Skip to main content
Log in

Equivalent imperfect interface model of PN junction of piezoelectric semiconductor for the multi-field coupled waves propagation

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

A Correction to this article was published on 08 November 2023

This article has been updated

Abstract

In this paper, an equivalent imperfect interface model of PN homojunction/ heterojunction of piezoelectric semiconductor for the multi-field coupled wave propagation is proposed firstly. PN junction is a special structure formed by the contact of two different types of doped semiconductors, which has been used extensively in semiconductor devices. Due to the gradient distribution of the electric potential and carrier concentration in PN junction of finite thickness, the reflection and the transmission will arise when the coupled waves propagate through PN junction. The effects of the PN junction on the wave propagation will be much more complicated by the accurate estimation. An equivalent imperfect interface model without thickness but with seven interface parameters is established to simulate the effects of PN junction which largely reduces the calculation cost. The numerical examples are provided and compared with the state transfer matrix method and the piecewise homogenization method. Energy flux of the reflected and transmitted waves are estimated, and the energy conservation is checked to verify reliability of the numerical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Change history

References

  1. Xu, S., Qin, Y., Xu, C., Wei, Y., Yang, R., Wang, Z.: Self-powered nanowire devices. Nat. Nanotechnol. 5, 366–373 (2010)

    Article  Google Scholar 

  2. Zhao, Z., Pu, X., Han, C., Du, C., Li, L., Jiang, C., Hu, W., Wang, Z.: Piezotronic effect in polarity-controlled GaN nanowires. ACS Nano 9(8), 8578–8583 (2015)

    Article  Google Scholar 

  3. Sheng, S.L.: Semiconductor Physical Electronics. Springer, New York (2006)

    Google Scholar 

  4. Cheng, S., Han, S., Cao, Z., Xu, C., Fang, X., Wang, X.: Wearable and ultrasensitive strain sensor based on high-quality GaN PN junction microwire arrays. Small 16(16), e1907461 (2020)

    Article  Google Scholar 

  5. Luo, Y., Cheng, R., Zhang, C., Chen, W., Yang, J.: Electromechanical fields near a circular PN junction between two piezoelectric semiconductors. Acta Mech. Solida Sin. 31(2), 127–140 (2018)

    Article  Google Scholar 

  6. Ren, C., Wang, K., Wang, B.: Analysis of piezoelectric PN homojunction and heterojunction considering flexoelectric effect and strain gradient. J. Phys. D-Appl. Phys. 54(49), 495102 (2021)

    Article  Google Scholar 

  7. Fang, K., Li, N., Li, P., Qian, Z., Kolesov, V., Kuznetsova, I.: Effects of an attached functionally graded layer on the electromechanical behaviors of piezoelectric semiconductor fibers. Appl. Math. Mech. English Ed. 43(9), 1367–1380 (2022)

    Article  MathSciNet  Google Scholar 

  8. Fan, S., Yang, W., Hu, Y.: Adjustment and control on the fundamental characteristics of a piezoelectric PN junction by mechanical-loading. Nano Energy 52, 416–421 (2018)

    Article  Google Scholar 

  9. Fan, S., Chen, Z.: Effect of asymmetry mechanical loads on the potential barrier region of a piezoelectric PN junction. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 68(5), 1783–1790 (2021)

    Article  Google Scholar 

  10. Jiao, F., Wei, P., Zhou, X., Zhou, Y.: The dispersion and attenuation of the multi-physical fields coupled waves in a piezoelectric semiconductor. Ultrasonics 92, 68–78 (2018)

    Article  Google Scholar 

  11. Jiao, F., Wei, P., Zhou, Y., Zhou, X.: Wave propagation through a piezoelectric semiconductor slab sandwiched by two piezoelectric half-spaces. Eur. J. Mech. A. Solids 75, 70–81 (2019)

    Article  MathSciNet  Google Scholar 

  12. Tian, R., Nie, G., Liu, J., Pan, E., Wang, Y.: Love waves in a piezoelectric semiconductor thin film on an elastic dielectric half-space. Acta Mech. Solida Sin. 36(1), 45–54 (2022)

    Article  Google Scholar 

  13. Xu, C.Y., Wei, P.J., Wei, Z.B., Guo, X.: Rayleigh wave in layered piezoelectric semiconductor with consideration of PN junction effects. Math. Mech. Solids, 1–17 (2022).

