Skip to main content
Log in

A two-dimensional space-time absolute nodal coordinates cable element and its application in shape memory alloy

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this paper, a SMA space-time ANCF cable element which based on an asymmetric Brinson constitutive model (Poorasadion model) is proposed. To solve the discontinuity of stress in cross section, 5-order polynomial interpolation in neutral axis is used in shape function to construct the displacement formulation of the presented element. The continuity of position and velocity is also guaranteed by 3-order polynomial interpolation in the time direction. The stress equation based on the stress distribution in the neutral axis and cross section is derived. The phase transition regions are given in detail, and the update strategy of initial state parameter for the constitutive law is determined. In the space-time discretization, a solver based on Hamilton’s law of varying action and P2 method is established. As for constrains, the application methods of replaceable constraint and supplementary constraint are proposed to solve the singular problems in Jacobian matrix. Numerical simulation verifies that this method is capable of simulating the cyclic loading of thermo-mechanic problems. A free pendulum simulation shows the difference between the variation of stress and component of detwinned martensite. Simulation results also show that this element could be used for capturing the shape memory effect and pseudo-elasticity effect by SMA cable and the asymmetric effect in tension and compression by adopting an asymmetric constitutive law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Buehler, W.J., Gilfrich, J.V., Wiley, R.C.: Effect of low-temperature phase changes on the mechanical properties of alloys near composition TiNi. J. Appl. Phys. 34, 1475–1477 (1963). https://doi.org/10.1063/1.1729603

    Article  Google Scholar 

  2. Zaki, W., Moumni, Z.: A three-dimensional model of the thermomechanical behavior of shape memory alloys. J. Mech. Phys. Solids 55(11), 2455–2490 (2007). https://doi.org/10.1016/j.jmps.2007.03.012

    Article  MATH  Google Scholar 

  3. Suzuki, Y., Kagawa, Y.: Dynamic tracking control of an SMA wire actuator based on model matching. Sens. Actuators, A 292, 129–136 (2019). https://doi.org/10.1016/j.sna.2019.04.011

    Article  Google Scholar 

  4. Victor, B. (1997) Effect of SMA dampers on nonlinear vibrations of elastic structures. In: Varadan VV, Chandra J, (Eds.) Smart Structures and Materials 1997, Mathematics and Control in Smart Structures. p. 268–76.

  5. Li, S., Wang, J.-Q., Shahria Alam, M.: Multi-criteria optimal design and seismic assessment of SMA RC piers and SMA cable restrainers for mitigating seismic damage of simply-supported highway bridges. Eng. Struct. 252, 113547 (2022). https://doi.org/10.1016/j.engstruct.2021.113547

    Article  Google Scholar 

  6. Wang, J.-Q., Li, S., Hedayati Dezfuli, F., Alam, M.S.: Sensitivity analysis and multi-criteria optimization of SMA cable restrainers for longitudinal seismic protection of isolated simply supported highway bridges. Eng. Struct. 189, 509–522 (2019). https://doi.org/10.1016/j.engstruct.2019.03.091

    Article  Google Scholar 

  7. Terriault, P., Viens, F., Brailovski, V.: Non-isothermal finite element modeling of a shape memory alloy actuator using ANSYS. Comput. Mater. Sci. 36(4), 397–410 (2006). https://doi.org/10.1016/j.commatsci.2005.05.010

    Article  Google Scholar 

  8. Zhou, B., Kang, Z., Wang, Z., Xue, S.: finite element method on shape memory alloy structure and its applications. Chin. J. Mech. Eng. 32(1), 1–1 (2019). https://doi.org/10.1186/s10033-019-0401-3

    Article  Google Scholar 

  9. Kundu, A., Banerjee, A.: Coupled thermomechanical modelling of shape memory alloy structures undergoing large deformation. Int. J. Mech. Sci. 220, 107102 (2022). https://doi.org/10.1016/j.ijmecsci.2022.107102

    Article  Google Scholar 

  10. Liang, C., Rogers, C.A.: A multi-dimensional constitutive model for shape memory alloys. J. Eng. Math. 26(3), 429–443 (1992). https://doi.org/10.1007/BF00042744

