Skip to main content
Log in

Effect of foam structure on thermo-mechanical buckling of foam core sandwich nanoplates with layered face plates made of functionally graded material (FGM)

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The present investigation involved the modeling and analysis of the thermomechanical buckling behavior of sandwich nanoplates with foam core layers. The study employed the utilization of the new higher order deformation theory and nonlocal strain gradient elasticity theory. The modeling of foam core involves separate consideration of uniform and symmetric open cell foam distribution types, while the face plates are predicted to exhibit FGM and isotropic layers. A total of six sandwich plate types were modeled and analyzed. The thermomechanical buckling behavior of sandwich nanoplates is significantly influenced by the sandwich type, volumetric foam ratio of the core layer, and its distribution along the foam core height, as demonstrated in prior analyses. The study revealed that the incorporation of foam structure resulted in an elevation of the buckling temperature during the thermo-mechanical response of the nanoplate. At low temperatures, the uniform foam model had lesser thermal buckling than the symmetrical foam model. However, this trend changed after reaching ΔT = 350–360 K levels. The study is expected to yield significant insights into the development and application of nanosensors, transducers, and nanoelectro mechanical systems that are designed to operate in high-temperature settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Sobczak, J.J., Drenchev, L.: Metallic functionally graded materials: a specific class of advanced composites. J. Mater. Sci. Technol. 29, 297–316 (2013). https://doi.org/10.1016/j.jmst.2013.02.006

    Article  Google Scholar 

  2. Swaminathan, K., Sangeetha, D.M.: Thermal analysis of fgm plates—a critical review of various modelling techniques and solution methods. Compos. Struct. (2016). https://doi.org/10.1016/j.compstruct.2016.10.047

    Article  Google Scholar 

  3. Garg, A., Belarbi, M.O., Chalak, H.D., Chakrabarti, A.: A review of the analysis of sandwich FGM structures. Compos. Struct. 258, 113427 (2021). https://doi.org/10.1016/j.compstruct.2020.113427

    Article  Google Scholar 

  4. Naebe, M., Shirvanimoghaddam, K.: Functionally graded materials: a review of fabrication and properties. Appl. Mater. Today 5, 223–245 (2016). https://doi.org/10.1016/j.apmt.2016.10.001

    Article  Google Scholar 

  5. Li, Y., Feng, Z., Hao, L., Huang, L., Xin, C., Wang, Y., Bilotti, E., Essa, K., Zhang, H., Li, Z., Yan, F., Peijs, T.: A review on functionally graded materials and structures via additive manufacturing: from multi-scale design to versatile functional properties. Adv. Mater. Technol. (2020). https://doi.org/10.1002/admt.201900981

    Article  Google Scholar 

  6. Hellal, H., Bourada, M., Hebali, H., Bourada, F., Tounsi, A., Bousahla, A.A., Mahmoud, S.: Dynamic and stability analysis of functionally graded material sandwich plates in hygro-thermal environment using a simple higher shear deformation theory. J. Sandw. Struct. Mater. 23, 814–851 (2021). https://doi.org/10.1177/1099636219845841

    Article  Google Scholar 

  7. Kawasaki, A., Watanabe, R.: Concept and P/M fabrication of functionally gradient materials. Ceram. Int. 23, 73–83 (1997). https://doi.org/10.1016/0272-8842(95)00143-3

    Article  Google Scholar 

  8. Barretta, R., Feo, L., Luciano, R., Marotti de Sciarra, F., Penna, R.: Functionally graded Timoshenko nanobeams: a novel nonlocal gradient formulation. Compos. Part B Eng. 100, 208–219 (2016). https://doi.org/10.1016/j.compositesb.2016.05.052

    Article  Google Scholar 

  9. Li, Y., Li, D., Huang, B.-Z.: Effects of parameters on postbuckling failure of composite sandwich panels loaded axially: function form and applications. J. Sandw. Struct. Mater. (2023). https://doi.org/10.1177/10996362231181530

    Article  Google Scholar 

  10. Journal, A.I., Akbari, H., Azadi, M., Fahham, H.: Free vibration analysis of thick sandwich cylindrical panels with saturated FG-porous core. Mech. Based Des. Struct. Mach. 50, 1268–1286 (2022). https://doi.org/10.1080/15397734.2020.1748051

