Skip to main content
Log in

The adjustment of electro-elastic properties in non-uniform flexoelectric semiconductor nanofibers

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

To explore the method of adjusting electro-elastic coupling properties in flexoelectric semiconductor nanofibers, the theoretical model is established, and the non-uniform fibers which can adjust the electro-elastic properties are designed. In order to solve the differential equations with variable coefficients in the established model, the differential quadrature method is adopted to approximate the real solutions. Before analysis, the convergence and correctness of the adopted method are investigated systematically. Considering a fiber with linear profile, it is found that the distributions of all field quantities can be adjusted by manipulating the shape of the cross section. The maximum values of all field quantities appear at the narrow end where the stiffness is the minimum in the entire fiber. By investigating the effects of the cross section parameter, flexoelectric coefficient and initial carrier density on the electro-elastic field quantities, it can be observed that the field quantities are sensitive to the variation of these parameters. Besides, studying the charge production indicates that the total charge in the flexoelectric semiconductor is dominated by the polarization charge. In symmetric non-uniform fibers, the potential barriers and wells which are produced by axial tensile load or piecewise loads are studied, respectively. It is revealed that the height of the potential barrier and the depth of the potential well can be adjusted by designing the non-uniform cross section. Furthermore, it is found that the perturbation carrier in a PN junction tends to concentrate in the zone near the narrow position. The studies in this paper could be the guidance for the applications of flexoelectric semiconductor fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Wang, Z.L.: Piezopotential gated nanowire devices: piezotronics and piezo-phototronics. Nano Today 5, 540–552 (2010)

    Google Scholar 

  2. Wu, W., Wang, Z.L.: Piezotronics and piezo-phototronics for adaptive electronics and optoelectronics. Nat. Rev. Mater. 1, 23–24 (2016)

    Google Scholar 

  3. Wang, Z.L.: Nanobelts, nanowires, and nanodiskettes of semiconducting oxides—from materials to nanodevices. Adv. Mater. 15, 432–436 (2003)

    Google Scholar 

  4. Wang, Z.L.: Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242–246 (2006)

    Google Scholar 

  5. Kaur, J., Singh, H.: Fabrication and analysis of piezoelectricity in 0D, 1D and 2D Zinc Oxide nanostructures. Ceram. Int. 46, 19401–19407 (2020)

    Google Scholar 

  6. Wang, W., Peng, D., Zhang, H., Yang, X., Pan, C.: Mechanically induced strong red emission in samarium ions doped piezoelectric semiconductor CaZnOS for dynamic pressure sensing and imaging. Opt. Commun. 395, 24–28 (2017)

    Google Scholar 

  7. Huolin, H., Hui, Z., Yaqing, C., et al.: High-temperature three-dimensional GaN-based hall sensors for magnetic field detection. J. Phys. D-Appl. Phys. 54, 075003 (2021)

    Google Scholar 

  8. Lee, J.W., Ye, B.U., Wang, Z.L., Lee, J.L., Baik, J.M.: Highly-sensitive and highly-correlative flexible motion sensors based on asymmetric piezotronic effect. Nano Energy 51, 185–191 (2018)

    Google Scholar 

  9. Han, W., Zhou, Y., Zhang, Y., et al.: Strain-gated piezotronic transistors based on vertical zinc oxide nanowires. ACS Nano 6, 5736 (2012)

    Google Scholar 

  10. Wang, X., Zhou, J., Song, J., et al.: Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire. Nano Lett. 6, 2768–2772 (2006)

    Google Scholar 

  11. Yu, R., Wu, W., Ding, Y., et al.: GaN nanobelt-based strain-gated piezotronic logic devices and computation. ACS Nano 7, 6403 (2013)