    Article  MATH  Google Scholar 

  11. Liang, C., Rogers, A.: One-dimensional thermomechanical constitutive relations for shape memory materials. J. Intell. Mater. Syst. Struct. 8(4), 285–302 (1997). https://doi.org/10.1177/1045389X9700800402

    Article  Google Scholar 

  12. Brinson, L.C., Lammering, R.: Finite element analysis of the behavior of shape memory alloys and their applications. Int. J. Solids Struct. 30(23), 3261–3280 (1993). https://doi.org/10.1016/0020-7683(93)90113-L

    Article  MATH  Google Scholar 

  13. Brinson, L.C., Bekker, A., Hwang, S.: Deformation of shape memory alloys due to thermo-induced transformation. J. Intell. Mater. Syst. Struct. 7(1), 97–107 (1996). https://doi.org/10.1177/1045389x9600700111

    Article  Google Scholar 

  14. Chung, J.-H., Heo, J.-S., Lee, J.-J.: Implementation strategy for the dual transformation region in the Brinson SMA constitutive model. Smart Mater. Struct. 16(1), N1–N5 (2007). https://doi.org/10.1088/0964-1726/16/1/n01

    Article  Google Scholar 

  15. Poorasadion, S., Arghavani, J., Naghdabadi, R., Sohrabpour, S.: An improvement on the Brinson model for shape memory alloys with application to two-dimensional beam element. J. Intell. Mater. Syst. Struct. 25(15), 1905–1920 (2013). https://doi.org/10.1177/1045389x13512187

    Article  Google Scholar 

  16. Ostadrahimi, A., Arghavani, J., Poorasadion, S.: An analytical study on the bending of prismatic SMA beams. Smart Mater. Struct. 24(12), 125035 (2015). https://doi.org/10.1088/0964-1726/24/12/125035

    Article  Google Scholar 

  17. Samadi-Aghdam, K., Fahimi, P., Baniassadi, M., Baghani, M.: Development and implementation of a geometrically nonlinear beam theory model for SMA composite beams with asymmetric behavior. Compos. Struct. 259, 113417 (2021). https://doi.org/10.1016/j.compstruct.2020.113417

    Article  Google Scholar 

  18. Christ, D., Reese, S.: Finite-element modelling of shape memory alloys—A comparison between small-strain and large-strain formulations. Mater. Sci. Eng., A 481–482, 343–346 (2008). https://doi.org/10.1016/j.msea.2006.11.174

    Article  Google Scholar 

  19. Christ, D., Reese, S.: A finite element model for shape memory alloys considering thermomechanical couplings at large strains. Int. J. Solids Struct. 46(20), 3694–3709 (2009). https://doi.org/10.1016/j.ijsolstr.2009.06.017

    Article  MATH  Google Scholar 

  20. Shabana, A.A.:An absolute nodal coordinate formulation for the large rotation and deformation analysis of flexible bodies, 1996.

  21. Shabana, A., Yakoub, R.: Three dimensional absolute nodal coordinate formulation for beam elements: theory. J. Mech. Design. 123, 606–613 (2001). https://doi.org/10.1115/1.1410100

    Article  Google Scholar 

  22. Lan, P., Li, K., Yu, Z.: Computer implementation of piecewise cable element based on the absolute nodal coordinate formulation and its application in wire modeling. Acta Mech. 230(3), 1145–1158 (2019). https://doi.org/10.1007/s00707-018-2332-y

    Article  MathSciNet  Google Scholar 

  23. Vaziri Sereshk, M.R., Salimi, M.: Comparison of finite element method based on nodal displacement and absolute nodal coordinate formulation (ANCF) in thin shell analysis. Int. J. Numer. Method Biomed. Eng. 27, 1185–1198 (2011). https://doi.org/10.1002/cnm.1348

    Article  MathSciNet  MATH  Google Scholar 

  24. Schwab, A.L., Gerstmayr, J., Meijaard, J.P.:Comparison of three-dimensional flexible thin plate elements for multibody dynamic analysis: finite element formulation and absolute nodal coordinate formulation. In: ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference2007. p. 1059–70.