  14. Xu, C., Wei, P., Wei, Z., Guo, X.: Shear horizontal wave in a piezoelectric semiconductor substrate covered with a metal layer with consideration of Schottky junction effects. Appl. Math. Model. 109, 509–518 (2022)

    Article  MathSciNet  Google Scholar 

  15. Waheed, A., Jahangir, A., Khan, A.: Study on velocity of waves through piezoelectric semiconductor rotating with fix angular velocity in context of fractional-order time derivative. Arch. Appl. Mech. 92(9), 2647–2664 (2022)

    Article  Google Scholar 

  16. Guo, X., Wei, P.: Dispersion relations of in-plane elastic waves in nano-scale one dimensional piezoelectric semiconductor/piezoelectric dielectric hononic crystal with the consideration of interface effect. Appl. Math. Model. 96, 189–214 (2021)

    Article  MathSciNet  Google Scholar 

  17. Wei, Z., Wei, P., Xu, C., Guo, X.: Influences of piezoelectric positive-negative junction on the multi-field coupled waves propagation in the piezoelectric semiconductor. J. Acoust. Soc. Am. 152(3), 1883–1900 (2022)

    Article  Google Scholar 

  18. Li, L., Wei, P., Guo, X.: Rayleigh wave on the half-space with a gradient piezoelectric layer and imperfect interface. Appl. Math. Model. 40(19–20), 8326–8337 (2016)

    Article  MathSciNet  Google Scholar 

  19. Guo, X., Li, L., Wei, P., Tang, Q.: Influences of mechanically and dielectrically imperfect interfaces on the reflection and transmission waves between two piezoelectric half spaces. Int. J. Solids Struct. 63, 184–205 (2015)

    Article  Google Scholar 

  20. Guo, X., Ji, S., Liu, H., Ren, K.: Dispersion relations of elastic waves in three-dimensional cubical piezoelectric phononic crystal with initial stresses and mechanically and dielectrically imperfect interfaces. Appl. Math. Model. 69, 405–424 (2019)

    Article  MathSciNet  Google Scholar 

  21. Loukkal, A., Lematre, M., Bavencoffe, M., Lethiecq, M.: Modeling and numerical study of the influence of imperfect interface properties on the reflection coefficient for isotropic multilayered structures. Ultrasonics 103, 106099 (2020)

    Article  Google Scholar 

  22. Barnes, T., Olson, K., Wolden, C.: On the formation and stability of p-type conductivity in nitrogen-doped zinc oxide. Appl. Phys. Lett. 86(11), 112112 (2005)

    Article  Google Scholar 

  23. Qin, G., Ma, S., Lu, C., Wang, G., Zhao, M.: Influence of electric field and current on the strength of depoled GaN piezoelectric semiconductive ceramics. Ceram. Int. 44(4), 4169–4175 (2018)

    Article  Google Scholar 

  24. Veal, T.D., King, P.D.C., Hatfield, S.A., Bailey, L.R., McConville, C.F., Martel, B., Zúñiga-Pérez, J.: Valence band offset of the ZnO/AlN heterojunction determined by x-ray photoemission spectroscopy. Appl. Phys. Lett. 93(20), 202108 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

The work is supported by National Natural Science Foundation of China (No. 11872105, NO.12072022, NO.11911530176 and NO.12202039), Fundamental Research Funds for the Central Universities (FRF-TW-2018-005, FRF-BR-18-008B, FRF-TP-18-077A1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peijun Wei.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

“The original online version of this article was revised: the figures 4 and 6 has been corrected” plus the same explanatory text of the problem as in the erratum/correction article.