    Article  Google Scholar 

  11. Kumar, R., Lal, A., Sutaria, B.M.: Free vibration of porous functionally graded sandwich plates with hole. J. Vib. Eng. Technol. (2022). https://doi.org/10.1007/s42417-022-00810-7

    Article  Google Scholar 

  12. Ke, L.L., Wang, Y.S., Wang, Z.D.: Thermal effect on free vibration and buckling of size-dependent microbeams. Phys. E Low-Dimens. Syst. Nanostruct. 43, 1387–1393 (2011). https://doi.org/10.1016/j.physe.2011.03.009

    Article  Google Scholar 

  13. Esen, I.: Dynamics of size-dependant Timoshenko micro beams subjected to moving loads. Int. J. Mech. Sci. 175, 105501 (2020). https://doi.org/10.1016/j.ijmecsci.2020.105501

    Article  Google Scholar 

  14. Mindlin, R.D., Tiersten, H.F.: Effects of couple-stresses in linear elasticity. Arch. Ration. Mech. Anal. (1962). https://doi.org/10.1007/BF00253946

    Article  MathSciNet  Google Scholar 

  15. Eringen, A.C., Edelen, D.G.B.: On nonlocal elasticity. Int. J. Eng. Sci. 10, 233–248 (1972). https://doi.org/10.1016/0020-7225(72)90039-0

    Article  MathSciNet  MATH  Google Scholar 

  16. Eringen, A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. (1983). https://doi.org/10.1063/1.332803

    Article  Google Scholar 

  17. Eringen, A.C.: Nonlocal polar elastic continua. Int. J. Eng. Sci. 10, 1–16 (1972). https://doi.org/10.1016/0020-7225(72)90070-5

    Article  MathSciNet  MATH  Google Scholar 

  18. Mechab, B., Mechab, I., Benaissa, S., Ameri, M., Serier, B.: Probabilistic analysis of effect of the porosities in functionally graded material nanoplate resting on Winkler-Pasternak elastic foundations. Appl. Math. Model. 40, 738–749 (2016). https://doi.org/10.1016/j.apm.2015.09.093

    Article  MathSciNet  MATH  Google Scholar 

  19. Li, L., Hu, Y., Ling, L.: Flexural wave propagation in small-scaled functionally graded beams via a nonlocal strain gradient theory. Compos. Struct. 133, 1079–1092 (2015). https://doi.org/10.1016/j.compstruct.2015.08.014

    Article  Google Scholar 

  20. Esen, I., Daikh, A.A., Eltaher, M.A.: Dynamic response of nonlocal strain gradient FG nanobeam reinforced by carbon nanotubes under moving point load. Eur. Phys. J. Plus (2021). https://doi.org/10.1140/epjp/s13360-021-01419-7

    Article  Google Scholar 

  21. Arefi, M., Zenkour, A.M.: Wave propagation analysis of a functionally graded magneto-electro-elastic nanobeam rest on Visco-Pasternak foundation. Mech. Res. Commun. 79, 51–62 (2017). https://doi.org/10.1016/j.mechrescom.2017.01.004

    Article  Google Scholar 

  22. Yang, F., Chong, A.C.M., Lam, D.C.C., Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. (2002). https://doi.org/10.1016/S0020-7683(02)00152-X

    Article  MATH  Google Scholar 

  23. Eltaher, M.A., Abdelrahman, A.A., Esen, I.: Dynamic analysis of nanoscale Timoshenko CNTs based on doublet mechanics under moving load. Eur. Phys. J. Plus 136, 1–21 (2021). https://doi.org/10.1140/epjp/s13360-021-01682-8

    Article  Google Scholar 

  24. Eringen, A.C.: Theories of nonlocal plasticity. Int. J. Eng. Sci. (1983). https://doi.org/10.1016/0020-7225(83)90058-7

    Article  MATH  Google Scholar 

  25. Mahmoudi, A., Benyoucef, S., Tounsi, A., Benachour, A., Adda Bedia, E.A., Mahmoud, S.: A refined quasi-3D shear deformation theory for thermo-mechanical behavior of functionally graded sandwich plates on elastic foundations. J. Sandw. Struct. Mater. 21, 1906–1929 (2019). https://doi.org/10.1177/1099636217727577

    Article  Google Scholar 

  26. Lal, R., Dangi, C.: Dynamic analysis of bi-directional functionally graded Timoshenko nanobeam on the basis of Eringen’s nonlocal theory incorporating the surface effect. Appl. Math. Comput. 395, 125857 (2021). https://doi.org/10.1016/j.amc.2020.125857