  25. Liu, J., Hong, J., Cui, L.: An exact nonlinear hybrid-coordinate formulation for flexible multibody systems. Acta. Mech. Sin. 23(6), 699–706 (2007). https://doi.org/10.1007/s10409-007-0118-x

    Article  MathSciNet  MATH  Google Scholar 

  26. Shen, Z., Tian, Q., Liu, X., Hu, G.: Thermally induced vibrations of flexible beams using absolute nodal coordinate formulation. Aerosp. Sci. Technol. 29, 386–393 (2013). https://doi.org/10.1016/j.ast.2013.04.009

    Article  Google Scholar 

  27. Cui, Y., Lan, P., Zhou, H., Yu, Z.: The rigid-flexible-thermal coupled analysis for spacecraft carrying large aperture paraboloid antenna. J. Comput. Nonlinear Dyn. 1515(3), 031003 (2020). https://doi.org/10.1115/1.4045890

    Article  Google Scholar 

  28. Zhang, P., Duan, M., Gao, Q., Ma, J., Wang, J., Sævik, S.: Efficiency improvement on the ANCF cable element by using the dot product form of curvature. Appl. Math. Model. 102, 435–452 (2022). https://doi.org/10.1016/j.apm.2021.09.027

    Article  MathSciNet  Google Scholar 

  29. Bulín, R., Hajžman, M.: Efficient computational approaches for analysis of thin and flexible multibody structures. Nonlinear Dyn. 103(3), 2475–2492 (2021). https://doi.org/10.1007/s11071-021-06225-5

    Article  Google Scholar 

  30. Hu, W., Tian, Q., Hu, H.: Dynamic fracture simulation of flexible multibody systems via coupled finite elements of ANCF and particles of SPH. Nonlinear Dyn. 84(4), 2447–2465 (2016). https://doi.org/10.1007/s11071-016-2657-9

    Article  MathSciNet  Google Scholar 

  31. Huang, H., Costanzo, F.: On the use of space-time finite elements in the solution of elasto-dynamic problems with strain discontinuities. Comput. Methods Appl. Mech. Eng. 191(46), 5315–5343 (2002). https://doi.org/10.1016/S0045-7825(02)00460-7

    Article  MathSciNet  MATH  Google Scholar 

  32. Hulbert, G.M., Hughes, R.: Space-time finite element methods for second-order hyperbolic equations. Comput. Methods Appl. Mech. Eng. 84(3), 327–348 (1990). https://doi.org/10.1016/0045-7825(90)90082-W

    Article  MathSciNet  MATH  Google Scholar 

  33. Argyris, J.H., Scharpf, D.W.: Finite elements in time and space. Nucl. Eng. Des. 10(4), 456–464 (1969). https://doi.org/10.1016/0029-5493(69)90081-8

    Article  Google Scholar 

  34. Warzee, G.: Finite element analysis of transient heat conduction application of the weighted residual process. Comput. Methods Appl. Mech. Eng. 3(2), 255–268 (1974). https://doi.org/10.1016/0045-7825(74)90028-0

    Article  MATH  Google Scholar 

  35. Aziz, A.K., Monk, P.: continuous finite elements in space and time for the heat equation. Math. Comput. 52(186), 255–274 (1989). https://doi.org/10.2307/2008467

    Article  MathSciNet  MATH  Google Scholar 

  36. Zhong, W., Yao, Z.: Time domain FEM and symplectic conservation ( in Chinese). J. Mech. Strength. 02, 178–183 (2005). https://doi.org/10.16579/j.issn.1001.9669.2005.02.009

    Article  Google Scholar 

  37. Zhong, W., Gao, Q.: Space-time mixed FEM (in Chinese). J. Dyn. Control. 01, 1–7 (2007)

    Google Scholar 

  38. Gao, Q., Peng, H., Zhang, H., Zhong, W.: The symplectic algorithms for Hamiltonian dynamic systems based on a new variational principle part I: the variational principle and the algorithms (in Chinese). Chin. J. Comput. Mech. 30(04), 461–467 (2013)

