Skip to main content

Advertisement

Log in

Dynamical analysis of an asymmetric tri-stable hybrid energy harvesting system driven by colored noise

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The piezoelectric–electromagnetic hybrid vibration energy harvester (HVEH) has proven to be a favorable option to overcome the low-power generation issue of individual energy conversion mechanism. Considering the inevitable asymmetry and the ubiquitous ambient noise in engineering, the stochastic dynamics of an asymmetric tri-stable HVEH driven by colored noise is investigated in this paper. Facing such difficult challenges as multiple couplings, strong nonlinearity, multiple attractors, asymmetry and noise in the system, a novel stochastic averaging technique is developed to explore the dynamics. The energy-dependent frequency is first established according to the operation mechanism of the asymmetric triple-well potential function. Then, the stochastic averaging is extended to obtain the analytical expressions of the stationary probability density, the mean-square voltage, the mean-square current and the mean output power. Finally, the influences of the asymmetric parameter and colored noise on the steady-state response, the mean output power and the stochastic resonance are mainly analyzed. Results show that the energy harvesting performance can be effectively enhanced by reducing asymmetry and correlation time, adopting hybrid design and choosing appropriate electromechanical coupling coefficient and time constants ratio. The developed stochastic averaging technique is well validated by Monte Carlo numerical simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Lumentut, M.F., Howard, I.M.: Electromechanical analysis of an adaptive piezoelectric energy harvester controlled by two segmented electrodes with shunt circuit networks. Acta Mech. 228, 1321–1341 (2017)

    Article  MATH  Google Scholar 

  2. Le Scornec, J., Guiffard, B., Seveno, R., Le Cam, V., Ginestar, S.: Self-powered communicating wireless sensor with flexible aero-piezoelectric energy harvester. Renew. Energy 184, 551–563 (2022)

    Article  Google Scholar 

  3. Nabholz, U., Lamprecht, L., Mehner, J.E., Zimmermann, A., Degenfeld-Schonburg, P.: Parametric amplification of broadband vibrational energy harvesters for energy-autonomous sensors enabled by field-induced striction. Mech. Syst. Signal Process. 139, 106642 (2020)

    Article  Google Scholar 

  4. Erturk, A., Inman, D.J.: Broadband piezoelectric power generation on high-energy orbits of the bistable Duffing oscillator with electromechanical coupling. J. Sound Vib. 330, 2339–2353 (2011)

    Article  Google Scholar 

  5. Karami, P., Ariaei, A., Hasanpour, K.: Optimum network configuration design of a multi-beam vortex-induced vibration piezoelectric energy harvester. Mech. Syst. Signal Process. 177, 109186 (2022)

    Article  Google Scholar 

  6. Jin, Y., Zhang, Y.: Dynamics of a delayed Duffing-type energy harvester under narrow-band random excitation. Acta Mech. 232, 1045–1060 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fezeu, G.J., Fokou, I.S.M., Buckjohn, C.N.D., Siewe Siewe, M., Tchawoua, C.: Resistance induced P-bifurcation and ghost-stochastic resonance of a hybrid energy harvester under colored noise. Physica A Stat. Mech. Appl. 557, 124857 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  8. Shi, G., Xu, J., Xia, Y., Zeng, W., Jia, S., Li, Q., Wang, X., Xia, H., Ye, Y.: An annular tubular wearable piezoelectric–electromagnetic hybrid vibration energy harvester driven by multi magnetic beads. Energy Convers. Manag. 269, 116119 (2022)

    Article  Google Scholar 

  9. Sun, Y.H., Yang, Y.G., Zhang, Y., Xu, W.: Probabilistic response of a fractional-order hybrid vibration energy harvester driven by random excitation. Chaos 31, 013111 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  10. Xing, J., Fang, S., Fu, X., Liao, W.H.: A rotational hybrid energy harvester utilizing bistability for low-frequency applications: modelling and experimental validation. Int. J. Mech. Sci. 222, 107235 (2022)

    Article  Google Scholar 

  11. Hou, C., Li, C., Shan, X., Yang, C., Song, R., Xie, T.: A broadband piezo-electromagnetic hybrid energy harvester under combined vortex-induced and base excitations. Mech. Syst. Signal Process. 171, 108963 (2022)

    Article  Google Scholar 

  12. Zhang, Y., Jin, Y., Zhang, Z.: Dynamics of a tri-stable hybrid energy harvester under narrow-band random excitation. Int. J. Non-Linear Mech. 148, 104294 (2023)

    Article  Google Scholar 

  13. Sebald, G., Kuwano, H., Guyomar, D., Ducharne, B.: Simulation of a Duffing oscillator for broadband piezoelectric energy harvesting. Smart Mater. Struct. 20, 075022 (2011)

    Article  Google Scholar 

  14. Huang, D., Chen, J., Zhou, S., Fang, X., Li, W.: Response regimes of nonlinear energy harvesters with a resistor–inductor resonant circuit by complexification-averaging method. Sci. China Technol. Sci. 64, 1212–1227 (2021)

    Article  Google Scholar 

  15. Zhou, S., Lallart, M., Erturk, A.: Multistable vibration energy harvesters: principle, progress, and perspectives. J. Sound Vib. 528, 116886 (2022)

    Article  Google Scholar 

  16. Panyam, M., Daqaq, M.F.: Characterizing the effective bandwidth of tri-stable energy harvesters. J. Sound Vib. 386, 336–358 (2017)

    Article  Google Scholar 

  17. Li, H.T., Ding, H., Jing, X.J., Qin, W.Y., Chen, L.Q.: Improving the performance of a tri-stable energy harvester with a staircase-shaped potential well. Mech. Syst. Signal Process. 159, 107805 (2021)

    Article  Google Scholar 

  18. Wang, G., Zhao, Z., Liao, W.H., Tan, J., Ju, Y., Li, Y.: Characteristics of a tri-stable piezoelectric vibration energy harvester by considering geometric nonlinearity and gravitation effects. Mech. Syst. Signal Process. 138, 106571 (2020)

    Article  Google Scholar 

  19. Mei, X., Zhou, S., Yang, Z., Kaizuka, T., Nakano, K.: A tri-stable energy harvester in rotational motion: modeling, theoretical analyses and experiments. J. Sound Vib. 469, 115142 (2020)

    Article  Google Scholar 

  20. Zhang, Y., Jin, Y.: Stochastic dynamics of a piezoelectric energy harvester with correlated colored noises from rotational environment. Nonlinear Dyn. 98, 501–515 (2019)

    Article  Google Scholar 

  21. Zhang, Y.X., Jin, Y.F., Xu, P.: Stochastic resonance and bifurcations in a harmonically driven tri-stable potential with colored noise. Chaos 29, 023127 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zhang, Y., Jin, Y., Xu, P.: Dynamics of a coupled nonlinear energy harvester under colored noise and periodic excitations. Int. J. Mech. Sci. 172, 105418 (2020)

    Article  Google Scholar 

  23. Zhu, W., Lin, Y.K.: Stochastic averaging of energy envelope. J. Eng. Mech. 117, 1890–1905 (1905)

    Article  Google Scholar 

  24. Spanos, P.D., Sofi, A., Di Paola, M.: Nonstationary response envelope probability densities of nonlinear oscillators. J. Appl. Mech. 74, 315–324 (2006)

    Article  MATH  Google Scholar 

  25. Jia, W.T., Zhu, W.Q., Xu, Y.: Stochastic averaging of quasi partially integrable and resonant Hamiltonian systems under combined Gaussian and Poisson white noise excitations. Int. J. Nonlinear Mech. 93, 82–95 (2017)

    Article  Google Scholar 

  26. Omar, E.K., Abdollah, S.: Enhanced stochastic averaging of non-integrable nonlinear systems subjected to stochastic excitations. Soil Dyn. Earthq. Eng. 113, 256–264 (2018)

    Article  Google Scholar 

  27. Ge, G., Liu, J.: Stochastic averaging on a nonlinear oscillator with coordinate-dependent mass excited by Gaussian white noises. Chaos Solitons Fractals 143, 110609 (2021)

    Article  MathSciNet  Google Scholar 

  28. Xu, Y., Gu, R., Zhang, H., Xu, W., Duan, J.: Stochastic bifurcations in a bistable Duffing–Van der Pol oscillator with colored noise. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 83, 056215 (2011)

    Article  Google Scholar 

  29. Zhu, W.Q., Cai, G.Q., Hu, R.C.: Stochastic analysis of dynamical system with double-well potential. Int. J. Dyn. Control 1, 12–19 (2013)

    Article  Google Scholar 

  30. Liu, D., Xu, Y., Li, J.: Probabilistic response analysis of nonlinear vibration energy harvesting system driven by Gaussian colored noise. Chaos Solitons Fractals 104, 806–812 (2017)

    Article  MATH  Google Scholar 

  31. Xu, M., Li, X.: Stochastic averaging for bistable vibration energy harvesting system. Int. J. Mech. Sci. 141, 206–212 (2018)

    Article  Google Scholar 

  32. Li, P., Gao, S., Cai, H.: Modeling and analysis of hybrid piezoelectric and electromagnetic energy harvesting from random vibrations. Microsyst. Technol. 21, 401–414 (2013)

    Article  Google Scholar 

  33. Foupouapouognigni, O., Nono Dueyou Buckjohn, C., Siewe Siewe, M., Tchawoua, C.: Hybrid electromagnetic and piezoelectric vibration energy harvester with Gaussian white noise excitation. Physica A Stat. Mech. Appl. 509, 346–360 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  34. Xia, H., Chen, R., Ren, L.: Parameter tuning of piezoelectric–electromagnetic hybrid vibration energy harvester by magnetic force: modeling and experiment. Sens. Actuators A Phys. 257, 73–83 (2017)

    Article  Google Scholar 

  35. Wu, D., Zhu, S.: Stochastic resonance in a bistable system with time-delayed feedback and non-Gaussian noise. Phys. Lett. A 363, 202–212 (2007)

    Article  Google Scholar 

  36. Yang, T., Cao, Q.: Dynamics and energy generation of a hybrid energy harvester under colored noise excitations. Mech. Syst. Signal Process. 121, 745–766 (2019)

    Article  Google Scholar 

  37. Zhang, Y., Jin, Y.: Colored lévy noise-induced stochastic dynamics in a tri-stable hybrid energy harvester. J. Comput. Nonlinear Dyn. 16, 041005 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

This study is supported by Natural Science Basic Research Program of Shaanxi Province (No. 2022JQ-044), Natural Science Foundation of Shaanxi Provincial Department of Education (No. 22JK0462), National Natural Science Foundation of China (Nos. 12072025, 11772048), Beijing Natural Science Foundation (No. 1222015) and Talent Introduction Program of Xi’an University of Science and Technology (No. 2050122008).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanxia Zhang or Yanfei Jin.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Jin, Y. & Zhang, T. Dynamical analysis of an asymmetric tri-stable hybrid energy harvesting system driven by colored noise. Acta Mech 234, 4391–4406 (2023). https://doi.org/10.1007/s00707-023-03615-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03615-1

Navigation