    Article  MathSciNet  MATH  Google Scholar 

  27. Liu, H., Lyu, Z.: Modeling of novel nanoscale mass sensor made of smart FG magneto-electro-elastic nanofilm integrated with graphene layers. Thin-Walled Struct. 151, 106749 (2020). https://doi.org/10.1016/j.tws.2020.106749

    Article  Google Scholar 

  28. Qi, Y.N., Dai, H.L., Deng, S.T.: Thermoelastic analysis of stiffened sandwich doubly curved plate with FGM core under low velocity impact. Compos. Struct. 253, 112826 (2020). https://doi.org/10.1016/j.compstruct.2020.112826

    Article  Google Scholar 

  29. Adhikari, B., Dash, P., Singh, B.N.: Buckling analysis of porous FGM sandwich plates under various types nonuniform edge compression based on higher order shear deformation theory. Compos. Struct. 251, 112597 (2020). https://doi.org/10.1016/j.compstruct.2020.112597

    Article  Google Scholar 

  30. Singh, S.J., Harsha, S.P.: Thermo-mechanical analysis of porous sandwich S-FGM plate for different boundary conditions using Galerkin Vlasov’s method: a semi-analytical approach. Thin-Walled Struct. 150, 106668 (2020). https://doi.org/10.1016/j.tws.2020.106668

    Article  Google Scholar 

  31. Van Long, N., Thinh, T.I., Bich, D.H., Tu, T.M.: Nonlinear dynamic responses of sandwich-FGM doubly curved shallow shells subjected to underwater explosions using first-order shear deformation theory. Ocean Eng. 260, 111886 (2022). https://doi.org/10.1016/j.oceaneng.2022.111886

    Article  Google Scholar 

  32. Liang, C., Wang, Y.Q.: A quasi-3D trigonometric shear deformation theory for wave propagation analysis of FGM sandwich plates with porosities resting on viscoelastic foundation. Compos. Struct. 247, 112478 (2020). https://doi.org/10.1016/j.compstruct.2020.112478

    Article  Google Scholar 

  33. Shinde, B.M., Sayyad, A.S.: A new higher order shear and normal deformation theory for FGM sandwich shells. Compos. Struct. 280, 114865 (2022). https://doi.org/10.1016/j.compstruct.2021.114865

    Article  Google Scholar 

  34. Liang, C., Yaw, Z., Lim, C.W.: Thermal strain energy induced wave propagation for imperfect FGM sandwich cylindrical shells. Compos. Struct. 303, 116295 (2023). https://doi.org/10.1016/j.compstruct.2022.116295

    Article  Google Scholar 

  35. Belkhodja, Y., El Amine Belkhodja, M., Fekirini, H., Ouinas, D.: New quasi-three-, and two-dimensional trigonometric-cubic monomial HSDT for thermal buckling and thermo-mechanical bending analyses of FGM symmetrical/non-symmetrical sandwich plates with hard/soft core. Compos. Struct. 304, 116402 (2023). https://doi.org/10.1016/j.compstruct.2022.116402

    Article  Google Scholar 

  36. Katili, I., Batoz, J.L., Bouabdallah, S., Maknun, I.J., Katili, A.M.: Discrete shear projection method for mechanical buckling analysis of FGM sandwich plates. Compos. Struct. 312, 116825 (2023). https://doi.org/10.1016/j.compstruct.2023.116825

    Article  Google Scholar 

  37. Karakoti, A., Pandey, S., Kar, V.R.: Nonlinear transient analysis of porous P-FGM and S-FGM sandwich plates and shell panels under blast loading and thermal environment. Thin-Walled Struct. 173, 108985 (2022). https://doi.org/10.1016/j.tws.2022.108985

    Article  Google Scholar 

  38. Sayyad, A.S., Ghugal, Y.M., Kant, T.: Higher-order static and free vibration analysis of doubly-curved FGM sandwich shallow shells. Forces Mech. 11, 100194 (2023). https://doi.org/10.1016/j.finmec.2023.100194

    Article  Google Scholar 

  39. Singh, S.J., Harsha, S.P.: Nonlinear dynamic analysis of sandwich S-FGM plate resting on Pasternak foundation under thermal environment. Eur. J. Mech. A/Solids 76, 155–179 (2019). https://doi.org/10.1016/j.euromechsol.2019.04.005