Appendices

Appendix A

$$\begin{gathered} {\mathbf{c}} = \left[ {\begin{array}{*{20}c} {c_{11} } &\quad {c_{12} } &\quad {c_{13} } &\quad 0 &\quad 0 &\quad 0 \\ {c_{12} } &\quad {c_{11} } &\quad {c_{13} } &\quad 0 &\quad 0 &\quad 0 \\ {c_{13} } &\quad {c_{13} } &\quad {c_{33} } &\quad 0 &\quad 0 &\quad 0 \\ 0 &\quad 0 &\quad 0 &\quad {c_{44} } &\quad 0 &\quad 0 \\ 0 &\quad 0 &\quad 0 &\quad 0 &\quad {c_{44} } &\quad 0 \\ 0 &\quad 0 &\quad 0 &\quad 0 &\quad 0 &\quad {\tfrac{1}{2}(c_{11} - c_{12} )} \\ \end{array} } \right],\quad {\mathbf{e}}_{{\mathbf{1}}} = \left[ {\begin{array}{*{20}c} 0 &\quad 0 &\quad {e_{31} } \\ 0 &\quad 0 &\quad {e_{31} } \\ 0 &\quad 0 &\quad {e_{33} } \\ 0 &\quad {e_{15} } &\quad 0 \\ {e_{15} } &\quad 0 &\quad 0 \\ 0 &\quad 0 &\quad 0 \\ \end{array} } \right],\quad {{\varvec{\upvarepsilon}}} = \left[ {\begin{array}{*{20}c} {\varepsilon_{11} } &\quad 0 &\quad 0 \\ 0 &\quad {\varepsilon_{11} } &\quad 0 \\ 0 &\quad 0 &\quad {\varepsilon_{33} } \\ \end{array} } \right], \hfill \\ {\mathbf{e}}_{{\mathbf{2}}} = \left[ {\begin{array}{*{20}c} 0 &\quad 0 &\quad 0 &\quad 0 &\quad {e_{15} } &\quad 0 \\ 0 &\quad 0 &\quad 0 &\quad {e_{15} } &\quad 0 &\quad 0 \\ {e_{31} } &\quad {e_{31} } &\quad {e_{33} } &\quad 0 &\quad 0 &\quad 0 \\ \end{array} } \right],\quad {{\varvec{\upmu}}}^{{\mathbf{p}}} = \left[ {\begin{array}{*{20}c} {q\overline{p}_{N} \mu_{11}^{p} } &\quad 0 &\quad 0 \\ 0 &\quad {q\overline{p}_{N} \mu_{11}^{p} } &\quad 0 \\ 0 &\quad 0 &\quad {q\overline{p}_{N} \mu_{33}^{p} } \\ \end{array} } \right], \hfill \\ \end{gathered}$$
$${\mathbf{d}}^{{\mathbf{p}}} = \left[ {\begin{array}{*{20}c} {qd_{11}^{p} } &\quad 0 &\quad 0 \\ 0 &\quad {qd_{11}^{p} } &\quad 0 \\ 0 &\quad 0 &\quad {qd_{33}^{p} } \\ \end{array} } \right],\quad {{\varvec{\upmu}}}^{{\mathbf{n}}} = \left[ {\begin{array}{*{20}c} {q\overline{n}_{N} \mu_{11}^{n} } &\quad 0 &\quad 0 \\ 0 &\quad {q\overline{n}_{N} \mu_{11}^{n} } &\quad 0 \\ 0 &\quad 0 &\quad {q\overline{n}_{N} \mu_{33}^{n} } \\ \end{array} } \right],\quad {\mathbf{d}}^{{\mathbf{n}}} = \left[ {\begin{array}{*{20}c} {qd_{11}^{n} } &\quad 0 &\quad 0 \\ 0 &\quad {qd_{11}^{n} } &\quad 0 \\ 0 &\quad 0 &\quad {qd_{33}^{n} } \\ \end{array} } \right],$$

Appendix B

$$\begin{aligned} K_{11} & { = }c_{11} k_{x}^{2} + c_{44} k_{z}^{2} - \rho \omega^{2} ,\;K_{12} { = }K_{21} = \left( {c_{13} + c_{44} } \right)k_{x} k_{z} ,\;K_{33} = - \varepsilon_{11} k_{x}^{2} - \varepsilon_{33} k_{z}^{2} , \\ K_{13} & { = }K_{31} = \left( {e_{13} + e_{44} } \right)k_{x} k_{z} ,\;K_{22} = c_{44} k_{x}^{2} + c_{33} k_{z}^{2} - \rho \omega^{2} ,\;K_{23} { = }K_{32} = e_{15} k_{x}^{2} + e_{33} k_{z}^{2} , \\ K_{34} & = q,K_{35} = - q,\;K_{43} = \overline{p}_{N} \left( {\mu_{11}^{p} k_{x}^{2} + \mu_{33}^{p} k_{z}^{2} } \right),\;K_{44} = d_{11}^{p} k_{x}^{2} + d_{33}^{p} k_{z}^{2} - i\omega , \\ K_{53} & = - \overline{n}_{N} \left( {\mu_{11}^{n} k_{x}^{2} + \mu_{33}^{n} k_{z}^{2} } \right),\;K_{55} = d_{11}^{n} k_{x}^{2} + d_{33}^{n} k_{z}^{2} - i\omega . \\ \end{aligned}$$

