Skip to main content
Log in

Thermoelastic interaction in a magneto-thermoelastic rod with memory-dependent derivative due to the presence of moving heat source

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Fractional derivative is a widely accepted theory to describe the physical phenomena and the processes with memory effects which is defined in the form of convolution-type integrals involving kernels as power functions. Due to the shortcomings of power law distributions, some other forms of derivatives with few other kernel functions have been proposed. This present survey deals with a novel mathematical model of generalized thermoelasticity which investigates the transient phenomena due to the influence of an induced magnetic field and the presence of moving heat source in a thermoelastic rod in the context of Lord–Shulman (LS) theory of generalized thermoelasticity. Both ends of the rod are fixed and are thermally insulated. Employing the Laplace transform, the problem has been transformed to the space-domain have been solved analytically. Finally, solutions in the real-time domain are obtained on applying the numerical inversion of Laplace transform, which has been carried out employing the Riemann-sum approximation method. Numerical computations for stress, displacement and temperature within the rod is carried out and have been demonstrated graphically. The results also demonstrate how the speed of the moving heat source influences the thermophysical quantities. It is observed that the temperature, thermally induced displacement and stress of the rod are found to decrease at large source speed. Also, significant differences on the thermophysical quantities are revealed due to the influence of magnetic field and memory effect also.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M A Biot J. Appl. Phys.27 240 (1956)

    ADS  MathSciNet  Google Scholar 

  2. J Ignaczak and M Ostoja-Starzewski Thermoelasticity with Finite Wave Speeds (New York: Oxford University Press) (2010)

  3. M R Eslami, R B Hetnarski, J Ignaczak, N Noda, S Naobumi and Y Tanigawa Theory of Elasticity and Thermal Stresses (New York: Springer) (2013)

  4. H W Lord and Y Shulman J. Mech. Phys. Solids.15 299 (1967)

    ADS  Google Scholar 

  5. H H Sherief Q. Appl. Math.44 773 (1987)

    MathSciNet  Google Scholar 

  6. M A Ezzat and A S El-Karamany Can. J. Phys.81 823 (2003)

    ADS  Google Scholar 

  7. M A Ezzat and A S El–Karamany J. Therm. Stress.25 507 (2002)

    Google Scholar 

  8. M A Ezzat ans A S El-Karamany J. Therm. Stress.29 331 (2006)

    Google Scholar 

  9. A S El-Karamany and M A Ezzat J. Therm. Stress.27 1187 (2004)

    Google Scholar 

  10. A S El-Karamany and M A Ezzat Int. J. Eng. Sci.40 1943 (2002)

    Google Scholar 

  11. A S El-Karamany and M A Ezzat Appl. Math. Comput.151 347 (2004)

    MathSciNet  Google Scholar 

  12. A Sur and M Kanoria Math. Mech. Solids.22 718 (2015)

    Google Scholar 

  13. A Sur and M Kanoria Procedia Eng.127 605 (2015)

    Google Scholar 

  14. A Sur and M Kanoria Procedia Eng.173 875 (2017)

    Google Scholar 

  15. S Chakravorty, S Ghosh and A Sur Procedia Eng.173 851 (2017)

    Google Scholar 

  16. A Sur and M Kanoria J. Solid Mech.6 54 (2014)

    Google Scholar 

  17. T W Eagar and N S Tsai Weld. J.62 346 (1983)

    Google Scholar 

  18. J Goldak, A Chakravarty and M Bibby IIW Doc. No. 212-603-85. International Institute for Welding, Strasbourg, France (1985)

  19. N T Nguyen, A Otha, K Matsuoka, M Suzuki and Y Maeda, Weld. Res. Suppl. 8 265 (1999)

    Google Scholar 

  20. H Hu and S A Argyropoulos Model. Simul. Mater. Sci. Eng.4 371 (1996)

    ADS  Google Scholar 

  21. A P Mackwood and R C Crafer Optics Laser Technol.37 99 (2005)

    ADS  Google Scholar 

  22. N S Al-Huniti, M A Al-Nimr, M Naji J. Sound Vib.242 629 (2001)

    ADS  Google Scholar 

  23. T He, L cao and S Li J. Sound Vib.306 897 (2007)

    ADS  Google Scholar 

  24. I A Abbas, J. Magn. Magn. Mater.377 452 (2015)

    ADS  Google Scholar 

  25. D Zhao and M Luo Appl. Math. Comput.346 531 (2019)

    MathSciNet  Google Scholar 

  26. A Sur and M Kanoria Euro. J. Comput. Mech.23 179 (2014)

    Google Scholar 

  27. D Bhattacharya and M Kanoria Int. J. Appl. Innov. Eng. Manag.3 96 (2014)

    Google Scholar 

  28. A Sur and M Kanoria Acta Mech.223 2685 (2012)

    MathSciNet  Google Scholar 

  29. S Mondal, S H Mallik and M Kanoria Int. schol. res. not. https://doi.org/10.1155/2014/646049 (2014)

  30. I Podlubny Fractional Differential Equations (Amsterdam: Elsevier) (1998)

  31. V Pareto Cours d'économie politique (Geneva: Librairie Droz) (1964)

  32. G Zipf Human Behavior and The Principle of Least Effort (Boston: Addison-Wesley) (1949)

  33. A Clauset, C R Shalizi and M Newman SIAM Rev.51 661 (2009)

    ADS  MathSciNet  Google Scholar 

  34. K Diethelm The Analysis of Fractional Differential Equations (Berlin: Springer) (2010)

  35. M Caputo Geophys. J. Int.13 529 (1967)

    ADS  Google Scholar 

  36. M Caputo and M Fabrizio Progr. Fract. Differ. Appl.1 1 (2015)

    Google Scholar 

  37. J L Wang and H F Li Comput. Math. Appl.62 1562 (2011)

    MathSciNet  Google Scholar 

  38. H H Sherief, A M A El-Sayed and A A El-Latief Int. J. Solids Struct.47 269 (2010)

    Google Scholar 

  39. M A Ezzat, A S El-Karamany and A A El-Bary Int. Int. J. Mech. Sci.89 470 (2014)

    Google Scholar 

  40. M A Ezzat, A S El-Karamany and A A El-Bary J. Electromagn. Waves Appl.29 1018 (2015)

    Google Scholar 

  41. M A Ezzat, A S El-Karamany and A A El-Bary Mech. Mech. Adv. Mater. Struct.23 545 (2016)

    Google Scholar 

  42. M A Ezzat, A S El-Karamany and A A El-Bary Smart. Smart. Struct. Sys.19 539 (2017)

    Google Scholar 

  43. S Shaw and B Mukhopadhyay Acta Mech.228 2675 (2017)

    MathSciNet  Google Scholar 

  44. K Lotfy and N Sarkar Mech. Time-Dep. Mater.21 519 (2017)

    ADS  Google Scholar 

  45. S Kant and S Mukhopadhyay Math. Mech. Solids. 24 2392 (2018)

    Google Scholar 

  46. A Sur, P Pal and M Kanoria J. Therm. Stress.41 973 (2018)

    Google Scholar 

  47. A Sur and M Kanoria Thin-Walled Struct.126 85 (2018)

    Google Scholar 

  48. P Purkait, A Sur and M Kanoria Int. Int. J. Adv. Appl. Math. Mech.5 28 (2017)

    MathSciNet  Google Scholar 

  49. N Sarkar, D Ghosh and A Lahiri Mech. Adv. Mater. Struct.https://doi.org/10.1080/15376494.2018.1432784 (2018)

  50. S Mondal, P Pal and M Kanoria Acta Mech.https://doi.org/10.1007/s00707-018-2307-z (2018)

  51. D Y Tzou Macro to Micro-Scale Heat Transfer: The Lagging Behavior (Taylor & Francis, Washington D.C.) (1996)

  52. K S Crump J. ACM 23 89 (1976)

    Google Scholar 

  53. H Dubner and J Abate J. ACM15 115 (1968)

    Google Scholar 

  54. A Talbot J. Inst. Math. Appl.23 (1979)

  55. G. Honig and U Hirdes J. Comp. Appl. Math.10 113 (1984)

    Google Scholar 

  56. M A Ezzat Int. J. Engng. Sci. 35 741 (1997)

    Google Scholar 

  57. M A.Ezzat, M Z Abd-Elaal J. Frankl. Inst.334 (1997)

    Google Scholar 

  58. A Sur, P Pal, S Mondal and M Kanoria Acta Mech.2305 1607 (2019)

    Google Scholar 

  59. S Mondal, A Sur and M Kanoria Acta Mech.230 2325 (2019)

    MathSciNet  Google Scholar 

  60. P Purkait, A Sur and M Kanoria Waves in Random & Complex Mediahttps://doi.org/10.1080/17455030.2019.1599464 (2019)

  61. A Sur, P Paul and M Kanoria Waves in Random & Complex Mediahttps://doi.org/10.1080/17455030.2019.1606962 (2019)

  62. S Mondal, A Sur and M Kanoria J. Therm. Stress.https://doi.org/10.1080/01495739.2019.1629854 (2019)

  63. M A Ezzat and A S El-Karamany, Can. J. Phys.89 311 (2011)

    ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Editor and the anonymous referees for their comments and suggestions on this paper.

Funding

The author received no financial support for the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mridula Kanoria.

Ethics declarations

Conflict of interest

The author declares that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mondal, S., Sur, A., Bhattacharya, D. et al. Thermoelastic interaction in a magneto-thermoelastic rod with memory-dependent derivative due to the presence of moving heat source. Indian J Phys 94, 1591–1602 (2020). https://doi.org/10.1007/s12648-019-01593-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-019-01593-6

Keywords

PACS No.

Navigation