    Article  MathSciNet  MATH  Google Scholar 

  40. Liu, B.L., Li, S., Li, Y.S.: Bending of FGM sandwich plates with tunable auxetic core using DQM. Eur. J. Mech. A/Solids (2023). https://doi.org/10.1016/j.euromechsol.2022.104838

    Article  MathSciNet  MATH  Google Scholar 

  41. Zhao, W., Guo, D., Gong, X., Li, C.: Nonlinear axisymmetric buckling analysis of the FGM sandwich shallow spherical shells under thermomechanical loads. Eur. J. Mech. A/Solids 97, 104841 (2023). https://doi.org/10.1016/j.euromechsol.2022.104841

    Article  MathSciNet  MATH  Google Scholar 

  42. Tomar, S.S., Talha, M.: Influence of material uncertainties on vibration and bending behaviour of skewed sandwich FGM plates. Compos. Part B Eng. 163, 779–793 (2019). https://doi.org/10.1016/j.compositesb.2019.01.035

    Article  Google Scholar 

  43. Singh, D., Gupta, A.: Influence of geometric imperfections on the free vibrational response of the functionally graded material sandwich plates with circular cut-outs. Mater. Today Proc. 62, 1496–1499 (2022). https://doi.org/10.1016/j.matpr.2022.02.187

    Article  Google Scholar 

  44. Sahoo, B., Sharma, N., Sahoo, B., Malhari Ramteke, P., Kumar Panda, S., Mahmoud, S.R.: Nonlinear vibration analysis of FGM sandwich structure under thermal loadings. Structures 44, 1392–1402 (2022). https://doi.org/10.1016/j.istruc.2022.08.081

    Article  Google Scholar 

  45. Al-Osta, M.A.: An efficient model for wave propagation of temperature-dependent E-FGM plates resting on viscoelastic foundation. Mater. Today Commun. 35, 105784 (2023). https://doi.org/10.1016/j.mtcomm.2023.105784

    Article  Google Scholar 

  46. Alipour, M.M., Shariyat, M.: Nonlocal zigzag analytical solution for Laplacian hygrothermal stress analysis of annular sandwich macro/nanoplates with poor adhesions and 2D-FGM porous cores. Arch. Civ. Mech. Eng. 19, 1211–1234 (2019). https://doi.org/10.1016/j.acme.2019.06.008

    Article  Google Scholar 

  47. Ebrahimi, F., Farazmandnia, N., Kokaba, M.R., Mahesh, V.: Vibration analysis of porous magneto-electro-elastically actuated carbon nanotube-reinforced composite sandwich plate based on a refined plate theory. Eng. Comput. 37, 921–936 (2021). https://doi.org/10.1007/s00366-019-00864-4

    Article  Google Scholar 

  48. Hirane, H., Belarbi, M.O., Houari, M.S.A., Tounsi, A.: On the layerwise finite element formulation for static and free vibration analysis of functionally graded sandwich plates. Eng. Comput. 38, 3871–3899 (2022). https://doi.org/10.1007/s00366-020-01250-1

    Article  Google Scholar 

  49. Zaitoun, M.W., Chikh, A., Tounsi, A., Sharif, A., Al-Osta, M.A., Al-Dulaijan, S.U., Al-Zahrani, M.M.: An efficient computational model for vibration behavior of a functionally graded sandwich plate in a hygrothermal environment with viscoelastic foundation effects. Eng. Comput. (2021). https://doi.org/10.1007/s00366-021-01498-1

    Article  Google Scholar 

  50. Sahoo, B., Mehar, K., Sahoo, B., Sharma, N., Panda, S.K.: Thermal post-buckling analysis of graded sandwich curved structures under variable thermal loadings. Eng. Comput. (2021). https://doi.org/10.1007/s00366-021-01514-4

    Article  Google Scholar 

  51. Abdoun, F., Azrar, L.: Nonlinear thermal analysis of multilayered composite and FGM plates with temperature-dependent properties based on an asymptotic numerical method. Arch. Appl. Mech. 91, 4361–4387 (2021). https://doi.org/10.1007/s00419-021-01999-x

    Article  Google Scholar 

  52. Singh, B.N., Ranjan, V., Hota, R.N.: Vibroacoustic response from thin exponential functionally graded plates. Arch. Appl. Mech. 92, 2095–2118 (2022). https://doi.org/10.1007/s00419-022-02163-9

