{25}^{\prime} } & 0 & {\begin{array}{*{20}c} 0 & {N_{26}^{\prime} } & {\begin{array}{*{20}c} 0 & {\begin{array}{*{20}c} 0 & {N_{27}^{\prime} } & {\begin{array}{*{20}c} 0 & 0 & {\begin{array}{*{20}c} {N_{28}^{\prime} } & 0 & 0 \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \right], \hfill \\ \end{gathered}$$
$$\begin{gathered} {\mathbf{r}}_{3} = \left[ {\begin{array}{*{20}c} {N_{31}^{\prime} } & 0 & {\begin{array}{*{20}c} 0 & {N_{32}^{\prime} } & {\begin{array}{*{20}c} 0 & {\begin{array}{*{20}c} 0 & {N_{33}^{\prime} } & {\begin{array}{*{20}c} 0 & {\begin{array}{*{20}c} 0 & {N_{34}^{\prime} } & {\begin{array}{*{20}c} 0 & 0 \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \right. \hfill \\ \qquad\quad \left. {\begin{array}{*{20}c} {N_{35}^{\prime} } & 0 & {\begin{array}{*{20}c} 0 & {N_{36}^{\prime} } & {\begin{array}{*{20}c} 0 & {\begin{array}{*{20}c} 0 & {N_{37}^{\prime} } & {\begin{array}{*{20}c} 0 & 0 & {\begin{array}{*{20}c} {N_{38}^{\prime} } & 0 & 0 \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \right], \hfill \\ \end{gathered}$$
$$\begin{gathered} {\mathbf{r}}_{4} = \left[ {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 & {N_{11}^{\prime} } \\ \end{array} } & 0 & {\begin{array}{*{20}c} 0 & {N_{12}^{\prime} } & {\begin{array}{*{20}c} 0 & {\begin{array}{*{20}c} 0 & {N_{13}^{\prime} } & {\begin{array}{*{20}c} 0 & {\begin{array}{*{20}c} 0 & {N_{14}^{\prime} } & 0 \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \right. \hfill \\ \qquad\quad\left. {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 & {N_{15}^{\prime} } \\ \end{array} } & 0 & {\begin{array}{*{20}c} 0 & {N_{16}^{\prime} } & {\begin{array}{*{20}c} 0 & {\begin{array}{*{20}c} 0 & {N_{17}^{\prime} } & {\begin{array}{*{20}c} 0 & 0 & {\begin{array}{*{20}c} {N_{18}^{\prime} } & 0 \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \right], \hfill \\ \end{gathered}$$
$$\begin{gathered} {\mathbf{r}}_{5} = \left[ {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 & {N_{21}^{\prime} } \\ \end{array} } & 0 & {\begin{array}{*{20}c} 0 & {N_{22}^{\prime} } & {\begin{array}{*{20}c} 0 & {\begin{array}{*{20}c} 0 & {N_{23}^{\prime} } & {\begin{array}{*{20}c} 0 & {\begin{array}{*{20}c} 0 & {N_{24}^{\prime} } & 0 \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \right. \hfill \\ \qquad\quad\left. {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 & {N_{25}^{\prime} } \\ \end{array} } & 0 & {\begin{array}{*{20}c} 0 & {N_{26}^{\prime} } & {\begin{array}{*{20}c} 0 & {\begin{array}{*{20}c} 0 & {N_{27}^{\prime} } & {\begin{array}{*{20}c} 0 & 0 & {\begin{array}{*{20}c} {N_{28}^{\prime} } & 0 \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \right], \hfill \\ \end{gathered}$$
$$\begin{gathered} {\mathbf{r}}_{6} = \left[ {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 & {N_{31}^{\prime} } \\ \end{array} } & 0 & {\begin{array}{*{20}c} 0 & {N_{32}^{\prime} } & {\begin{array}{*{20}c} 0 & {\begin{array}{*{20}c} 0 & {N_{33}^{\prime} } & {\begin{array}{*{20}c} 0 & {\begin{array}{*{20}c} 0 & {N_{34}^{\prime} } & 0 \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \right. \hfill \\ \qquad\quad\left. {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 & {N_{35}^{\prime} } \\ \end{array} } & 0 & {\begin{array}{*{20}c} 0 & {N_{36}^{\prime} } & {\begin{array}{*{20}c} 0 & {\begin{array}{*{20}c} 0 & {N_{37}^{\prime} } & {\begin{array}{*{20}c} 0 & 0 & {\begin{array}{*{20}c} {N_{38}^{\prime} } & 0 \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \right], \hfill \\ \end{gathered}$$
