Skip to main content
Log in

A study of thermoelastic interactions in thin and long radiating rods under Moore–Gibson–Thompson theory of thermoelasticity

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The current work attempts to look at the consequence of the external supply of heat source which has an effect of thermal radiation towards the surrounding in accordance with the linearized form of Stefan–Boltzmann law (SBL) on the propagation of waves within a thermoelastic medium. Formulation of the problem is accomplished by considering the recent thermoelasticity theory based on the Moore–Gibson–Thompson (MGT) heat conduction equation. Here, a deformable thermal conductor, particularly a long, thin, and solid rod of thermoelastic material, is considered to study the behavior of the suggested theory in detail. After formulation of the problem and employing the Laplace transform technique, the solutions for the displacement, temperature, and stress fields in the Laplace transform domain are obtained. Further, the analytical solutions for all the field variables in the case of short-time approximation are derived by incorporating Laplace inversion. The investigation concentrates on certain key findings and observations under this model and compares them to those predicted by previously proposed models in this direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Biot, M.A.: Thermoelasticity and irreversible thermodynamics. J. Appl. Phys. 27(3), 240–253 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chandrasekharaiah, D.S.: Thermoelasticity with second sound—a review. Appl. Mech. Rev. 39, 355–376 (1986)

    Article  MATH  Google Scholar 

  3. Chandrasekharaiah, D.S.: Hyperbolic thermoelasticity: a review of recent literature. Appl. Mech. Rev. 51(12), 705–729 (1998)

    Article  Google Scholar 

  4. Hetnarski, R.B., Ignaczak, J.: Generalized thermoelasticity. J. Therm. Stress. 22(4–5), 451–476 (1999)

    MathSciNet  MATH  Google Scholar 

  5. Ignaczak, J., Ostoja-Starzewski, M.: Thermoelasticity with finite wave speeds. Oxford University Press, Oxford (2010)

    MATH  Google Scholar 

  6. Straughan, B.: Heat waves. Springer (2011)

    Book  MATH  Google Scholar 

  7. Lord, H.W., Shulman, Y.A.: Generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids 15, 299–309 (1967)

    Article  MATH  Google Scholar 

  8. Green, A.E., Lindsay, K.A.: Thermoelasticity. J. Elast. 2(1), 1–7 (1972)

    Article  MATH  Google Scholar 

  9. Green, A.E., Naghdi, P.M.: Thermoelasticity without energy dissipation. J. Elast. 31(3), 189–208 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  10. Green, A.E., Naghdi, P.M.: On undamped heat waves in an elastic solid. J. Therm. Stress. 15(2), 253–264 (1992)

    Article  MathSciNet  Google Scholar 

  11. Green, A.E., Naghdi, P.M.: A re-examination of the basic postulates of thermomechanics. Proc. R. Soc. Lond. A Math. Phys. Sci. 432, 171–194 (1991)

    MathSciNet  MATH  Google Scholar 

  12. Cattaneo, C.: A form of heat-conduction equations which eliminates the paradox of instantaneous propagation. Comptes Rendus 247, 431–433 (1958)

    MATH  Google Scholar 

  13. Vernotte, P.: Les paradoxes de la th’eorie continue de l’equation de lachaleur. Comptes Rendus 246, 3154–3155 (1958)

    MATH  Google Scholar 

  14. Vernotte, P.: Some possible complications in the phenomena of thermal conduction. Comptes Rendus 252, 2190–2191 (1961)

    MathSciNet  Google Scholar 

  15. Quintanilla, R.: Moore–Gibson–Thompson thermoelasticity. Math. Mech. Solids 24(12), 4020–4031 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  16. Conti, M., Pata, V., Quintanilla, R.: Thermoelasticity of Moore–Gibson–Thompson type with history dependence in the temperature. Asymptot. Anal. 120, 1–21 (2020)

    MathSciNet  MATH  Google Scholar 

  17. Pellicer, M., Quintanilla, R.: On uniqueness and instability for some thermomechanical problems involving the Moore–Gibson–Thompson equation. Z. Angew. Math. Phys. 71, 84 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jangid, K., Mukhopadhyay, S.: A domain of influence theorem under MGT thermoelasticity theory. Math. Mech. Solids. 26, 285–295 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jangid, K., Mukhopadhyay, S.: A domain of influence theorem for a natural stress-heat-flux problem in the Moore–Gibson–Thompson thermoelasticity theory. Acta Mech. 232, 177–187 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  20. Bazarra, N., Fernández, J.R., Quintanilla, R.: On the decay of the energy for radial solutions in Moore–Gibson–Thompson thermoelasticity. Math. Mech. Solids 26, 1507–1514 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  21. Zampoli, V.: Singular surfaces in long, thin radiating rods under Green and Naghdi’s type II theory of thermoelasticity. Int. J. Eng. Sci. 168, 103558 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sherief, H.H., Anwar, M.N.: Problem in generalized thermoelasticity. J. Therm. Stress. 9(2), 165–181 (1986)

    Article  Google Scholar 

  23. Chandrasekharaiah, D.S., Srinath, K.: Thermoelastic interactions without energy dissipation due to a line heat source. Acta Mech. 128, 243–251 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  24. Chandrasekharaiah, D.S., Murthy, H.N.: Temperature-rate-dependent thermoelastic interactions due to a line heat source. Acta Mech. 89(1–4), 1–12 (1991)

    Article  MATH  Google Scholar 

  25. Singh, R.V., Mukhopadhyay, S.: Study of wave propagation in an infinite solid due to a line heat source under Moore–Gibson–Thompson thermoelasticity. Acta Mech. 232, 4747–4760 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ezzat, M.A.: Fundamental solution in thermoelasticity with two relaxation times for cylindrical regions. Int. J. Eng. Sci. 33, 2011–2020 (1995)

    Article  MATH  Google Scholar 

  27. Prasad, R., Kumar, R., Mukhopadhyay, S.: Effects of phase lags on wave propagation in an infinite solid due to a continuous line heat source. Acta Mech. 217, 243–256 (2011)

    Article  MATH  Google Scholar 

  28. Chandrasekharaiah, D.S., Srikantiah, K.R.: On temperature-rate dependent thermoelastic interactions in an infinite solid due to a point heat-source. Indian J. Sci. Technol. 25, 1–7 (1987)

    MATH  Google Scholar 

  29. Chadwick, P.: On the propagation of thermoelastic disturbances in thin plates and rods. J. Mech. Phys. Solids 10(2), 99–109 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  30. Sneddon, I.N.: The propagation of thermal stresses in thin metallic rods. Proc. R. Soc. Edinb. Sect. A Math. 65(2), 121–142 (1959)

    MathSciNet  MATH  Google Scholar 

  31. Boley, B.A., Hetnarski, R.B.: Propagation of discontinuities in coupled thermoelastic problems. J. Appl. Mech. (ASME) 35(3), 489–494 (1968)

    Article  MATH  Google Scholar 

Download references

Funding

One of the authors, Anjali Srivastava, is thankful to the DST—INSPIRE Fellowship/2020/IF200485. Santwana Mukhopadhyay thankfully acknowledges the financial support Grant (No. MTR/2022/000333) of SERB under MATRICS project scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anjali Srivastava.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The constants \(A_{1,2}\), \(B_{1,2}\) and \(C_{1,2}\) which are used in Eq. (24) are given as follows:

$$\begin{aligned} {A_{1,2}}=~&{\frac{K_{0}}{\tau _{0}}L_{0},\ \ \ L_{0}=R_{0}\pm S_{0},} \end{aligned}$$
(31)
$$\begin{aligned} {B_{1,2}}=~&K_{0}\left\{ \frac{-k^{*}}{k}L_{0}+H_{0}\pm \frac{-4k^{*}v^{2}\tau _{q}+2H_{0}R_{0}-4kv^{2}\chi }{2S_{0}}\right\} , \nonumber \\ R_{0}=~\,&kv^{2}+\tau _{q}+\epsilon \tau _{q}\ \ K_{0}=\frac{\tau _{0}}{2v^{2}k},\nonumber \\ S_{0}=~\,&\sqrt{R_{0}^{2}-4kv^{2}\tau _{q}}\ \ H_{0}=(1+\epsilon +k^{*}v^{2}),\nonumber \\ G_{1,2}=~\,&\frac{\mp \tau _{0}(-4k^{*}v^{2}\tau _{q}+2H_{0}R_{0}-4kv^{2}\chi )^{2}}{4S_{0}^{3}}\pm \frac{-4\tau _{0}k^{*}v^{2}+\tau _{0}H_{0}^{2}+2R_{0}\chi }{S_{0}},\nonumber \\ C_{1,2}=~\,&K_{0}\left[ \frac{k^{*2}\tau _{0}}{k^{2}}L_{0}+\chi +\frac{G_{1,2}}{2}-\frac{k^{*}\tau _{0}}{k}\left( H_{0}\pm \frac{-4kv^{2}\tau _{q}+2H_{0}R_{0}-4kv^{2}\chi }{2S_{0}}\right) \right] . \end{aligned}$$
(32)

For the Eqs. (25)–(30), the constants are given as follows:

$$\begin{aligned} M_{1,2}=~\,&\frac{\mp \sqrt{A_{1,2}}}{A_{1}-A_{2}},\ \ N_{1,2}=\mp \frac{\sqrt{A_{1,2}}(B_{2}-B_{1})}{(A_{2}-A_{1})^{2}}\mp \frac{B_{1,2}}{2\sqrt{A_{1,2}}(A_{1}-A_{2})},\\ Q_{1,2}=~\,&\frac{1-A_{1,2}}{A_{1}-A_{2}},\ \ R_{1,2}=\frac{(1-A_{1,2})(B_{2}-B_{1})}{(A_{2}-A_{1})^{2}}-\frac{B_{1,2}}{A_{1}-A_{2}},\\ W_{1,2}=~\,&\pm \frac{C_{1,2}}{A_{1}-A_{2}}\pm \frac{B_{1,2}(B_{2}-B_{1})}{(A_{2}-A_{1})^{2}}+\frac{D(1-A_{1,2})}{(A_{1}-A_{2})^{3}},\\ D=~\,&-B_{2}^{2}+2B_{1}B_{2}-B_{1}^{2}+A_{1}C_{1}-A_{1}C_{2}-A_{2}C_{1}+A_{2}C_{2},\\ Z_{1,2}=~\,&-L_{1}Q_{1,2},\ \ V_{1,2}=-R_{1,2}L_{1},\ \ O_{1,2}=-W_{1,2}L_{1}+Q_{1,2}Q_{1,2}^{\prime },\\ L_{1}=~\,&\frac{1+\epsilon }{\epsilon },\ \ Q_{1,2}^{\prime }=~F_{1}A_{1,2}-J_{1},\ \ J_{1}=~\frac{\tau _{0}\chi }{\epsilon \tau _{q}},F_{1}=\frac{kv^{2}}{\epsilon \tau _{q}}. \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, A., Mukhopadhyay, S. A study of thermoelastic interactions in thin and long radiating rods under Moore–Gibson–Thompson theory of thermoelasticity. Acta Mech 234, 4509–4522 (2023). https://doi.org/10.1007/s00707-023-03622-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03622-2

Navigation