    Article  Google Scholar 

  53. Joseph, S.V., Mohanty, S.C.: Free vibration and parametric instability of viscoelastic sandwich plates with functionally graded material constraining layer. Acta Mech. 230, 2783–2798 (2019). https://doi.org/10.1007/s00707-019-02433-8

    Article  MathSciNet  MATH  Google Scholar 

  54. Chan, D.Q., Quan, T.Q., Phi, B.G., Van Hieu, D., Duc, N.D.: Buckling analysis and dynamic response of FGM sandwich cylindrical panels in thermal environments using nonlocal strain gradient theory. Acta Mech. 233, 2213–2235 (2022). https://doi.org/10.1007/s00707-022-03212-8

    Article  MathSciNet  MATH  Google Scholar 

  55. Chaabani, H., Mesmoudi, S., Boutahar, L., El Bikri, K.: A high-order continuation for bifurcation analysis of functionally graded material sandwich plates. Acta Mech. 233, 2125–2147 (2022). https://doi.org/10.1007/s00707-022-03216-4

    Article  MathSciNet  MATH  Google Scholar 

  56. Mirzavand Borojeni, B., Shams, S., Kazemi, M.R., Rokn-Abadi, M.: Effect of temperature and magnetoelastic loads on the free vibration of a sandwich beam with magnetorheological core and functionally graded material constraining layer. Acta Mech. 233, 4939–4959 (2022). https://doi.org/10.1007/s00707-022-03316-1

    Article  MathSciNet  MATH  Google Scholar 

  57. Chaabani, H., Mesmoudi, S., Boutahar, L., Bikri, K.E.: Buckling of porous FG sandwich plates subjected to various non-uniform compressions and resting on Winkler-Pasternak elastic foundation using a finite element model based on the high-order shear deformation theory. Acta Mech. 233, 5359–5376 (2022). https://doi.org/10.1007/s00707-022-03388-z

    Article  MATH  Google Scholar 

  58. Xiao, J., Wang, J.: Nonlinear vibration of FGM sandwich nanoplates with surface effects. Acta Mech. Solida Sin. (2022). https://doi.org/10.1007/s10338-022-00371-y

    Article  Google Scholar 

  59. Karroubi, R., Irani-Rahaghi, M.: Rotating sandwich cylindrical shells with an FGM core and two FGPM layers: free vibration analysis. Appl. Math. Mech. 40, 563–578 (2019). https://doi.org/10.1007/s10483-019-2469-8

    Article  MathSciNet  MATH  Google Scholar 

  60. Liu, Y., Qin, Z., Chu, F.: Nonlinear forced vibrations of functionally graded piezoelectric cylindrical shells under electric-thermo-mechanical loads. Int. J. Mech. Sci. 201, 106474 (2021). https://doi.org/10.1016/j.ijmecsci.2021.106474

    Article  Google Scholar 

  61. Liu, Y., Qin, Z., Chu, F.: Nonlinear forced vibrations of FGM sandwich cylindrical shells with porosities on an elastic substrate. Nonlinear Dyn. 104, 1007–1021 (2021). https://doi.org/10.1007/s11071-021-06358-7

    Article  Google Scholar 

  62. Li, H., Liu, Y., Zhang, H., Qin, Z., Wang, Z., Deng, Y., Xiong, J., Wang, X., Kyu Ha, S.: Amplitude-dependent damping characteristics of all-composite sandwich plates with a foam-filled hexagon honeycomb core. Mech. Syst. Signal Process. 186, 109845 (2023). https://doi.org/10.1016/j.ymssp.2022.109845

    Article  Google Scholar 

  63. Singh, S.J., Harsha, S.P.: Thermal buckling of porous symmetric and non-symmetric sandwich plate with homogenous core and S-FGM face sheets resting on Pasternak foundation. Int. J. Mech. Mater. Des. 16, 707–731 (2020). https://doi.org/10.1007/s10999-020-09498-7

    Article  Google Scholar 

  64. Chedad, A., Elmeiche, N., Hamzi, S., Abbad, H.: Effect of porosity on the thermal buckling of functionally graded material (FGM) sandwich plates under different boundary conditions. Mech. Based Des. Struct. Mach. (2022). https://doi.org/10.1080/15397734.2022.2148691

