Skip to main content
Log in

Analysis of piezoelectric semiconductor fibers under gradient temperature changes

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

Piezoelectric semiconductors (PSs) possess both semiconducting properties and piezoelectric coupling effects, making them optimal building blocks for semiconductor devices. PS fiber-like structures have wide applications in multi-functional semiconductor devices. In this paper, a one-dimensional (1D) theoretical model is established to describe the piezotronic responses of a PS fiber under gradient temperature changes. The theoretical model aims to explain the mechanism behind the resistance change caused by such gradient temperature changes. Numerical results demonstrate that a gradient temperature change significantly affects the physical fields within the PS fiber, and can induce changes in its surface resistance. It provides important theoretical guidance on the development of piezotronic devices that are sensitive to temperature effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. WANG, Z. L., WU, W., and FALCONI, C. Piezotronics and piezo-phototronics with third-generation semiconductors. MRS Bulletin, 43(12), 922–927 (2018)

    Article  Google Scholar 

  2. ZHANG, Y., LENG, Y., WILLATZEN, M., and HUANG, B. Theory of piezotronics and piezophototronics. MRS Bulletin, 43(12), 928–935 (2018)

    Article  Google Scholar 

  3. HE, J. H., HSIN, C. L., LIU, J., CHEN, L. J., and WANG, Z. L. Piezoelectric gated diode of a single ZnO nanowire. Advanced Materials, 19(6), 781–784 (2007)

    Article  Google Scholar 

  4. YANG, Q., WANG, W., XU, S., and WANG, Z. L. Enhancing light emission of ZnO microwire-based diodes by piezo-phototronic effect. Nano Letters, 11(9), 4012–4017 (2011)

    Article  Google Scholar 

  5. YANG, Q., GUO, X., WANG, W., ZHANG, Y., XU, S., LIEN, D. H., and WANG, Z. L. Enhancing sensitivity of a single ZnO micro-/nanowire photodetector by piezo-phototronic effect. ACS Nano, 4(10), 6285–6291 (2010)

    Article  Google Scholar 

  6. WANG, C., BAO, R., ZHAO, K., ZHANG, T., DONG, L., and PAN, C. Enhanced emission intensity of vertical aligned flexible ZnO nanowire/p-polymer hybridized LED array by piezophototronic effect. Nano Energy, 14, 364–371 (2015)

    Article  Google Scholar 

  7. WANG, X., PENG, W., YU, R., ZOU, H., DAI, Y., ZI, Y., WU, C., LI, S., and WANG, Z. L. Simultaneously enhancing light emission and suppressing efficiency droop in GaN microwire-based ultraviolet light-emitting diode by the piezo-phototronic effect. Nano Letters, 17(6), 3718–3724 (2017)

    Article  Google Scholar 

  8. ZHU, L., WANG, L., XUE, F., CHEN, L., FU, J., FENG, X., LI, T., and WANG, Z. L. Piezophototronic effect enhanced flexible solar cells based on n-ZnO/p-SnS core-shell nanowire array. Advanced Science, 4(1), 1600185 (2017)

    Article  Google Scholar 

  9. PAN, C., NIU, S., DING, Y., DONG, L., YU, R., LIU, Y., ZHU, G., and WANG, Z. L. Enhanced Cu2S/CdS coaxial nanowire solar cells by piezo-phototronic effect. Nano Letters, 12(6), 3302–3307 (2012)

    Article  Google Scholar 

  10. ZHU, L., ZHANG, Y., LIN, P., WANG, Y., YANG, L., CHEN, L., WANG, L., CHEN, B., and WANG, Z. L. Piezotronic effect on Rashba spin-orbit coupling in a ZnO/P3HT nanowire array structure. ACS Nano, 12(2), 1811–1820 (2018)