$$\begin{gathered} {\mathbf{r}}_{7} = \left[ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 & 0 \\ \end{array} } & {N_{11}^{\prime} } \\ \end{array} } & 0 & {\begin{array}{*{20}c} 0 & {N_{12}^{\prime} } & {\begin{array}{*{20}c} 0 & {\begin{array}{*{20}c} 0 & {N_{13}^{\prime} } & {\begin{array}{*{20}c} 0 & {\begin{array}{*{20}c} 0 & {N_{14}^{\prime} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \right. \hfill \\ \qquad\quad\left. {\begin{array}{*{20}c} {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 & 0 \\ \end{array} } & {N_{15}^{\prime} } \\ \end{array} } & 0 & {\begin{array}{*{20}c} 0 & {N_{16}^{\prime} } & {\begin{array}{*{20}c} 0 & {\begin{array}{*{20}c} 0 & {N_{17}^{\prime} } & {\begin{array}{*{20}c} 0 & 0 & {N_{18}^{\prime} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \right], \hfill \\ \end{gathered}$$
$$\begin{gathered} {\mathbf{r}}_{8} = \left[ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 & 0 \\ \end{array} } & {N_{21}^{\prime} } \\ \end{array} } & 0 & {\begin{array}{*{20}c} 0 & {N_{22}^{\prime} } & {\begin{array}{*{20}c} 0 & {\begin{array}{*{20}c} 0 & {N_{23}^{\prime} } & {\begin{array}{*{20}c} 0 & {\begin{array}{*{20}c} 0 & {N_{24}^{\prime} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \right. \hfill \\ \qquad\quad\left. {\begin{array}{*{20}c} {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 & 0 \\ \end{array} } & {N_{25}^{\prime} } \\ \end{array} } & 0 & {\begin{array}{*{20}c} 0 & {N_{26}^{\prime} } & {\begin{array}{*{20}c} 0 & {\begin{array}{*{20}c} 0 & {N_{27}^{\prime} } & {\begin{array}{*{20}c} 0 & 0 & {N_{28}^{\prime} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \right], \hfill \\ \end{gathered}$$
$$\begin{gathered} {\mathbf{r}}_{9} = \left[ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 & 0 \\ \end{array} } & {N_{31}^{\prime} } \\ \end{array} } & 0 & {\begin{array}{*{20}c} 0 & {N_{32}^{\prime} } & {\begin{array}{*{20}c} 0 & {\begin{array}{*{20}c} 0 & {N_{33}^{\prime} } & {\begin{array}{*{20}c} 0 & {\begin{array}{*{20}c} 0 & {N_{34}^{\prime} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \right. \hfill \\ \qquad\quad\left. {\begin{array}{*{20}c} {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 & 0 \\ \end{array} } & {N_{35}^{\prime} } \\ \end{array} } & 0 & {\begin{array}{*{20}c} 0 & {N_{36}^{\prime} } & {\begin{array}{*{20}c} 0 & {\begin{array}{*{20}c} 0 & {N_{37}^{\prime} } & {\begin{array}{*{20}c} 0 & 0 & {N_{38}^{\prime} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \right]. \hfill \\ \end{gathered}$$
(A1.7)

Thus, the nonlinear part of the strain–displacement matrix can be expressed as

$${\mathbf{B}}_{1} \left( {{\mathbf{u}}^{e} } \right) = \left[ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {{\mathbf{H}}_{1}^{{\text{T}}} {\mathbf{u}}^{e} } & {{\mathbf{H}}_{2}^{{\text{T}}} {\mathbf{u}}^{e} } & {{\mathbf{H}}_{3}^{{\text{T}}} {\mathbf{u}}^{e} } \\ \end{array} } & {\begin{array}{*{20}c} {{\mathbf{H}}_{4}^{{\text{T}}} {\mathbf{u}}^{e} } & {{\mathbf{H}}_{5}^{{\text{T}}} {\mathbf{u}}^{e} } & {{\mathbf{H}}_{6}^{{\text{T}}} {\mathbf{u}}^{e} } \\ \end{array} } \\ \end{array} } \right]^{{\text{T}}} .$$
(A1.8)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Z., Qiu, Y., Ye, H. et al. Data-driven computational method for growth-induced deformation problems of soft materials. Acta Mech 235, 441–466 (2024). https://doi.org/10.1007/s00707-023-03742-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03742-9

Navigation