    MATH  Google Scholar 

  39. Gao, Q., Peng, H., Zhang, H., Zhong, W.: The symplectic algorithms for Hamiltonian dynamic systems based on a new variational principle part II: the proof of the symplecticity (in Chinese). Chin. J. Comput. Mech. 30(04), 468–472 (2013)

    MATH  Google Scholar 

  40. Gao, Q., Peng, H., Zhang, H., Zhong, W.: The symplectic algorithms for Hamiltonian dynamic systems based on a new variational principle part III: the numerical examples (in Chinese). Chin. J. Comput. Mech. 30(04), 473–478 (2013)

    MATH  Google Scholar 

  41. Sánchez, M.A., Cockburn, B., Nguyen, N.-C., Peraire, J.: Symplectic Hamiltonian finite element methods for linear elastodynamics. Comput. Methods Appl. Mech. Eng. 381, 113843 (2021). https://doi.org/10.1016/j.cma.2021.113843

    Article  MathSciNet  MATH  Google Scholar 

  42. Mergel, J.C., Sauer, R.A., Ober-Blöbaum, S.: C1-continuous space-time discretization based on Hamilton’s law of varying action. ZAMM J Appl Math Mech/Zeitschrift für Angewandte Math. und Mech. 97(4), 433–457 (2017). https://doi.org/10.1002/zamm.201600062

    Article  Google Scholar 

  43. Mehrabi, R., Shirani, M., Kadkhodaei, M., Elahinia, M.: Constitutive modeling of cyclic behavior in shape memory alloys. Int. J. Mech. Sci. 103, 181–188 (2015). https://doi.org/10.1016/j.ijmecsci.2015.08.003

    Article  Google Scholar 

  44. Buravalla, V., Khandelwal, A.: Evolution kinetics in shape memory alloys under arbitrary loading: experiments and modeling. Mech. Mater. 43, 807–823 (2011). https://doi.org/10.1016/j.mechmat.2011.08.012

    Article  Google Scholar 

  45. Kang, W., Kim, E., Jeong, M.-S., Lee, I., Ahn, S.-M.: Morphing wing mechanism using an SMA wire actuator. Int. J. Aeronaut. Space Sci. 13, 58–63 (2012). https://doi.org/10.5139/IJASS.2012.13.1.58

    Article  Google Scholar 

  46. Kim, M.K., Kim, D.J., Chung, Y.S., Choi, E.: Effects of a short heat treatment period on the pullout resistance of shape memory alloy fibers in mortar. Materials. 12(14), 2278 (2019). https://doi.org/10.3390/ma12142278

    Article  Google Scholar 

Download references

Acknowledgements

The work is supported by independent research project of State Key Laboratory of Green Building in West China [No. LSZZ202209] and the Technology Innovation Project of Hunan Province [No. 2018GK1040]

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Xue.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: The martensite fraction calculation equations

Appendix A: The martensite fraction calculation equations

Equation (27) consists of three equations for martensite calculation fraction, which are used to calculate \(\xi_{T}\), \(\xi_{S}^{ + }\) and \(\xi_{S}^{ - }\). The martensite fraction equations are piecewise equations. The martensite fraction obeys the relation given in Table 6, when it is in the loading range given by PTR under normal loading stage, which means that the total martensite fraction \(\xi\) is not more than 1, and three martensite components are no less than 0. Several kinds of abnormal loading conditions are given in Table 7, which correspond to the abnormal conditions of the total martensite fraction and each martensite fraction, respectively. In particular, when the last three cases in Table 7 occur, only the constraint martensite component is constrained to 0, and the other martensite components still need to be calculated according to the corresponding calculation equations of the interval in Table 6.

Table 6 The martensite fraction calculation equations under normal loading condition
Table 7 The martensite fraction calculation equations under abnormal loading condition

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, D., Cui, Y., Lan, P. et al. A two-dimensional space-time absolute nodal coordinates cable element and its application in shape memory alloy. Acta Mech 234, 3687–3707 (2023). https://doi.org/10.1007/s00707-023-03580-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03580-9

Navigation