Appendix C

Appendix D

$$\begin{aligned} A_{1s} &= c_{44} \left( {k_{3}^{\left( s \right)} + G_{s} k_{1}^{\left( s \right)} } \right) + e_{15} H_{s} k_{1}^{\left( s \right)} ,\;A_{2s} = c_{13} k_{1}^{\left( s \right)} + c_{33} k_{3}^{\left( s \right)} G_{s} + e_{33} k_{3}^{\left( s \right)} H_{s} , \hfill \\ A_{3s} &= c_{11} k_{1}^{\left( s \right)} + c_{13} k_{3}^{\left( s \right)} G_{s} + e_{31} k_{3}^{\left( s \right)} H_{s} ,\;A_{4s} = e_{31} k_{1}^{\left( s \right)} + e_{33} k_{3}^{\left( s \right)} G_{s} - \varepsilon_{33} k_{3}^{\left( s \right)} H_{s} , \hfill \\ A_{5s} &= e_{15} \left( {k_{3}^{\left( s \right)} + k_{1}^{\left( s \right)} G_{s} } \right) - \varepsilon_{11} k_{1}^{\left( s \right)} H_{s} ,\;A_{6s} = - iq\left( {\overline{p}_{N} \mu_{33}^{p} H_{s} + d_{33}^{p} Q_{s} } \right)k_{3}^{\left( s \right)} , \hfill \\ A_{7s} &= - iq\left( {\overline{p}_{N} \mu_{11}^{p} H_{s} + d_{11}^{p} Q_{s} } \right)k_{1}^{\left( s \right)} ,\;A_{8s} = - iq\left( {\overline{n}_{N} \mu_{33}^{n} H_{s} - d_{33}^{n} L_{s} } \right)k_{3}^{\left( s \right)} ,\\ A_{9s} &= - iq\left( {\overline{n}_{N} \mu_{11}^{n} H_{s} - d_{11}^{n} L_{s} } \right)k_{1}^{\left( s \right)} , \hfill \\ \end{aligned}$$

where \(s = I,R.\)

$$\begin{aligned} A_{1T}^{\prime } &= c_{44}^{\prime } \left( {k_{3}^{\prime (T)} + G_{T}^{\prime } k_{1}^{\prime (T)} } \right) + e_{15}^{\prime } H_{t}^{\prime } k_{1}^{\prime (T)} ,A_{2T}^{\prime } = c_{13}^{\prime } k_{1}^{\prime (T)} + c_{33}^{\prime } k_{33}^{\prime (T)} G_{T}^{\prime } + e_{33}^{\prime } k_{33}^{\prime (T)} H_{T}^{\prime } , \hfill \\ A_{3T}^{\prime } &= c_{11}^{\prime } k_{1}^{{^{\prime (T)} }} + c_{13}^{\prime } k_{33}^{\prime (T)} G_{T}^{\prime } + e_{31}^{\prime } k_{3}^{\prime (T)} H_{T}^{\prime } ,\;A_{4T}^{\prime } = e_{31}^{\prime } k_{1}^{\prime (T)} + e_{33}^{\prime } k_{3}^{\prime (T)} G_{b}^{\prime } - \varepsilon_{33}^{\prime } k_{3}^{\prime (T)} H_{b}^{\prime } , \hfill \\ A_{5T}^{\prime } &= e_{15}^{\prime } \left( {k_{33}^{\prime (T)} + k_{1}^{\prime (T)} G_{T}^{\prime } } \right) - \varepsilon_{11}^{\prime } k_{1}^{\prime (T)} H_{T}^{\prime } ,A_{6T}^{\prime } = - iq\left( {\overline{p}_{P} \mu_{33}^{\prime p} H_{T}^{\prime } + d_{33}^{\prime p} Q_{T}^{\prime } } \right)k_{3}^{\prime (T)} , \hfill \\ A_{7T}^{\prime } &= - iq\left( {\overline{p}_{P} \mu_{11}^{\prime p} H_{T}^{\prime } + d_{11}^{\prime p} Q_{T}^{\prime } } \right)k_{1}^{\prime (T)} ,A_{8T}^{\prime } = - iq\left( {\overline{n}_{P} \mu_{33}^{\prime n} H_{T}^{\prime } - d_{33}^{\prime n} L_{T}^{\prime } } \right)k_{33}^{\prime (T)} ,\\ A_{9T}^{\prime } &= - iq\left( {\overline{n}_{P} \mu_{11}^{\prime n} H_{T}^{\prime } - d_{11}^{\prime n} L_{T}^{\prime } } \right)k_{1}^{\prime (T)} . \hfill \\ \end{aligned}$$

