Skip to main content
Log in

A novel nonlinear isolated rooftop tuned mass damper-inerter (IR-TMDI) system for seismic response mitigation of buildings

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This paper conceptualizes a novel passive vibration control system comprising a tuned mass damper-inerter (TMDI) contained within a seismically isolated rooftop and investigates numerically its effectiveness for seismic response mitigation of building structures. The working principle of the proposed isolated rooftop tuned mass damper-inerter (IR-TMDI) system relies on the yielding of typical elastomeric isolators (e.g. lead rubber bearings) under severe earthquake ground motions to create a flexible rooftop which, in turn, increases the efficacy of the TMDI for seismic vibrations suppression. Herein, a nonlinear mechanical model is considered to explore the potential of IR-TMDI whereby the primary building structure is taken as linear damped single-mode system, while the Bouc–Wen model is used to capture the nonlinear/hysteretic behaviour of the rooftop isolators. An equivalent linear system (ELS), derived through statistical linearization, is used to expedite the optimal IR-TMDI tuning for different isolated rooftop properties, inertance, and primary structure natural period. To this aim, white noise excitations with different intensities as well as Kanai–Tajimi excitations for different soil conditions are considered. It is found that tuning for maximizing TMDI seismic energy dissipation is more advantageous than tuning for minimizing primary structure displacement or acceleration response since it lowers deflection and force demands to the isolators and to the inerter. Further, significant primary structure displacement and acceleration reductions are achieved as the effective rooftop flexibility increases through reduction of the nominal strength of the isolators, which verifies the intended working principle of the IR-TMDI. This is also confirmed through response history analyses to the nonlinear model under benchmark recorded ground motions. Moreover, for IR-TMDI with sufficiently flexible isolators, improved seismic structural performance with concurrent reduced deflection and force demands at the isolators is shown for all considered stochastic excitations as the inertance scales-up, which is readily achievable technologically. Thus, it is concluded that the IR-TMDI mitigates effectively structural seismic response without requiring the inerter to span several floors, as suggested in previous studies, thus extending the TMDI applicability to both existing and low-rise new-built structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Berquist, M., De Pasquale, R., Frye, S., Gilani, A., Klembczyk, A., Lee, D., Malatesta, A., Metzger, J., Schneide, R., Smith, C., Taylor, D., Wang, S., Winters, C.: Fluid Viscous Dampers General Guidelines for Engineers Including a Brief History. Taylor Devices Inc, New York (2019)

    Google Scholar 

  2. Brzeski, P., Lazarek, M., Perlikowski, P.: Experimental study of the novel Tuned Mass Damper with inerter which enables changes of inertance. J. Sound Vib. 404, 47–57 (2017). https://doi.org/10.1016/j.jsv.2017.05.034

    Article  Google Scholar 

  3. Brzeski, P., Perlikowski, P.: Effects of play and inerter nonlinearities on the performance of tuned mass damper. Nonlinear Dyn. 88, 1027–1041 (2017)

    Article  Google Scholar 

  4. Clough, R., Penzien, J.: Dynamics of structures, 2nd edn. Mc Graw-Hill, NY (2003)

    MATH  Google Scholar 

  5. Charles, A., Dennis, J.E., Jr.: Analysis of generalized pattern searches. SIAM J. Optim. 13, 889–903 (2008)

    MathSciNet  MATH  Google Scholar 

  6. Colherinhas, B.G., Petrini, F., De Morais, M.V.G., Bontempi, F.: Optimal design of passive-adaptive pendulum tuned mass damper for the global vibration control of offshore wind turbines. Wind Energy 24, 573–595 (2021). https://doi.org/10.1002/we.2590

    Article  Google Scholar 

  7. Dai, J., Xu, Z., Gai, P.: Tuned mass-damper-inerter control of wind-induced vibration of flexible structures based on inerter location. Eng. Struct. 199, 109585 (2019)

    Article  Google Scholar 

  8. De Angelis, M., Perno, S., Reggio, A.: Dynamic response and optimal design of structures with large mass ratio TMD. Earthq. Eng. Struct. Dyn. 41(1), 41–60 (2011). https://doi.org/10.1002/eqe.1117