    Google Scholar 

  12. Wu, W., Wei, Y., Wang, Z.L.: Strain-gated piezotronic logic nanodevices. Adv. Mater. 22, 4711–4715 (2010)

    Google Scholar 

  13. Zhang, C., Wang, X., Chen, W., et al.: An analysis of the extension of a ZnO piezoelectric semiconductor nanofiber under an axial force. Smart Mater. Struct. 26, 025030 (2017)

    Google Scholar 

  14. Zhang, C.L., Wang, X.Y., Chen, W.Q., et al.: Carrier distribution and electromechanical fields in a free piezoelectric semiconductor rod. J. Zhejiang Univ.-SCI A 17, 37–44 (2016)

    Google Scholar 

  15. Fan, S., Yuantai, H., Yang, J., et al.: Stress-induced potential barriers and charge distributions in a piezoelectric semiconductor nanofiber. Appl. Math. Mech.-Engl. Ed. 40, 591–600 (2019)

    MathSciNet  Google Scholar 

  16. Dai, X., Zhu, F., Qian, Z., et al.: Electric potential and carrier distribution in a piezoelectric semiconductor nanowire in time-harmonic bending vibration. Nano Energy 43, 22–28 (2017)

    Google Scholar 

  17. Zhang, C., Wang, X., Chen, W., et al.: Bending of a cantilever piezoelectric semiconductor fiber under an end force Generalized Models and Non-classical Approaches in Complex Materials 2, pp. 261–278. Springer, Cham (2018)

    Google Scholar 

  18. Li, P., Jin, F., Yang, J.: Effects of semiconduction on electromechanical energy conversion in piezoelectrics. Smart Mater. Struct. 24, 025021 (2015)

    Google Scholar 

  19. Guolin, W., Jinxi, L., Xianglin, L., et al.: Extensional vibration characteristics and screening of polarization charges in a ZnO piezoelectric semiconductor nanofiber. J. Appl. Phys. 124, 094502 (2018)

    Google Scholar 

  20. Yang, J.S., Yang, X.M., Turner, J.A.: Amplification of acoustic waves in piezoelectric semiconductor plates Arch. Appl. Mech. 74, 288–298 (2004)

    MATH  Google Scholar 

  21. Yang, J., Yang, X., Turner, J.A.: Amplification of acoustic waves in piezoelectric semiconductor shells. J. Intell. Mater. Syst. Struct. 16, 613–621 (2005)

    Google Scholar 

  22. Gu, C., Jin, F.: Shear-horizontal surface waves in a half-space of piezoelectric semiconductors Philos. Mag. Lett. 95, 92–100 (2015)

    Google Scholar 

  23. Yang, J.: An anti-plane crack in a piezoelectric semiconductor. Int. J. Fract. 136, L27–L32 (2005)

    MATH  Google Scholar 

  24. Hu, Y., Zeng, Y., Yang, J., et al.: A mode III crack in a piezoelectric semiconductor of crystals with 6 mm symmetry. Int. J. Solids Struct. 44, 3928–3938 (2007)

    MATH  Google Scholar 

  25. Sladek, J., Sladek, V., Pan, E., et al.: Dynamic anti-plane crack analysis in functional graded piezoelectric semiconductor crystals. CMES-Comp. Model. Eng. Sci. 99, 273–296 (2014)

    MathSciNet  MATH  Google Scholar 

  26. Zhao, M., Pan, Y., et al.: Extended displacement discontinuity method for analysis of cracks in 2D piezoelectric semiconductors. Int. J. Solids Struct. 94, 50–59 (2016)

    Google Scholar 

  27. Luo, Y., Cheng, R., Zhang, C., et al.: Electromechanical fields near a circular PN junction between two piezoelectric semiconductors. Acta Mech. Solida Sin. 31, 127–140 (2018)

    Google Scholar 

  28. Guo, M., Li, Y., Qin, G., et al.: Nonlinear solutions of PN junctions of piezoelectric semiconductors. Acta Mech. 230, 1825–1841 (2019)