Appendix E

$$\begin{aligned} C_{1j} &= f_{1} ,j = 6,7,8,9,10; \, C_{2j} = f_{2} G_{j} ,j = 6,7,8,9,10; \hfill \\ C_{ij} &= f_{m} A_{mk}^{{^{\prime } }} ,i = 3,4;j = 6,7,8,9,10;m = 1,2;k = 1,3,5,7,9; \\ C_{5j} &= f_{5} A_{4k}^{{^{\prime } }} , j = 6,7,8,9,10; \, k = 1,3,5,7,9; \, \hfill \\ C_{6j} & = f_{6} A_{6k}^{{^{\prime } }} ,j = 6,7,8,9,10; \, k = 1,3,5,7,9; \, C_{7j} { = }f_{7} A_{8k} ,j = 1,2,3,4,5; \, k = 2,4,6,8,10; \, \hfill \\ C_{8j} &= - C_{1} A_{2k}^{{^{\prime } }} - C_{2} A_{2k}^{{^{\prime } }} ,j = 6,7,8,9,10;k = 1,3,5,7,9; \\ {\text{ C}}_{9j} &= - C_{3} A_{6k} , j = 1,2,3,4,5;k = 2,4,6,8,10; \hfill \\ {\text{C}}_{9j} &= - C_{3} A_{6k}^{{^{\prime } }} - C_{4} A_{2k}^{{^{\prime } }} - C_{5} A_{4k}^{{^{\prime } }} ,j = 6,7,8,9,10;k = 1,3,5,7,9; \hfill \\ {\text{C}}_{10j} &= - C_{6} A_{6k}^{{^{\prime } }} - C_{7} A_{2k}^{{^{\prime } }} - C_{8} A_{4k}^{{^{\prime } }} ,j = 6,7,8,9,10;k = 1,3,5,7,9; \, \end{aligned}$$
$${\mathbf{A}}_{{\mathbf{1}}} { = }\left[ {\begin{array}{*{20}c} { - e^{{ - ik_{z}^{\left( 2 \right)} z_{{\text{n}}}^{ - } }} } &\quad { - e^{{ - ik_{z}^{\left( 4 \right)} z_{{\text{n}}}^{ - } }} } &\quad { - e^{{ - ik_{z}^{\left( 6 \right)} z_{{\text{n}}}^{ - } }} } &\quad { - e^{{ - ik_{z}^{\left( 8 \right)} z_{{\text{n}}}^{ - } }} } &\quad { - e^{{{ - ik_{z}{\left( {10} \right)}} z_{{\text{n}}}^{ - } }} } \\ { - G_{2} e^{{ - ik_{z}^{\left( 2 \right)} z_{{\text{n}}}^{ - } }} } &\quad { - e^{{ - ik_{z}^{\left( 4 \right)} z_{{\text{n}}}^{ - } }} } &\quad { - G_{6} e^{{ - ik_{z}^{\left( 6 \right)} z_{{\text{n}}}^{ - } }} } &\quad { - G_{8} e^{{ - ik_{z}^{\left( 8 \right)} z_{{\text{n}}}^{ - } }} } &\quad { - G_{10} e^{{{ - ik_{z}{\left( {10} \right)}} z_{{\text{n}}}^{ - } }} } \\ { - A_{12} e^{{ - ik_{z}^{\left( 2 \right)} z_{{\text{n}}}^{ - } }} } &\quad { - A_{14} e^{{ - ik_{z}^{\left( 4 \right)} z_{{\text{n}}}^{ - } }} } &\quad { - A_{16} e^{{ - ik_{z}^{\left( 6 \right)} z_{{\text{n}}}^{ - } }} } &\quad { - A_{18} e^{{ - ik_{z}^{\left( 8 \right)} z_{{\text{n}}}^{ - } }} } &\quad { - A_{110} e^{{{ - ik_{z}{\left( {10} \right)}} z_{{\text{n}}}^{ - } }} } \\ { - A_{22} e^{{ - ik_{z}^{\left( 2 \right)} z_{{\text{n}}}^{ - } }} } &\quad { - A_{24} e^{{ - ik_{z}^{\left( 4 \right)} z_{{\text{n}}}^{ - } }} } &\quad { - A_{26} e^{{ - ik_{z}^{\left( 6 \right)} z_{{\text{n}}}^{ - } }} } &\quad { - A_{28} e^{{ - ik_{z}^{\left( 