    Article  Google Scholar 

  65. Mahdavi, S., Shaterzadeh, A., Jafari, M.: Determination of optimum effective parameters on thermal buckling of hybrid composite plates with quasi-square cut-out using a genetic algorithm. Eng. Optim. (2020). https://doi.org/10.1080/0305215X.2019.1575965

    Article  MathSciNet  MATH  Google Scholar 

  66. Journal, A.I., Mehditabar, A., Sadrabadi, S.A., Walker, J.: Thermal buckling analysis of a functionally graded microshell based on higher-order shear deformation and modified couple stress theories. Mech. Based Des. Struct. Mach. (2023). https://doi.org/10.1080/15397734.2021.1908145

    Article  Google Scholar 

  67. Shaterzadeh, A.R., Rezaei, R., Abolghasemi, S.: Thermal buckling analysis of perforated functionally graded plates. J. Therm. Stress. 38(11), 1248–1266 (2015). https://doi.org/10.1080/01495739.2015.1073525

    Article  Google Scholar 

  68. Hu, X., Yuan, W., Song, H.: Theoretical analysis on the thermal buckling behavior of material-filled truss-core sandwich plates with various boundary conditions. J. Therm. Stress. 45, 81–99 (2022). https://doi.org/10.1080/01495739.2021.2006102

    Article  Google Scholar 

  69. Huang, H., Rao, D.: Thermal buckling of functionally graded cylindrical shells with temperature-dependent elastoplastic properties. Contin. Mech. Thermodyn. 32, 1403–1415 (2020). https://doi.org/10.1007/s00161-019-00854-3

    Article  MathSciNet  Google Scholar 

  70. Li, Y.S., Liu, B.L.: Thermal buckling and free vibration of viscoelastic functionally graded sandwich shells with tunable auxetic honeycomb core. Appl. Math. Modell. 108, 685–700 (2022). https://doi.org/10.1016/j.apm.2022.04.019

    Article  MathSciNet  MATH  Google Scholar 

  71. Markworth, A.J., Ramesh, K.S., JW, P.: Modelling studies applied to functionally graded materials. J. Mater. Sci. 30, 2183–2193 (1995)

    Article  Google Scholar 

  72. Mahmoudi, A., Bachir Bouiadjra, R., Benyoucef, S., Selim, M.M., Tounsi, A., Hussain, M.: Analytical investigation of wave propagation in bidirectional FG sandwich porous plates lying on an elastic substrate. Waves Random Complex Media 33, 202–224 (2023). https://doi.org/10.1080/17455030.2022.2038814

    Article  MathSciNet  Google Scholar 

  73. Özmen, R., Kılıç, R., Esen, I.: Thermomechanical vibration and buckling response of nonlocal strain gradient porous FG nanobeams subjected to magnetic and thermal. Mech. Adv. Mater. Struct. (2022). https://doi.org/10.1080/15376494.2022.2124000

    Article  Google Scholar 

  74. Abdelmola, F., Carlsson, L.A.: State of water in void-free and void-containing epoxy specimens. J. Reinf. Plast. Compos. 38, 556–566 (2019). https://doi.org/10.1177/0731684419833469

    Article  Google Scholar 

  75. Touloukian, Y.S.: Thermophysical Properties of High Temperature Solid Materials. Macmillan, New York (1967)

    Google Scholar 

  76. Touloukian, Y.S.: Thermophysical Properties of High Temperature Solid Materials 4 Oxides and Their Solutions and Mixtures. Macmillan, New York (1966)

    Google Scholar 

  77. Kiani, Y., Eslami, M.R.: An exact solution for thermal buckling of annular FGM plates on an elastic medium. Compos. Part B Eng. 45, 101–110 (2013). https://doi.org/10.1016/j.compositesb.2012.09.034

    Article  Google Scholar 

  78. Zhang, D.G.: Thermal post-buckling and nonlinear vibration analysis of FGM beams based on physical neutral surface and high order shear deformation theory. Meccanica 49, 283–293 (2014). https://doi.org/10.1007/s11012-013-9793-9

    Article  MathSciNet  MATH  Google Scholar 

  79. Lim, C.W., Zhang, G., Reddy, J.N.: A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. J. Mech. Phys. Solids (2015). https://doi.org/10.1016/j.jmps.2015.02.001

    Article  MathSciNet  MATH  Google Scholar 

  80. Saseendran, V., Carlsson, L.A., Berggreen, C.: Shear and foundation effects on crack root rotation and mode-mixity in moment- and force-loaded single cantilever beam sandwich specimen. J. Compos. Mater. 52, 2537–2547 (2018). https://doi.org/10.1177/0021998317749714