    MathSciNet  MATH  Google Scholar 

  29. Cheng, R., Zhang, C., Yang, J., et al.: Thermally induced carrier distribution in a piezoelectric semiconductor fiber. J. Electron. Mater. 48, 4939–4946 (2019)

    Google Scholar 

  30. Cheng, R., Zhang, C., Chen, W., et al.: Temperature effects on PN junctions in piezoelectric semiconductor fibers with thermoelastic and pyroelectric couplings. J. Electron. Mater. 49, 3140–3148 (2020)

    Google Scholar 

  31. Sharma, J.N., Sharma, K.K.: Kumar: Modelling of acoustodiffusive surface waves in piezoelectric-semiconductor composite structure. J. Mech. Mater. Struct. 6, 791–812 (2011)

    Google Scholar 

  32. Yang, J.S., Zhou, H.G.: Acoustoelectric amplification of piezoelectric surface waves. Acta Mech. 172, 113–122 (2004)

    MATH  Google Scholar 

  33. Cheng, R., Zhang, C., Chen, W., et al.: Piezotronic effects in the extension of a composite fiber of piezoelectric dielectrics and nonpiezoelectric semiconductors. J. Appl. Phys. 124, 064506 (2018)

    Google Scholar 

  34. Luo, Y., Zhang, C., Chen, W., et al.: Piezopotential in a bended composite fiber made of a semiconductive core and of two piezoelectric layers with opposite polarities. Nano Energy 54, 341–348 (2018)

    Google Scholar 

  35. Cheng, R., Zhang, C., Zhang, C., et al.: Magnetically controllable piezotronic responses in a composite semiconductor fiber with multiferroic coupling effects. Phys. Status Solidi A-Appl. Res. 217, 2070012 (2020)

    Google Scholar 

  36. Wang, G., Liu, J., Feng, W., et al.: Magnetically induced carrier distribution in a composite rod of piezoelectric semiconductors and piezomagnetics. Materials 13, 3115 (2020)

    Google Scholar 

  37. Zhao, MingHao, Liu, X., Fan, CuiYing, et al.: Theoretical analysis on the extension of a piezoelectric semiconductor nanowire: effects of flexoelectricity and strain gradient. J. Appl. Phys. 127, 085707 (2020)

    Google Scholar 

  38. Zhao, M., Niu, J., Lu, C., et al.: Effects of flexoelectricity and strain gradient on bending vibration characteristics of piezoelectric semiconductor nanowires. J. Appl. Phys. 129, 164301 (2021)

    Google Scholar 

  39. Sun, L., Zhang, Z., Gao, C., et al.: Effect of flexoelectricity on piezotronic responses of a piezoelectric semiconductor bilayer. J. Appl. Phys. 129, 244102 (2021)

    Google Scholar 

  40. Wang, L., Liu, S., Feng, X., et al.: Flexoelectronics of centrosymmetric semiconductors. Nat. Nanotechnol. 15, 661–667 (2020)

    Google Scholar 

  41. Qu, Y., Jin, F., Yang, J.: Effects of mechanical fields on mobile charges in a composite beam of flexoelectric dielectrics and semiconductors. J. Appl. Phys. 127, 194502 (2020)

    Google Scholar 

  42. Qu, Y., Jin, F., Yang, J.: Magnetically induced charge redistribution in the bending of a composite beam with flexoelectric semiconductor and piezomagnetic dielectric layers. J. Appl. Phys. 129, 064503 (2021)

    Google Scholar 

  43. Qu, Y., Jin, F., Yang, J.: Torsion of a flexoelectric semiconductor rod with a rectangular cross section. Arch. Appl. Mech. 91, 2027–2038 (2021)

    Google Scholar 

  44. Chu, L., Dui, G., Mei, H., et al.: An analysis of flexoelectric coupling associated electroelastic fields in functionally graded semiconductor nanobeams. J. Appl. Phys. 130, 115701 (2021)

