Skip to main content
Log in

Free vibration and parametric instability of viscoelastic sandwich plates with functionally graded material constraining layer

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Free vibration and parametric instability analyses of a three-layered sandwich plate with viscoelastic constrained layer and functionally graded material constraining layer are carried out in this work. A finite element model is developed for the vibration and parametric instability analyses of the sandwich plate. The lateral and transverse displacements of the viscoelastic core layer are considered as linear functions of top and bottom layer displacements. The first-order shear deformation theory is used to incorporate the effect of transverse sheer of the face layers, and in addition to the effect of shear deformation of the core, the effects of transverse and longitudinal deformations are also considered in this analysis. So that the present finite element model can be applied to the sandwich plates with thin as well as thick layers of core. The variations of fundamental frequency, mode loss factors and instability regions with different aspect ratios, thickness ratios, and boundary conditions are examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Faraday, M.: On a peculiar class of acoustical figures; and on certain forms assumed by groups of particles upon vibrating elastic surfaces. Philos. Trans. R. Soc. Lond. 121, 299–340 (1831)

    Article  Google Scholar 

  2. Rayleigh XXXIII, F.R.S.: On maintained vibrations. Philos. Mag. Ser. 5 15(94), 229–235 (1883)

  3. Bolotin, V.V.: The dynamic stability of elastic systems. Holden-Day Inc, San Frasncisco (1962)

    Book  Google Scholar 

  4. Kao, J.Y., Chen, C.S., Chen, W.R.: Parametric vibration response of foam-filled sandwich plates under periodic loads. Mech. Compos. Mater. 48(5), 525–538 (2012)

  5. Linke, M., Wohlers, W., Reimerdes, H.G.: Finite element for the static and stability analysis of sandwich plates. J. Sandw. Struct. Mater. 9(2), 123–142 (2007)

    Article  Google Scholar 

  6. Deolasi, P.J., Datta, P.K.: Parametric instability characteristics of rectangular plates subjected to localized edge loading (compression or tension). Comput. Struct. 54(1), 73–82 (1995)

    Article  MATH  Google Scholar 

  7. Kant, T., Swaminathan, K.: Analytical solutions using a higher order refined theory for the stability analysis of laminated composite and sandwich plates. Struct. Eng. Mech. 10(4), 337–357 (2000)

    Article  Google Scholar 

  8. Chakrabarti, A., Sheikh, A.H.: Dynamic instability of laminated sandwich plates subjected to in-plane partial edge loading. Ocean Eng. 33(17), 2287–2309 (2006)

    Article  Google Scholar 

  9. Hohe, J., Librescu, L., Oh, S.Y.: Dynamic buckling of flat and curved sandwich panels with transversely compressible core. Compos. Struct. 74(1), 10–24 (2006)

    Article  Google Scholar 

  10. Garg, A.K., Khare, R.K., Kant, T.: Higher-order closed-form solutions for free vibration of laminated composite and sandwich shells. J. Sandw. Struct. Mater. 8(3), 205–235 (2006)

    Article  Google Scholar 

  11. Mondal, B., Ganapathi, M., Kalyani, A.: On the elastic stability of simply supported anisotropic sandwich panels. Compos. Struct. 80(4), 631–635 (2007)

    Article  Google Scholar 

  12. Ramachandra, L.S., Panda, S.K.: Dynamic instability of composite plates subjected to non-uniform in-plane loads. J. Sound Vib. 331(1), 53–65 (2012)

    Article  Google Scholar 

  13. Sahoo, R., Singh, B.N.: Dynamic instability of laminated-composite and sandwich plates using a new inverse trigonometric zigzag theory. J. Vib. Acoust. 137(6), 061001 (2015)

    Article  Google Scholar 

  14. Sankar, A., Natarajan, S., Ganapathi, M.: Dynamic instability analysis of sandwich plates with CNT reinforced facesheets. Compos. Struct. 146, 187–200 (2016)