8 \right)} z_{{\text{n}}}^{ - } }} } &\quad { - A_{210} e^{{{ - ik_{z}{\left( {10} \right)}} z_{{\text{n}}}^{ - } }} } \\ { - A_{42} e^{{ - ik_{z}^{\left( 2 \right)} z_{{\text{n}}}^{ - } }} } &\quad { - A_{44} e^{{ - ik_{z}^{\left( 4 \right)} z_{{\text{n}}}^{ - } }} } &\quad { - A_{46} e^{{ - ik_{z}^{\left( 6 \right)} z_{{\text{n}}}^{ - } }} } &\quad { - A_{48} e^{{ - ik_{z}^{\left( 8 \right)} z_{{\text{n}}}^{ - } }} } &\quad { - A_{410} e^{{{ - ik_{z}{\left( {10} \right)}} z_{{\text{n}}}^{ - } }} } \\ { - A_{62} e^{{ - ik_{z}^{\left( 2 \right)} z_{{\text{n}}}^{ - } }} } &\quad { - A_{64} e^{{ - ik_{z}^{\left( 4 \right)} z_{{\text{n}}}^{ - } }} } &\quad { - A_{66} e^{{ - ik_{z}^{\left( 6 \right)} z_{{\text{n}}}^{ - } }} } &\quad { - A_{68} e^{{ - ik_{z}^{\left( 8 \right)} z_{{\text{n}}}^{ - } }} } &\quad { - A_{610} e^{{{ - ik_{z}{\left( {10} \right)}} z_{{\text{n}}}^{ - } }} } \\ { - A_{82} e^{{ - ik_{z}^{\left( 2 \right)} z_{{\text{n}}}^{ - } }} } &\quad { - A_{84} e^{{ - ik_{z}^{\left( 4 \right)} z_{{\text{n}}}^{ - } }} } &\quad { - A_{86} e^{{ - ik_{z}^{\left( 6 \right)} z_{{\text{n}}}^{ - } }} } &\quad { - A_{88} e^{{ - ik_{z}^{\left( 8 \right)} z_{{\text{n}}}^{ - } }} } &\quad { - A_{810} e^{{{ - ik_{z}{\left( {10} \right)}} z_{{\text{n}}}^{ - } }} } \\ \end{array} } \right],$$
$${\mathbf{B}}_{{\mathbf{1}}} { = }\left[ {\begin{array}{*{20}c} {e^{{ik_{z}^{\prime (1)} z_{p}^{ + } }} } &\quad {e^{{ik_{z}^{\prime (3)} z_{p}^{ + } }} } &\quad {e^{{ik_{z}^{\prime (5)} z_{p}^{ + } }} } &\quad {e^{{ik_{z}^{\prime (7)} z_{p}^{ + } }} } &\quad {e^{{ik_{z}^{\prime (9)} z_{p}^{ + } }} } \\ {G_{1}^{{\prime }{ik_{z}^{\prime (1)} z_{p}^{ + } }} } &\quad {G_{3}^{\prime } e^{{ik_{z}^{\prime (3)} z_{p}^{ + } }} } &\quad {G_{5}^{\prime } e^{{ik_{z}^{\prime (5)} z_{p}^{ + } }} } &\quad {G_{7}^{\prime } e^{{ik_{z}^{\prime (7)} z_{p}^{ + } }} } &\quad {G_{9}^{\prime } e^{{ik_{z}^{\prime (9)} z_{p}^{ + } }} } \\ {A_{11}^{\prime } e^{{ik_{z}^{\prime (1)} z_{p}^{ + } }} } &\quad {A_{13}^{\prime } e^{{ik_{z}^{\prime (3)} z_{p}^{ + } }} } &\quad {A_{15}^{\prime } e^{{ik_{z}^{\prime (5)} z_{p}^{ + } }} } &\quad {A_{17}^{\prime } e^{{ik_{z}^{\prime (7)} z_{p}^{ + } }} } &\quad {A_{19}^{\prime } e^{{ik_{z}^{\prime (9)} z_{p}^{ + } }} } \\ {A_{21}^{\prime } e^{{ik_{z}^{\prime (1)} z_{p}^{ + } }} } &\quad {A_{23}^{\prime } e^{{ik_{z}^{\prime (3)} z_{p}^{ + } }} } &\quad {A_{25}^{\prime } e^{{ik_{z}^{\prime (5)} z_{p}^{ + } }} } &\quad {A_{27}^{\prime } e^{{{ik_{z}{^{\prime } (7)}} z_{p}^{ + } }} } &\quad {A_{29}^{\prime } e^{{ik_{z}^{\prime (9)} z_{p}^{ + } }} } \\ {A_{41}^{\prime } e^{{ik_{z}^{\prime (1)} z_{p}^{ + } }} } &\quad {A_{43}^{\prime } e^{{ik_{z}^{\prime (3)} z_{p}^{ + } }} } &\quad {A_{45}^{\prime } e^{{ik_{z}^{\prime (5)} z_{p}^{ + } }} } &\quad {A_{47}^{\prime } e^{{ik_{z}^{\prime (7)} z_{p}^{ + } }} } &\quad {A_{49}^{\prime } e^{{ik_{z}^{\prime (9)} z_{p}^{ + } }} } \\ {A_{61}^{\prime } e^{{ik_{z}^{\prime (1)} z_{p}^{ + } }} } &\quad {A_{63}^{\prime } e^{{ik_{z}^{\prime (3)} z_{p}^{ + } }} } &\quad {A_{65}^{\prime } e^{{ik_{z}^{\prime (5)} z_{p}^{ + } }} } &\quad {A_{67}^{\prime } e^{{ik_{z}^{\prime (7)} z_{p}^{ + } }} } &\quad {A_{69}^{\prime } e^{{ik_{z}^{\prime (9)} z_{p}^{ + } }} } \\ {A_{81}^{\prime } e^{{ik_{z}^{\prime (1)} z_{p}^{ + } }} } &\quad {A_{83}^{\prime } e^{{ik_{z}^{\prime (3)} z_{p}^{ + } }} } &\quad {A_{85}^{\prime } e^{{ik_{z}^{\prime (5)} z_{p}^{ + } }} } &\quad {A_{87}^{\prime } e^{{ik_{z}^{\prime (7)} z_{p}^{ + } }} } &\quad {A_{89}^{\prime } e^{{ik_{z}^{\prime (9)} z_{p}^{ + } }} } \\ \end{array} } \right],$$
$${\mathbf{A}}_{{\mathbf{2}}} { = }\left[ {\begin{array}{*{20}c} { - H_{2} e^{{ - ik_{z}^{\left( 2 \right)} z_{{\text{n}}}^{ - } }} } &\quad { - H_{4} e^{{ - ik_{z}^{\left( 4 \right)} z_{{\text{n}}}^{ - } }} } &\quad { - H_{6} e^{{ - ik_{z}^{\left( 6 \right)} z_{{\text{n}}}^{ - } }} } &\quad { - H_{8} e^{{ - ik_{z}^{\left( 8 \right)} z_{{\text{n}}}^{ - } }} } &\quad { - H_{10} e^{{{ - ik_{z}{\left( {10} \right)}} z_{{\text{n}}}^{ - } }} } \\ { - Q_{2} e^{{ - ik_{z}^{\left( 2 \right)} z_{{\text{n}}}^{ - } }} } &\quad { - Q_{4} e^{{ - ik_{z}^{\left( 4 \right)} z_{{\text{n}}}^{ - } }} } &\quad { - Q_{6} e^{{ - ik_{z}^{\left( 6 \right)} z_{{\text{n}}}^{ - } }} } &\quad { - Q_{8} e^{{ - ik_{z}^{\left( 8 \right)} z_{{\text{n}}}^{ - } }} } &\quad { - Q_{10} e^{{{ - ik_{z}{\left( {10} \right)}} z_{{\text{n}}}^{ - } }} } \\ { - L_{2} e^{{ - ik_{z}^{\left( 2 \right)} z_{{\text{n}}}^{ - } }} } &\quad { - L_{4} e^{{ - ik_{z}^{\left( 4 \right)} z_{{\text{n}}}^{ - } }} } &\quad { - L_{6} e^{{ - ik_{z}^{\left( 6 \right)} z_{{\text{n}}}^{ - } }} } &\quad { - L_{8} e^{{ - ik_{z}^{\left( 8 \right)} z_{{\text{n}}}^{ - } }} } &\quad { - L_{10} e^{{{ - ik_{z}{\left( {10} \right)}} z_{{\text{n}}}^{ - } }} } \\ \end{array} } \right],$$
$${\mathbf{B}}_{{\mathbf{2}}} { = }\left[ {\begin{array}{*{20}c} {H_{1}^{{\prime }{ik_{z}^{\prime (1)} z_{p}^{ + } }} } &\quad {H_{3}^{\prime } e^{{ik_{z}^{\prime (3)} z_{p}^{ + } }} } &\quad {H_{5}^{\prime } e^{{ik_{z}^{\prime (5)} z_{p}^{ + } }} } &\quad {H_{7}^{\prime } e^{{ik_{z}^{\prime (7)} z_{p}^{ + } }} } &\quad {H_{9}^{\prime } e^{{ik_{z}^{\prime (9)} z_{p}^{ + } }} } \\ {Q_{1}^{\prime } e^{{ik_{z}^{\prime (1)} z_{p}^{ + } }} } &\quad {Q_{3}^{\prime } e^{{ik_{z}^{\prime (3)} z_{p}^{ + } }} } &\quad {Q_{5}^{\prime } e^{{ik_{z}^{\prime (5)} z_{p}^{ + } }} } &\quad {Q_{7}^{\prime } e^{{ik_{z}^{\prime (7)} z_{p}^{ + } }} } &\quad {Q_{9}^{\prime } e^{{ik_{z}^{\prime (9)} z_{p}^{ + } }} } \\ {L_{1}^{\prime } e^{{ik_{z}^{\prime (1)} z_{p}^{ + } }} } &\quad {L_{3}^{\prime } e^{{ik_{z}^{\prime (3)} z_{p}^{ + } }} } &\quad {L_{5}^{\prime } e^{{ik_{z}^{\prime (5)} z_{p}^{ + } }} } &\quad {L_{7}^{\prime } e^{{ik_{z}^{\prime (7)} z_{p}^{ + } }} } &\quad {L_{9}^{\prime } e^{{ik_{z}^{\prime (9)} z_{p}^{ + } }} } \\ \end{array} } \right],$$
$${\mathbf{D}}_{{\mathbf{1}}} { = }\left[ {\begin{array}{*{20}c} {e^{{ - ik_{z}^{\left( I \right)} z_{{\text{n}}}^{ - } }} } &\quad {G_{I} e^{{ - ik_{z}^{\left( I \right)} z_{{\text{n}}}^{ - } }} } &\quad {A_{1I} e^{{ - ik_{z}^{\left( I \right)} z_{{\text{n}}}^{ - } }} } &\quad {A_{2I} e^{{ - ik_{z}^{\left( I \right)} z_{{\text{n}}}^{ - } }} } &\quad {A_{4I} e^{{ - ik_{z}^{\left( I \right)} z_{{\text{n}}}^{ - } }} } \\ \end{array} } \right]^{T} ,$$
$${\mathbf{D}}_{2} { = }\left[ {\begin{array}{*{20}c} {A_{6I} e^{{ - ik_{z}^{\left( I \right)} z_{{\text{n}}}^{ - } }} } &\quad {A_{8I} e^{{ - ik_{z}^{\left( I \right)} z_{{\text{n}}}^{ - } }} } &\quad {H_{I} e^{{ - ik_{z}^{\left( I \right)} z_{{\text{n}}}^{ - } }} } &\quad {Q_{I} e^{{ - ik_{z}^{\left( I \right)} z_{{\text{n}}}^{ - } }} } &\quad {L_{I} e^{{ - ik_{z}^{\left( I \right)} z_{{\text{n}}}^{ - } }} } \\ \end{array} } \right]^{T} .$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, Z., Wei, P., Xu, C. et al. Equivalent imperfect interface model of PN junction of piezoelectric semiconductor for the multi-field coupled waves propagation. Acta Mech 235, 73–92 (2024). https://doi.org/10.1007/s00707-023-03643-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03643-x

Navigation