    Article  Google Scholar 

  11. WANG, L., LIU, S., GAO, G., PANG, Y., YIN, X., FENG, X., ZHU, L., BAI, Y., CHEN, L., XIAO, T., WANG, X., QIN, Y., and WANG, Z. L. Ultrathin piezotronic transistors with 2nm channel lengths. ACS Nano, 12(5), 4903–4908 (2018)

    Article  Google Scholar 

  12. WANG, L., LIU, S., ZHANG, Z., FENG, X., ZHU, L., GUO, H., DING, W., CHEN, L., QIN, Y., and WANG, Z. L. 2D piezotronics in atomically thin zinc oxide sheets: interfacing gating and channel width gating. Nano Energy, 60, 724–733 (2019)

    Article  Google Scholar 

  13. QU, Y. L., PAN, E., ZHU, F., and ROY, A. K. Modeling thermoelectric effects in piezoelectric semiconductors: new fully coupled mechanisms for mechanically manipulated heat flux and refrigeration. International Journal of Engineering Science, 180, 103775 (2023)

    Article  MathSciNet  Google Scholar 

  14. WANG, Z. L. Nanopiezotronics. Advanced Materials, 19(6), 889–892 (2007)

    Article  Google Scholar 

  15. WANG, Z. L. Piezopotential gated nanowire devices: piezotronics and piezo-phototronics. Nano Today, 5(6), 540–552 (2010)

    Article  Google Scholar 

  16. LIU, Y., ZHANG, Y., YANG, Q., NIU, S., and WANG, Z. L. Fundamental theories of piezotronics and piezo-phototronics. Nano Energy, 14, 257–275 (2015)

    Article  Google Scholar 

  17. WANG, X., ZHOU, J., SONG, J., LIU, J., XU, N., and WANG, Z. L. Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire. Nano Letters, 6(12), 2768–2772 (2006)

    Article  Google Scholar 

  18. ZHANG, C. L., WANG, X. Y., CHEN, W. Q., and YANG, J. S. Propagation of extensional waves in a piezoelectric semiconductor rod. AIP Advances, 6(4), 045301 (2016)

    Article  Google Scholar 

  19. KONG, D., CHENG, R., ZHANG, C., and ZHANG, C. Dynamic manipulation of piezotronic behaviors of composite multiferroic semiconductors through time-dependent magnetic field. Journal of Applied Physics, 128(6), 064503 (2020)

    Article  Google Scholar 

  20. SLADEK, J., SLADEK, V., PAN, E., and WÜNSCHE, M. Fracture analysis in piezoelectric semiconductors under a thermal load. Engineering Fracture Mechanics, 126, 27–39 (2014)

    Article  Google Scholar 

  21. SLADEK, J., SLADEK, V., PAN, E., and YOUNG, D. Dynamic anti-plane crack analysis in functional graded piezoelectric semiconductor crystals. Computer Modeling in Engineering & Sciences, 99, 273–296 (2014)

    MathSciNet  Google Scholar 

  22. ZHAO, M., PAN, Y., FAN, C., and XU, G. Extended displacement discontinuity method for analysis of cracks in 2D piezoelectric semiconductors. International Journal of Solids and Structures, 94–95, 50–59 (2016)

    Article  Google Scholar 

  23. FAN, C., YAN, Y., XU, G., and ZHAO, M. Piezoelectric-conductor iterative method for analysis of cracks in piezoelectric semiconductors via the finite element method. Engineering Fracture Mechanics, 165, 183–196 (2016)

    Article  Google Scholar 

  24. ARANEO, R., LOVAT, G., BURGHIGNOLI, P., and FALCONI, C. Piezo-semiconductive quasi-1D nanodevices with or without anti-symmetry. Advanced Materials, 24(34), 4719–4724 (2012)

    Article  Google Scholar 

  25. ZHANG, C., WANG, X., CHEN, W., and YANG, J. An analysis of the extension of a ZnO piezoelectric semiconductor nanofiber under an axial force. Smart Materials and Structures, 26(2), 25030 (2017)