    Article  Google Scholar 

  15. Dey, T., Ramachandra, L.S.: Linear and nonlinear parametric instability behavior of cylindrical sandwich panels subjected to various mechanical edge loadings. Mech. Adv. Mater. Struct. 23(1), 8–21 (2016)

    Article  Google Scholar 

  16. Nakra, B.C.: Vibration control in machines and structures using viscoelastic damping. J. Sound Vib. 211(3), 449–466 (1998)

    Article  Google Scholar 

  17. Wang, G., Veeramani, S., Wereley, N.M.: Analysis of sandwich plates with isotropic face plates and a viscoelastic core. J. Vib. Acoust. 22, 305–312 (1999)

    Google Scholar 

  18. Grootenhuis, P.: The control of vibrations with viscoelastic materials. J. Sound Vib. 11(4), 421–433 (1970)

    Article  Google Scholar 

  19. Yeh, J.Y., Chen, L.W.: Vibration of a sandwich plate with a constrained layer and electrorheological fluid core. Compos. Struct. 65(2), 251–258 (2004)

    Article  Google Scholar 

  20. Eshaghi, M., Sedaghati, R., Rakheja, S.: The effect of magneto-rheological fluid on vibration suppression capability of adaptive sandwich plates: experimental and finite element analysis. J. Intell. Mater. Syst. Struct. 1–16 (2015)

  21. Moreira, R.A.S., Rodrigues, J.D.: A layerwise model for thin soft core sandwich plates. Comput. Struct. 84(19–20), 1256–1263 (2006)

    Article  Google Scholar 

  22. Moita, J.S., Araújo, A.L., Martins, P., Soares, C.M.M.: A finite element model for the analysis of viscoelastic sandwich structures. Comput. Struct. 89(21–22), 1874–1881 (2011)

    Article  Google Scholar 

  23. Dozio, L.: Natural frequencies of sandwich plates with fgm core via variable-kinematic 2-d ritz models. Compos. Struct. 96, 561–568 (2013)

    Article  Google Scholar 

  24. Yang, C., Jin, G., Ye, X., Liu, Z.: A modified Fourier-Ritz solution for vibration and damping analysis of sandwich plates with viscoelastic and functionally graded materials. Int. J. Mech. Sci. 106, 1–18 (2016)

    Article  Google Scholar 

  25. Sobhy, M.: An accurate shear deformation theory for vibration and buckling of FGM sandwich plates in hygrothermal environment. Int. J. Mech. Sci. 110, 62–77 (2016)

    Article  Google Scholar 

  26. Talha, M., Singh, B.N.: Static response and free vibration analysis of FGM plates using higher order shear deformation theory. Appl. Math. Model. 34(12), 3991–4011 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Yaghoobi, H., Feriedoon, A.: Influence of neutral surface position on deflection of functionally graded beam under uniformly distributed load. World Appl. Sci. J. 10(3), 337–341 (2010)

    Google Scholar 

  28. Arvin, H., Sadighi, M., Ohadi, A.R.: A numerical study of free and forced vibration of composite sandwich beam with viscoelastic core. Compos. Struct. 92(4), 996–1008 (2010)

    Article  Google Scholar 

  29. Hsu, C.S.: On the parametric excitation of a dynamic system having multiple degrees of freedom. J. Appl. Mech. 30(3), 367–372 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lall, A.K., Nakra, B.C., Asnani, N.T.: Vibration and damping analysis of rectangular plate with partially covered constrained viscoelastic layer. J. Vib. Acoust. 109(3), 241–247 (1987)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shince V. Joseph.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joseph, S.V., Mohanty, S.C. Free vibration and parametric instability of viscoelastic sandwich plates with functionally graded material constraining layer. Acta Mech 230, 2783–2798 (2019). https://doi.org/10.1007/s00707-019-02433-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-019-02433-8

Navigation