    Google Scholar 

  45. Yao D, Zhou H, Wang X Y: Characterization method of flexoelectric coefficient of piezoelectrics at nanoscale. In: Symposium on Piezoelectricity, Acoustic Waves, and Device Applications 325–330 2017

  46. Zhu, W., Fu, J.Y., Nan, L., et al.: Piezoelectric composite based on the enhanced flexoelectric effects. Appl. Phys. Lett. 89, 2920 (2006)

    Google Scholar 

  47. Ren, C., Wang, K.F., Wang, B.L., et al.: Adjusting the electromechanical coupling behaviors of piezoelectric semiconductor nanowires via strain gradient and flexoelectric effects. J. Appl. Phys. 128, 215701 (2020)

    Google Scholar 

  48. Lazar, M., Maugin, G.A., Aifantis, E.C.: Dislocations in second strain gradient elasticity. Int. J. Solids Struct. 43, 1787–1817 (2006)

    MATH  Google Scholar 

  49. Fang, K., Li, P., Li, N., Liu, D., Qian, Z., Kolesov, V., et al.: Model and performance analysis of non-uniform piezoelectric semiconductor nanofibers. Appl. Math. Model. 104, 628–643 (2021)

    MathSciNet  MATH  Google Scholar 

  50. Mindlin, R.D., Eshel, N.N.: On first strain-gradient theories in linear elasticity. Int. J. Solids Struct. 4, 109–124 (1968)

    MATH  Google Scholar 

  51. Hu, S., Shen, S.: Electric field gradient theory with surface effect for nano-dielectrics. CMC-Comput. Mat. Contin. 13, 63–87 (2009)

    Google Scholar 

  52. Zhang, C.L., Luo, Y.X., Cheng, R.R., Wang, X.Y.: Electromechanical fields in piezoelectric semiconductor nanofibers under an axial force. MRS Adv. 2(56), 3421–3426 (2017). https://doi.org/10.1557/adv.2017.301

    Article  Google Scholar 

  53. Bert, C.W., Malik, M.: Differential quadrature method in computational mechanics: a review. Appl. Mech. Rev. 49, 1–28 (1996)

    Google Scholar 

  54. Yang, W., Yuantai, Hu., Pan, E.: Tuning electronic energy band in a piezoelectric semiconductor rod via mechanical loading. Nano Energy 66, 104147 (2019)

    Google Scholar 

Download references

Acknowledgements

This research is funded by the National Natural Science Foundation of China (Grant No. 12072253).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Jin.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1

Appendix 1

In this appendix, the exact solution based on nonlinear theory is introduced briefly. According to the relevant literature works [54], the nonlinear equations for p-type semiconductor are expressed by

$$\begin{aligned}& {}[c_{33} A(x_{3} )u_{3,3} - c_{33} l_{0}^{2} A(x_{3} )u_{3,333} - f_{3333} A(x_{3} )\varphi_{,33} ]_{,3} = 0, \hfill \\ &[ - \varepsilon_{33} A(x_{3} )\varphi_{,3} + f_{3333} A(x_{3} )u_{3,33} ]_{,3} = qA(x_{3} )(p - N_{A}^{ - } ), \hfill \\ \end{aligned}$$
(26)

where \(p = p_{0} \exp ( - \frac{q}{{k_{B} T}}\varphi )\) can be obtained when the boundaries are electrically isolated, i.e., \(J_{3}^{p} (0) = J_{3}^{p} (L) = 0\). Besides, \(p_{0} = N_{A}^{ - }\) is assumed. Solving the governing equations under the given boundary conditions (Eq. (11)) by using COMSOL Multiphysics software, the nonlinear results will be obtained.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, L., Jin, F. The adjustment of electro-elastic properties in non-uniform flexoelectric semiconductor nanofibers. Acta Mech 234, 975–990 (2023). https://doi.org/10.1007/s00707-022-03418-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-022-03418-w

Navigation