Skip to main content
Log in

Local modulation of electrical distributions in bent PS fibers via multi-segmented layered structures

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Piezoelectric semiconductor fibers are the foundation of nanogenerators, nano-force sensors, and other nanodevices. Regulating the local piezopotential characteristics inside the PS fiber is crucial for its piezoelectric performance. However, due to the extremely small size of nanofibers, this is quite challenging. In this study, we propose a method for modulating local electrical distribution of bent PS fibers using a multi-segmented layered structure. The field equations for bent PS fibers are derived, and the effect of a non-uniform additional layer’s discontinuity in material properties and thickness distributions on the distributions of strain, potential, and charge carrier concentration fields within the fiber are investigated. Results from theoretical studies and case studies indicate that the discontinuity of material coefficients or the thickness in the attached layer allows the local piezopotential distribution of the bent fiber to be effectively tuned by external forces. In the bent fibers, the potential and carrier concentration in the intermediate region no longer remain constant, but instead, localized potential wells and barriers, or plateau-like regions of high and low potential, start to form along the axial direction, and they are symmetric with respect to the strain neutral axis. The discontinuity of various material coefficients in the attached layer has different effects on the local potential changes in the bent fiber. Local potentials of arbitrary form can be controlled through different material and thicknesses distribution combinations of the attached layer. The findings of this study provide important guidance for modulating the local electrical distributions of PS fibers and offer new insights and design ideas for nanoscale piezoelectric devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availibility

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Wu, W., Wang, L., Li, Y., Zhang, F., Lin, L., Niu, S., Chenet, D., Zhang, X., Hao, Y., Heinz, T.F., Hone, J., Wang, Z.L.: Piezoelectricity of single-atomic-layer mos2 for energy conversion and piezotronics. Nature 514(7253), 470–474 (2014). https://doi.org/10.1038/nature13792

    Article  Google Scholar 

  2. Hu, Y., Zhang, Y., Xu, C., Zhu, G., Wang, Z.L.: High-output nanogenerator by rational unipolar assembly of conical nanowires and its application for driving a small liquid crystal display. Nano Lett. 10(12), 5025–5031 (2010). https://doi.org/10.1021/nl103203u

    Article  Google Scholar 

  3. Wen, X., Wu, W., Ding, Y., Wang, Z.L.: Piezotronic effect in flexible thin-film based devices. Adv. Mater. 25(24), 3371–3379 (2013). https://doi.org/10.1002/adma.201300296

    Article  Google Scholar 

  4. Qin, Y., Wang, X., Wang, Z.L.: Microfibre-nanowire hybrid structure for energy scavenging. Nature 451(7180), 809–813 (2008). https://doi.org/10.1038/nature06601

    Article  Google Scholar 

  5. Rajagopalan, P., Singh, V., Palani, I.A., Kim, S.J.: Superior response in zno nanogenerator via interfaced heterojunction for novel smart gas purging system. Extreme Mech. Lett. 26, 18–25 (2019). https://doi.org/10.1016/j.eml.2018.11.004

    Article  Google Scholar 

  6. Wang, X., Zhou, J., Song, J., Liu, J., Xu, N., Wang, Z.L.: Piezoelectric field effect transistor and nanoforce sensor based on a single zno nanowire. Nano Lett. 6(12), 2768–2772 (2006). https://doi.org/10.1021/nl061802g

    Article  Google Scholar 

  7. Dahiya, R.S., Metta, G., Valle, M., Adami, A., Lorenzelli, L.: Piezoelectric oxide semiconductor field effect transistor touch sensing devices. Appl. Phys. Lett. (2009). https://doi.org/10.1063/1.3184579

    Article  Google Scholar 

  8. Wu, J.M., Chen, K.H., Zhang, Y., Wang, Z.L.: A self-powered piezotronic strain sensor based on single znsno3 microbelts. RSC Adv. 3(47), 25184–25189 (2013). https://doi.org/10.1039/c3ra45027a

    Article  Google Scholar 

  9. Qi, J., Zhang, H., Lu, S., Li, X., Xu, M., Zhang, Y.: High performance indium-doped zno gas sensor. J. Nanomater. (2015). https://doi.org/10.1155/2015/954747

    Article  Google Scholar 

  10. Wu, W., Wei, Y., Wang, Z.L.: Strain-gated piezotronic logic nanodevices. Adv. Mater. 22(42), 4711–4715 (2010). https://doi.org/10.1002/adma.201001925

    Article  Google Scholar 

  11. Momeni, K.: Enhanced mechanical properties of zno nanowire-reinforced nanocomposites: a size-scale effect. Acta Mech. 225(9), 2549–2562 (2014). https://doi.org/10.1007/s00707-014-1086-4

    Article  MATH  Google Scholar 

  12. Yang, G.Y., Du, J.K., Wang, J., Yang, J.S.: Extension of a piezoelectric semiconductor fiber with consideration of electrical nonlinearity. Acta Mech. 229(11), 4663–4676 (2018). https://doi.org/10.1007/s00707-018-2216-1

    Article  MathSciNet  MATH  Google Scholar 

  13. Pan, C.F., Zhai, J.Y., Wang, Z.L.: Piezotronics and piezo-phototronics of third generation semiconductor nanowires. Chem. Rev. 119(15), 9303–9359 (2019). https://doi.org/10.1021/acs.chemrev.8b00599

    Article  Google Scholar 

  14. Wang, G.L., Liu, J.X., Liu, X.L., Feng, W.J., Yang, J.S.: Extensional vibration characteristics and screening of polarization charges in a zno piezoelectric semiconductor nanofiber. J. Appl. Phys. 124(9), 10 (2018). https://doi.org/10.1063/1.5048571

    Article  Google Scholar 

  15. Jiao, F.Y., Wei, P.J., Zhou, X.L., Zhou, Y.H.: The dispersion and attenuation of the multi-physical fields coupled waves in a piezoelectric semiconductor. Ultrasonics 92, 68–78 (2019). https://doi.org/10.1016/j.ultras.2018.09.009

    Article  Google Scholar 

  16. Fan, S.Q., Liang, Y.X., Xie, J.M., Hu, Y.T.: Exact solutions to the electromechanical quantities inside a statically-bent circular zno nanowire by taking into account both the piezoelectric property and the semiconducting performance: part i-linearized analysis. Nano Energy 40, 82–87 (2017). https://doi.org/10.1016/j.nanoen.2017.07.049

    Article  Google Scholar 

  17. Yang, W.L., Liu, J.X., Hu, Y.T.: Mechanical tuning methodology on the barrier configuration near a piezoelectric pn interface and the regulation mechanism on i–v characteristics of the junction. Nano Energy 81, 12 (2021). https://doi.org/10.1016/j.nanoen.2020.105581

    Article  Google Scholar 

  18. Cheng, R.R., Zhang, C.L., Chen, W.Q., Yang, J.S.: Piezotronic effects in the extension of a composite fiber of piezoelectric dielectrics and nonpiezoelectric semiconductors. J. Appl. Phys. 124(6), 8 (2018). https://doi.org/10.1063/1.5044739

    Article  Google Scholar 

  19. Qu, Y.L., Jin, F., Yang, J.S.: Torsion of a flexoelectric semiconductor rod with a rectangular cross section. Arch. Appl. Mech. 91(5), 2027–2038 (2021). https://doi.org/10.1007/s00419-020-01867-0

    Article  Google Scholar 

  20. Wang, X.D., Song, J.H., Liu, J., Wang, Z.L.: Direct-current nanogenerator driven by ultrasonic waves. Science 316(5821), 102–105 (2007). https://doi.org/10.1126/science.1139366

    Article  Google Scholar 

  21. Lee, E., Park, J., Yim, M., Kim, Y., Yoon, G.: Characteristics of piezoelectric zno/aln-stacked flexible nanogenerators for energy harvesting applications. Appl. Phys. Lett. (2015). https://doi.org/10.1063/1.4904270

    Article  Google Scholar 

  22. Johar, M.A., Hassan, M.A., Waseem, A., Ha, J.S., Lee, J.K., Ryu, S.W.: Stable and high piezoelectric output of gan nanowire-based lead-free piezoelectric nanogenerator by suppression of internal screening. Nanomaterials (2018). https://doi.org/10.3390/nano8060437

    Article  Google Scholar 

  23. Johar, M.A., Jeong, D.K., Hassan, M.A., Kang, J.H., Ha, J.S., Lee, J.K., Ryu, S.W.: Controlled carrier screening in p-n nio/gan piezoelectric generators by an Al2O3 insertion layer. J. Phys. D Appl. Phys. (2017). https://doi.org/10.1088/1361-6463/aa946a

    Article  Google Scholar 

  24. Lee, S., Hinchet, R., Lee, Y., Yang, Y., Lin, Z.H., Ardila, G., Montès, L., Mouis, M., Wang, Z.L.: Ultrathin nanogenerators as self-powered/active skin sensors for tracking eye ball motion. Adv. Funct. Mater. 24(8), 1163–1168 (2014). https://doi.org/10.1002/adfm.201301971

    Article  Google Scholar 

  25. Le, A.T., Ahmadipour, M., Pung, S.Y.: A review on zno-based piezoelectric nanogenerators: synthesis, characterization techniques, performance enhancement and applications. J. Alloys Compd. (2020). https://doi.org/10.1016/j.jallcom.2020.156172

    Article  Google Scholar 

  26. Dahiya, A.S., Morini, F., Boubenia, S., Nadaud, K., Alquier, D., Poulin-Vittrant, G.: Organic/inorganic hybrid stretchable piezoelectric nanogenerators for self-powered wearable electronics. Adv. Mater. Technol. (2018). https://doi.org/10.1002/admt.201700249

    Article  Google Scholar 

  27. Hinchet, R., Lee, S., Ardila, G., Montès, L., Mouis, M., Wang, Z.L.: Performance optimization of vertical nanowire-based piezoelectric nanogenerators. Adv. Funct. Mater. 24(7), 971–977 (2014). https://doi.org/10.1002/adfm.201302157

    Article  Google Scholar 

  28. Kong, D., Cheng, R., Zhang, C., Zhang, C.: Dynamic manipulation of piezotronic behaviors of composite multiferroic semiconductors through time-dependent magnetic field. J. Appl. Phys. (2020). https://doi.org/10.1063/5.0015957

    Article  Google Scholar 

  29. Dietz, D.R., Busse, L.J., Fife, M.J.: Acoustoelectric detection of ultrasound power with composite piezoelectric and semiconductor devices. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 35(2), 146–151 (1988). https://doi.org/10.1109/58.4164

    Article  Google Scholar 

  30. Sharma, J.N., Sharma, K.K., Kumar, A.: Surface waves in a piezoelectric-semiconductor composite structure. Int. J. Solids Struct. 47(6), 816–826 (2010). https://doi.org/10.1016/j.ijsolstr.2009.11.016

    Article  MATH  Google Scholar 

  31. Jiao, F., Wei, P., Zhou, Y., Zhou, X.: Wave propagation through a piezoelectric semiconductor slab sandwiched by two piezoelectric half-spaces. Eur. J. Mech. A Solids 75, 70–81 (2019). https://doi.org/10.1016/j.euromechsol.2019.01.007

    Article  MathSciNet  MATH  Google Scholar 

  32. Tiersten, H.F., Stevens, D.S.: An analysis of thickness-extensional trapped energy resonant device structures with rectangular electrodes in the piezoelectric thin film on silicon configuration. J. Appl. Phys. 54(10), 5893–5910 (1983). https://doi.org/10.1063/1.331763

    Article  Google Scholar 

  33. Luo, Y., Zhang, C., Chen, W., Yang, J.: Piezotronic effect of a thin film with elastic and piezoelectric semiconductor layers under a static flexural loading. J. Appl. Mech. Trans. ASME (2019). https://doi.org/10.1115/1.4042573

    Article  Google Scholar 

  34. He, J., Du, J., Yang, J.: Stress effects on electric currents in antiplane problems of piezoelectric semiconductors over a rectangular domain. Acta Mech. 233(3), 1173–1185 (2022). https://doi.org/10.1007/s00707-022-03148-z

    Article  MathSciNet  MATH  Google Scholar 

  35. Pierret, R.F., Neudeck, G.W.: Advanced Semiconductor Fundamentals, vol. 6. Addison-Wesley Reading, MA, Boston (1987)

    Google Scholar 

  36. Hutson, A.R., White, D.L.: Elastic wave propagation in piezoelectric semiconductors. J. Appl. Phys. 33(1), 40–47 (1962). https://doi.org/10.1063/1.1728525

    Article  Google Scholar 

  37. Auld, B.A.: Application of microwave concepts to the theory of acoustic fields and waves in solids. IEEE Trans. Microwave Theory Tech. 17(11), 800–811 (1969). https://doi.org/10.1109/TMTT.1969.1127070

    Article  Google Scholar 

  38. Zhang, C., Wang, X., Chen, W., Yang, J.: Bending of a cantilever piezoelectric semiconductor fiber under an end force. Adv. Struct. Mater. 90, 261–278 (2018). https://doi.org/10.1007/978-3-319-77504-3_13

    Article  Google Scholar 

  39. Zhang, C.L., Wang, X.Y., Chen, W.Q., Yang, J.S.: An analysis of the extension of a zno piezoelectric semiconductor nanofiber under an axial force. Smart Mater. Struct. 26(2), 8 (2017). https://doi.org/10.1088/1361-665X/aa542e

    Article  Google Scholar 

  40. Zhang, C., Wang, X., Chen, W., Yang, J.: Bending of a cantilever piezoelectric semiconductor fiber under an end force. Adv. Struct. Mater. 90, 261–278 (2018). https://doi.org/10.1007/978-3-319-77504-3_13

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (12061131013, 11972276, 12172171, and 12211530064), the State Key Laboratory of Mechanics and Control of Mechanical Structures at NUAA (No. MCMS-I-0522G01), the Fundamental Research Funds for the Central Universities (NS2022011 and NE2020002), National Natural Science Foundation of Jiangsu Province (BK20211176), Jiangsu High-Level Innovative and Entrepreneurial Talents Introduction Plan (Shuangchuang Doctor Program, JSSCBS20210166), and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD). Prof. Iren E Kuznetsova thanks Russian Ministry of Science and Higher Education (government task FFWZ-2022–0002) for partial financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenghua Qian.

Ethics declarations

Conflict of interest

There are no conflicts of interest to disclose by the authors that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Z., Fang, K., Wang, T. et al. Local modulation of electrical distributions in bent PS fibers via multi-segmented layered structures. Acta Mech 234, 6481–6497 (2023). https://doi.org/10.1007/s00707-023-03724-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03724-x

Navigation