    Article  Google Scholar 

  26. GAO, Y. and WANG, Z. L. Electrostatic potential in a bent piezoelectric nanowire: the fundamental theory of nanogenerator and nanopiezotronics. Nano Letters, 7(8), 2499–2505 (2007)

    Article  Google Scholar 

  27. LIANG, Y., YANG, W., and YANG, J. Transient bending vibration of a piezoelectric semiconductor nanofiber under a suddenly applied shear force. Computer Modeling in Engineering & Sciences, 32(6), 688–697 (2019)

    Google Scholar 

  28. YANG, W., HU, Y., and PAN, E. N. Electronic band energy of a bent ZnO piezoelectric semiconductor nanowire. Applied Mathematics and Mechanics (English Edition), 41(6), 833–844 (2020) https://doi.org/10.1007/s10483-020-2619-7

    Article  MathSciNet  Google Scholar 

  29. FAN, S., LIANG, Y., XIE, J., and HU, Y. Exact solutions to the electromechanical quantities inside a statically-bent circular ZnO nanowire by taking into account both the piezoelectric property and the semiconducting performance, part I: linearized analysis. Nano Energy, 40, 82–87 (2017)

    Article  Google Scholar 

  30. LUO, Y., ZHANG, C., CHEN, W., and YANG, J. An analysis of PN junctions in piezoelectric semiconductors. Journal of Applied Physics, 122(20), 204502 (2017)

    Article  Google Scholar 

  31. CHENG, R., ZHANG, C., CHEN, W., and YANG, J. Piezotronic effects in the extension of a composite fiber of piezoelectric dielectrics and nonpiezoelectric semiconductors. Journal of Applied Physics, 124(6), 064506 (2018)

    Article  Google Scholar 

  32. LUO, Y., ZHANG, C., CHEN, W., and YANG, J. Piezopotential in a bended composite fiber made of a semiconductive core and of two piezoelectric layers with opposite polarities. Nano Energy, 54, 341–348 (2018)

    Article  Google Scholar 

  33. CAO, X., NIU, W., CHENG, Z., and SHI, J. Power series iterative approximation solution to the temperature field in thermoelectric generators made of a functionally graded temperature-dependent material. Journal of Electronic Materials, 49(9), 5379–5390 (2020)

    Article  Google Scholar 

  34. QU, Y., JIN, F., and YANG, J. Temperature effects on mobile charges in thermopiezoelectric semiconductor plates. International Journal of Applied Mechanics, 13(3), 2150037 (2021)

    Article  Google Scholar 

  35. CHENG, R., ZHANG, C., and YANG, J. Thermally induced carrier distribution in a piezoelectric semiconductor fiber. Journal of Electronic Materials, 48(8), 4939–4946 (2019)

    Article  Google Scholar 

  36. CHENG, R., ZHANG, C., CHEN, W., and YANG, J. Electrical behaviors of a piezoelectric semiconductor fiber under a local temperature change. Nano Energy, 66, 104081 (2019)

    Article  Google Scholar 

  37. CHENG, R., ZHANG, C., CHEN, W., and YANG, J. Temperature effects on PN junctions in piezoelectric semiconductor fibers with thermoelastic and pyroelectric couplings. Journal of Electronic Materials, 49(5), 3140–3148 (2020)

    Article  Google Scholar 

  38. GUO, M., LU, C., QIN, G., and ZHAO, M. Temperature gradient-dominated electrical behaviours in a piezoelectric PN junction. Journal of Electronic Materials, 50(3), 947–953 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Scientific Research Found of Zhejiang University (No. XY2023035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunli Zhang.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 12172326 and 11972319), the National Key Research and Development Program of China (No. 2020YFA0711700), and the Natural Science Foundation of Zhejiang Province of China (No. LR21A020002)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Cheng, R., Ma, N. et al. Analysis of piezoelectric semiconductor fibers under gradient temperature changes. Appl. Math. Mech.-Engl. Ed. 45, 311–320 (2024). https://doi.org/10.1007/s10483-024-3085-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-024-3085-8

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation