Skip to main content
Log in

Computer implementation of piecewise cable element based on the absolute nodal coordinate formulation and its application in wire modeling

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

A new high-voltage electricity wire model is proposed to simulate the dynamic behavior of the wire after tension failure and the nonlinear sliding joints between the wire and the iron tower. A previously developed piecewise cable element based on the absolute nodal coordinate formulation is used with its computer implementation given in this paper. In order to describe the initial tension in the wire, a static solving approach is used to achieve equilibrium between the element elastic force and the external force including the tension. The obtained configuration of the wire is then used as the initial configuration of analysis in case of unloaded external tension force. Thereby, the dynamic behavior of the wire can be modeled. The sliding joint constraint is used to describe the motion of the wire going through the iron tower after tension failure. A new static solution approach is developed to avoid the sliding joint constraint violation in the resulting equilibrium configuration. The convergence of the piecewise cable element based on the absolute nodal coordinate formulation is tested. A set of comparative results is presented to demonstrate the feasibility of the method proposed in this investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gerstmayr, J., Shabana, A.A.: Analysis of thin beams and cables using the absolute nodal co-ordinate formulation. Nonlinear Dyn. 45, 109–130 (2006)

    Article  MATH  Google Scholar 

  2. Hong, D., Ren, G.: A modeling of sliding joint on one-dimensional flexible medium. Multibody Syst. Dyn. 26, 91–106 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Escalona, J.L.: An arbitrary Lagrangian-Eulerian discretization method for modeling and simulation of reeving systems in multibody dynamics. Mech. Mach Theory 112, 1–21 (2017)

    Article  Google Scholar 

  4. Seo, J.-H., Sugiyama, H., Shabana, A.A.: Three-dimensional large deformation analysis of the multibody pantograph/catenary systems. Nonlinear Dyn. 42, 199–215 (2005)

    Article  MATH  Google Scholar 

  5. Seo, J.-H., Kim, S.-W., Jung, I.-H., Park, T.-W., Mok, J.-Y., Kim, Y.-G., Chai, J.-B.: Dynamic analysis of a pantograph-catenary system using absolute nodal coordinates. Veh. Syst. Dyn. 44, 615–630 (2006)

    Article  Google Scholar 

  6. Pappalardo, C.M., Patel, M.D., Tinsley, B., Shabana, A.A.: Contact force control in multibody pantograph/catenary systems. Proc. Inst. Mech. Eng. Part K J. Multi-body Dyn. 230, 307–328 (2016)

    Google Scholar 

  7. Carnicero, A., Jimenez-Octavio, J.R., Sanchez-Rebollo, C., Ramos, A., Such, M.: Influence of track irregularities in the catenary-pantograph dynamic interaction. J. Comput. Nonlinear Dyn. 7, 041015 (2012)

    Article  Google Scholar 

  8. Lan, P., Shabana, A.A.: Integration of B-spline geometry and ANCF finite element analysis. Nonlinear Dyn. 61, 193–206 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Piegl, L., Tiller, W.: The NURBS Book. Springer, New York (2012)

    MATH  Google Scholar 

  10. Lan, P., Yu, Z., Du, L., Lu, N.: Integration of non-uniform rational B-splines geometry and rational absolute nodal coordinates formulation finite element analysis. Acta Mech Solida Sin. 27, 486–495 (2014)

    Article  Google Scholar 

  11. Sanborn, G.G., Shabana, A.A.: A rational finite element method based on the absolute nodal coordinate formulation. Nonlinear Dyn. 58, 565–572 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Nada, A.A.: Use of B-spline surface to model large-deformation continuum plates: procedure and applications. Nonlinear Dyn. 72, 243–263 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Yu, Z., Lan, P., Lu, N.: A piecewise beam element based on absolute nodal coordinate formulation. Nonlinear Dyn. 77, 1–15 (2014)

    Article  MATH  Google Scholar 

  14. Sugiyama, H., Escalona, J.L., Shabana, A.A.: Formulation of three-dimensional joint constraints using the absolute nodal coordinates. Nonlinear Dyn. 31, 167–195 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gerstmayr, J.: Nonlinear constraints in the absolute coordinate formulation. Acta Mech. 192, 191–211 (2007)

    Article  MATH  Google Scholar 

  16. Sugiyama, H., Yamashita, H.: Spatial joint constraints for the absolute nodal coordinate formulation using the non-generalized intermediate coordinates. Multibody Syst Dyn. 26, 15–36 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Wallin, M., Aboubakr, A.K., Jayakumar, P., Letherwood, M.D., Gorsich, D.J., Hamed, A., Shabana, A.A.: A comparative study of joint formulations: application to multibody system tracked vehicles. Nonlinear Dyn. 74, 783–800 (2013)

    Article  Google Scholar 

  18. Mizuno, Y., Sugiyama, H.: Sliding and nonsliding joint constraints of B-spline plate elements for integration with flexible multibody dynamics simulation. J Comput. Nonlinear Dyn. 9, 011001 (2013)

    Article  Google Scholar 

  19. Shabana, A.A., Yakoub, R.Y.: Three dimensional absolute nodal coordinate formulation for beam elements: theory. J. Mech. Des. 123, 606–613 (2001)

    Article  Google Scholar 

  20. Yakoub, R.Y., Shabana, A.A.: Three dimensional absolute nodal coordinate formulation for beam elements: implementation and applications. J. Mech. Des. 123, 614–621 (2001)

    Article  Google Scholar 

  21. Mikkola, A.M., Shabana, A.A.: A non-incremental finite element procedure for the analysis of large deformation of plates and shells in mechanical system applications. Multibody Syst. Dyn. 9, 283–309 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wei, C., Wang, L., Shabana, A.A.: A total Lagrangian ANCF liquid sloshing approach for multibody system applications. J. Comput. Nonlinear Dyn. 10, 051014 (2015)

    Article  Google Scholar 

  23. Shabana, A.A.: Computational Continuum Mechanics. Cambridge University Press, New York (2012)

    MATH  Google Scholar 

  24. Pappalardo, C.M., Yu, Z., Zhang, X., Shabana, A.A.: Rational ANCF thin plate finite element. J. Comput. Nonlinear Dyn. 11, 051009 (2016)

    Article  Google Scholar 

  25. Berzeri, M., Shabana, A.A.: Development of simple models for the elastic forces in the absolute nodal co-ordinate formulation. J. Sound Vib. 235(4), 539–565 (2000)

    Article  Google Scholar 

  26. Gerstmayr, J., Irschik, H.: On the correct representation of bending and axial deformation in the absolute coordinate formulation with an elastic line approach. J. Sound Vib. 318, 461–487 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by “the National Natural Science Foundation of China” (Grant No. 11802072) and “the Fundamental Research Funds for the Central Universities” (Grant No. HIT. NSRIF 2018032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuqing Yu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lan, P., Li, K. & Yu, Z. Computer implementation of piecewise cable element based on the absolute nodal coordinate formulation and its application in wire modeling. Acta Mech 230, 1145–1158 (2019). https://doi.org/10.1007/s00707-018-2332-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-018-2332-y

Navigation