    Article  Google Scholar 

  81. Bouhadra, A., Benyoucef, S., Tounsi, A., Bernard, F., Bouiadjra, R.B., Houari, M.S.A.: Thermal buckling response of functionally graded plates with clamped boundary conditions. J. Therm. Stress. 38, 630–650 (2015). https://doi.org/10.1080/01495739.2015.1015900

    Article  Google Scholar 

  82. Zenkour, A.M., Sobhy, M.: Thermal buckling of various types of FGM sandwich plates. Compos. Struct. 93, 93–102 (2010). https://doi.org/10.1016/j.compstruct.2010.06.012

    Article  Google Scholar 

  83. Reddy, J.N.: Analysis of functionally graded plates. Int. J. Numer. Methods Eng. 47, 663–684 (2000). https://doi.org/10.1002/(SICI)1097-0207(20000110/30)47:1/3%3c663::AID-NME787%3e3.0.CO;2-8

    Article  MATH  Google Scholar 

  84. Mouthanna, A., Bakhy, S.H., Al-Waily, M.: Analytical investigation of nonlinear free vibration of porous eccentrically stiffened functionally graded sandwich cylindrical shell panels. Iran. J. Sci. Technol. Trans. Mech. Eng. (2022). https://doi.org/10.1007/s40997-022-00555-4

    Article  Google Scholar 

  85. Liu, Y., Wang, J., Hu, J., Qin, Z., Chu, F.: Multiple internal resonances of rotating composite cylindrical shells under varying temperature fields. Appl. Math. Mech. 43, 1543–1554 (2022). https://doi.org/10.1007/s10483-022-2904-9

    Article  MathSciNet  MATH  Google Scholar 

  86. Mekerbi, M., Benyoucef, S., Mahmoudi, A., Tounsi, A., Bousahla, A.A., Mahmoud, S.R.: Thermodynamic behavior of functionally graded sandwich plates resting on different elastic foundation and with various boundary conditions. J. Sandw. Struct. Mater. 23, 1028–1057 (2021). https://doi.org/10.1177/1099636219851281

    Article  Google Scholar 

  87. Sobhy, M.: Buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions. Compos. Struct. 99, 76–87 (2013). https://doi.org/10.1016/j.compstruct.2012.11.018

    Article  Google Scholar 

  88. Duc, N.D., Lee, J., Nguyen-Thoi, T., Thang, P.T.: Static response and free vibration of functionally graded carbon nanotube-reinforced composite rectangular plates resting on Winkler-Pasternak elastic foundations. Aerosp. Sci. Technol. 68, 391–402 (2017). https://doi.org/10.1016/j.ast.2017.05.032

    Article  Google Scholar 

  89. Radwan, A.F.: Effects of non-linear hygrothermal conditions on the buckling of FG sandwich plates resting on elastic foundations using a hyperbolic shear deformation theory. J. Sandw. Struct. Mater. 21, 289–319 (2019). https://doi.org/10.1177/1099636217693557

    Article  Google Scholar 

  90. Esen, I., Abdelrhmaan, A.A., Eltaher, M.A.: Free vibration and buckling stability of FG nanobeams exposed to magnetic and thermal fields. Eng. Comput. 38, 3463–3482 (2022). https://doi.org/10.1007/s00366-021-01389-5

    Article  Google Scholar 

  91. Daikh, A.A., Houari, M.S.A., Tounsi, A.: Buckling analysis of porous FGM sandwich nanoplates due to heat conduction via nonlocal strain gradient theory. Eng. Res. Express (2019). https://doi.org/10.1088/2631-8695/ab38f9

    Article  Google Scholar 

  92. Esen, I., Özmen, R.: Thermal vibration and buckling of magneto-electro-elastic functionally graded porous nanoplates using nonlocal strain gradient elasticity. Compos. Struct. (2022). https://doi.org/10.1016/j.compstruct.2022.115878

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuğçe Yıldız.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yıldız, T., Esen, I. Effect of foam structure on thermo-mechanical buckling of foam core sandwich nanoplates with layered face plates made of functionally graded material (FGM). Acta Mech 234, 6407–6437 (2023). https://doi.org/10.1007/s00707-023-03722-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03722-z

Navigation