    Article  Google Scholar 

  9. De Angelis, M., Giaralis, A., Petrini, F., Pietrosanti, D.: Optimal tuning and assessment of inertial dampers with grounded inerter for vibration control of seismically excited base-isolated systems. Eng. Struct. 196, 109250 (2019)

    Article  Google Scholar 

  10. De Domenico, D., Ricciardi, G.: Optimal design and seismic performance of tuned mass damper-inerter (TMDI) for structures with nonlinear base isolation systems. Earthq. Eng. Struct. Dyn. 47, 2539–2560 (2018). https://doi.org/10.1002/eqe.3098

    Article  Google Scholar 

  11. De Domenico, D., Ricciardi, G., Zhang, R.: Optimal design and seismic performance of tuned fluid inerter applied to structures with friction pendulum isolators. Soil Dyn. Earthq. Eng. 132, 106099 (2020)

    Article  Google Scholar 

  12. Djerouni, S., Ounis, A., Elias, S., Abdeddaim, M., Rupakhety, R.: Optimization and performance assessment of tuned mass damper-inerter systems for control of buildings subjected to pulse-like ground motions. Structures 38, 139–156 (2022)

    Article  Google Scholar 

  13. Elias, S., Matsagar, V.: Research developments in vibration control of structures using passive tuned mass dampers. Annu. Rev. Control 44, 129–156 (2017). https://doi.org/10.1016/j.arcontrol.2017.09.015

    Article  Google Scholar 

  14. Faiella, D., Mele, E.: Vibration characteristics and higher mode coupling in intermediate isolation systems (IIS): a parametric analysis. Bull. Earthq. Eng. 17, 4347–4387 (2019)

    Article  Google Scholar 

  15. Faiella, D., Mele, E.: Insights into inter-story isolation design through the analysis of two case studies. Eng. Struct. 215, 110660 (2020)

    Article  Google Scholar 

  16. Freddi, F., Galasso, C., Cremen, G., Dall’Asta, A., Di Sarno, L., Giaralis, A., Gutiérrez-Urzúa, F., Málaga-Chuquitaype, C., Mitoulis, S.A., Petrone, C., Sextos, A., Sousa, L., Tarbali, K., Tubaldi, E., Wardman, J., Woo, G.: Innovations in earthquake risk reduction for resilience: recent advances and challenges. Int. J. Disaster Risk Reduct. 60, 102267 (2021)

    Article  Google Scholar 

  17. Giaralis, A., Spanos, P.: Derivation of response spectrum compatible non-stationary stochastic processes relying on Monte Carlo-based peak factor estimation. Earthq. Struct. 3(5), 719–747 (2012). https://doi.org/10.12989/eas.2012.3.5.719

    Article  Google Scholar 

  18. Giaralis, A., Marian, L.: Use of inerter devices for weight reduction of tuned mass dampers for seismic protection of multistorey buildings: the tuned mass-damper-inerter (TMDI). In: Proceedings of SPIE on Active and Passive Smart Structures and Integrated Systems 2016 (March 20-24, 2016, Las Vegas, NV, USA), Vol9799-1G, (2016). https://doi.org/10.1117/12.2219324

  19. Giaralis, A., Petrini, F.: Wind-induced vibration mitigation in tall buildings using the tuned mass-damper-inerter (TMDI). J. Struct. Eng. ASCE 143(9), 04017127 (2017)

    Article  Google Scholar 

  20. Giaralis, A., Taflanidis, A.A.: Optimal tuned mass-damper-inerter (TMDI) design for seismically excited MDOF structures with model uncertainties based on reliability criteria. Struct. Control Health Monit. (2018). https://doi.org/10.1002/stc.2082

    Article  Google Scholar 

  21. Gonzales-Buelga, A., Lazar, I.F., Jiang, J.Z., Neild, S.A., Inman, D.J.: Assessing the effect of nonlinearities on the performance of a tuned inerter damper. Struct. Control Health Monit. 24, e1879 (2017)

    Article  Google Scholar 

  22. Jangid, R.S.: Stochastic response of building frames isolated by lead-rubber bearings. Struct. Control Health Monit. 17(1), 1–22 (2010). https://doi.org/10.1002/stc.266

    Article  Google Scholar 

  23. Javidialesaadi, A., Wierschem, N.E.: An inerter-enhanced nonlinear energy sink. Mech. Syst. Signal Process. 129, 449–454 (2019)

    Article  Google Scholar 

  24. Ikhouane, F., Rodellar, J., Hurtado, J.E.: Analytical characterization of hysteresis loops described by the Bouc–Wen model. Mech. Adv. Mater. Struct. 13, 463–472 (2006)

    Article  Google Scholar 

  25. Kaveh, A., Fahimi Farzam, M., Hojat Jalali, H.: Statistical seismic performance assessment of tuned mass damper-inerter. Struct. Control Health Monit. (2020). https://doi.org/10.1002/stc.2602

    Article  Google Scholar 

  26. Li, Q.S., Zhi, L.H., Tuan, A.Y., Kao, C.S., Su, S.C., Wu, C.F.: Dynamic behavior of Taipei 101 tower: field measurement and numerical analysis. J. Struct. Eng. ASCE 137(1), 143–155 (2011)

    Article  Google Scholar 

  27. Marian, L., Giaralis, A.: Optimal design of inerter devices combined with TMDs for vibration control of buildings exposed to stochastic seismic excitations. In: Proceedings of the 11th International Conference on Structural Safety and Reliability for Integrating Structural Analysis, Risk and Reliability- ICOSSAR2013, New York, vol. 137, pp 1025–1032 (2013)

  28. Marian, L., Giaralis, A.: Optimal design of a novel tuned mass-damper–inerter (TMDI) passive vibration control configuration for stochastically support-excited structural systems. Probab. Eng. Mech. 38, 156–164 (2014). https://doi.org/10.1016/j.probengmech.2014.03.007

    Article  Google Scholar 

  29. Matta, E., De Stefano, A.: Seismic performance of Pendulum and translational roof-garden TMDs. Mech. Syst. Signal Process. 23(3), 908–921 (2009). https://doi.org/10.1016/j.ymssp.2008.07.007

    Article  Google Scholar 

  30. Mitseas, I.P., Kougioumtzoglou, I.A., Giaralis, A., Beer, M.: A novel stochastic linearization framework for seismic demand estimation of hysteretic MDOF systems subject to linear response spectra. Struct. Saf. 72, 84–98 (2018)

    Article  Google Scholar 

  31. Naeim, F., Kelly, J.M.: Design of seismic isolated structures. John Wiley & Sons, New York (1999). https://doi.org/10.1002/9780470172742

    Book  Google Scholar 

  32. Nagarajaiah, S., Xiaohong, S.: Response of base-isolated USC hospital building in Northridge earthquake. J. Struct. Eng. 126(10), 1177–1186 (2000)

    Article  Google Scholar 

  33. Nakamura, Y., Fukukita, A., Tamura, K., Yamazaki, I., Matsuoka, T., Hiramoto, K., Sunakoda, K.: Seismic response control using electromagnetic inertial mass dampers. Earthq. Eng. Struct. Dyn. 43(4), 507–527 (2014)

    Article  Google Scholar 

  34. Nakaminami, S., Kida, H., Ikago, K., Inoue N. Dynamic testing of a full-scale hydraulic inerter-damper for the seismic protection of civil structures. In: 7th International conference on advances in experimental structural engineering, pp. 41–54 (2017).https://doi.org/10.7414/7aese.T1.55.2016.

  35. Ohtori, Y., Christenson, R.E., Spencer, B.F., Dyke, S.J.: Benchmark control problems for seismically excited nonlinear buildings. J. Eng. Mech. 130(4), 366–385 (2004). https://doi.org/10.1061/(asce)0733-9399(2004)130:4(366)

    Article  Google Scholar 

  36. Patsialis, D., Taflanidis, A.A., Giaralis, A.: Tuned-mass-damper-inerter optimal design and performance assessment for multi-storey hysteretic buildings under seismic excitation. Bull. Earthq. Eng. (2021). https://doi.org/10.1007/s10518-021-01236-4

    Article  MATH  Google Scholar 

  37. Pietrosanti, D., De Angelis, M., Basili, M.: Optimal design and performance evaluation of systems with Tuned mass damper-inerter (TMDI). Earthq. Eng. Struct. Dyn. 46(8), 1367–1388 (2017). https://doi.org/10.1002/eqe.2861

    Article  Google Scholar 

  38. Pietrosanti, D., De Angelis, M., Basili, M.: A generalized 2-DOF model for optimal design of MDOF structures controlled by Tuned mass damper-inerter (TMDI). Int. J. Mech. Sci. 185, 105849 (2020). https://doi.org/10.1016/j.ijmecsci.2020.105849

    Article  Google Scholar 

  39. Pietrosanti, D., De Angelis, M., Giaralis, A.: Experimental seismic performance assessment and numerical modelling of nonlinear inerter Vibration absorber (iva)-equipped base isolated structures tested on shaking table. Earthq. Eng. Struct. Dyn. 50(10), 2732–2753 (2021). https://doi.org/10.1002/eqe.3469

    Article  Google Scholar 

  40. Rajana, K., Wang, Z., Giaralis, A.: Optimal design and assessment of tuned mass damper-inerter with nonlinear viscous damper in seismically excited multi-storey buildings. Bull. Earthq. Eng. 21, 1509–1539 (2023)

    Article  Google Scholar 

  41. Rana, R., Soong, T.T.: Parametric study and simplified design of Tuned Mass dampers. Eng. Struct. 20(3), 193–204 (1998). https://doi.org/10.1016/s0141-0296(97)00078-3

    Article  Google Scholar 

  42. Roberts, J., Spanos, P.: Random vibration and statistical linearization. Dover Publications, New York (2003)

    MATH  Google Scholar 

  43. Ruiz, R., Taflanidis, A., Giaralis, A., Lopez-Garcia, D.: Risk-informed optimization of the tuned mass-damper-inerter (TMDI) for the seismic protection of multi-storey building structures. Eng. Struct. 177, 836–850 (2018)

    Article  Google Scholar 

  44. Ryan, K.L., Earl, C.L.: Analysis and design of inter-story isolation systems with nonlinear devices. J. Earthq. Eng. 14(7), 1044–1062 (2010). https://doi.org/10.1080/13632461003668020

    Article  Google Scholar 

  45. Sgobba, S., Marano, G.C.: Optimum design of linear tuned mass dampers for structures with nonlinear behaviour. Mech. Syst. Signal Process. 24(6), 1739–1755 (2010). https://doi.org/10.1016/j.ymssp.2010.01.009

    Article  Google Scholar 

  46. Smith, M.C.: Synthesis of mechanical networks: the inerter. IEEE Trans. Autom. Control 47(10), 1648–1662 (2002). https://doi.org/10.1109/tac.2002.803532

    Article  MathSciNet  MATH  Google Scholar 

  47. Smith, M.C.: The inerter: a retrospective. Ann. Rev.Control Robot. Auton. Syst. 3(1), 361–391 (2020). https://doi.org/10.1146/annurev-control-053018-023917

    Article  Google Scholar 

  48. Soto, M.G., Adeli, H.: Tuned mass dampers. Arch. Comput. Methods Eng. 20, 419–431 (2013)

    Article  Google Scholar 

  49. Spanos, P.D., Giaralis, A., Politis, N.P.: Time- frequency representation of earthquake accelerograms and inelastic structural response records using the adaptive chirplet decomposition and empirical mode decomposition. Soil Dyn. Earthq. Eng. 27, 675–689 (2007)

    Article  Google Scholar 

  50. Spanos, P.D., Giaralis, A.: Third-order statistical linearization-based approach to derive equivalent linear properties of bilinear hysteretic systems for seismic response spectrum analysis. Struct. Saf. 44, 59–69 (2013)

    Article  Google Scholar 

  51. Taflanidis, A., Giaralis, A., Patsialis, D.: Multi-objective optimal design of inerter-based vibration absorbers for earthquake protection of multi-storey building structures. J. Franklin Inst. 356(14), 7754–7784 (2019). https://doi.org/10.1016/j.jfranklin.2019.02.022

    Article  MATH  Google Scholar 

  52. Tsiatas, G.C., Karatzia, D.A.: Reliability analysis of the Hysteretic Nonlinear Energy Sink in shock mitigation considering uncertainties. J. Vib. Control 26(23–24), 2261–2273 (2020)

    Article  MathSciNet  Google Scholar 

  53. Tsiatas, G.C., Charalampakis, A.E., Tsopelas, P.: A comparative study of linear and nonlinear mass damping systems under seismic excitation. Eng. Struct. 219, 110926 (2020)

    Article  Google Scholar 

  54. Uang, C., Bertero, V.: Use of energy as a design criterion in earthquake-resistant design. Technical Report UCB/EERC 88–18, Earthquake Engineering Research Center, University of California at Berkeley (1988)

  55. Vakakis, A.F., Gendelman, O.: Energy pumping in nonlinear mechanical oscillators: part II-resonance capture. J. Appl. Mech. 68(1), 42–48 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  56. Villaverde, R.: Roof isolation system to reduce the seismic response of buildings: a preliminary assessment. Earthq. Spectra 14(3), 521–532 (1998)

    Article  Google Scholar 

  57. Villaverde, R., Mosqueda, G.: Aseismic roof isolation system: analytic and shake table studies. Earthq. Eng. Struct. Dyn. 28(3), 217–234 (1999). https://doi.org/10.1002/(sici)1096-9845(199903)28:3%3c217::aid-eqe813%3e3.0.co;2-g

    Article  Google Scholar 

  58. Villaverde, R.: Aseismic roof isolation system: feasibility Study with 13-story building. J. Struct. Eng. 128(2), 188–196 (2002). https://doi.org/10.1061/(asce)0733-9445(2002)128:2(188)

    Article  Google Scholar 

  59. Wang, Z., Giaralis, A.: Top-story softening for enhanced mitigation of vortex shedding-induced vibrations in wind-excited tuned mass damper-inerter-equipped tall buildings. J. Struct. Eng. (2021). https://doi.org/10.1061/(asce)st.1943-541x.0002838

    Article  Google Scholar 

  60. Wang, Z., Giaralis, A.: Enhanced motion control performance of the tuned mass damper inerter through primary structure shaping. Struct. Control Health Monit. 28(8), e2756 (2021)

    Article  Google Scholar 

  61. Warn, G.P., Ryan, K.L.: A review of seismic isolation for buildings: historical development and research needs. Buildings 2, 300–325 (2012)

    Article  Google Scholar 

  62. Wen, Y.-K.: Method for random vibration of hysteretic systems. J .Eng. Mech. Div. 102(2), 249–263 (1976). https://doi.org/10.1061/jmcea3.0002106

    Article  Google Scholar 

  63. Wen, Y.K.: Equivalent linearization for hysteretic systems under random excitation. J. Appl. Mech. 47(1), 150–154 (1980). https://doi.org/10.1115/1.3153594

    Article  MATH  Google Scholar 

  64. Whittle, J.K., Williams, M.S., Karavasilis, T.L., Blakeborough, A.: A comparison of viscous damper placement methods for improving seismic building design. J. Earthq. Eng. 16, 540–560 (2012)

    Article  Google Scholar 

  65. Wolff, E.D., Ipek, C., Constantinou, M.C., Tapan, M.: Effect of viscous damping devices on the response of seismically isolated structures. Earthq. Eng. Struct. Dyn. 44, 185–198 (2015)

    Article  Google Scholar 

  66. Xie, Q.: State of the art of buckling-restrained braces in Asia. J. Constr. Steel Res. 61, 727–748 (2005). https://doi.org/10.1016/j.jcsr.2004.11.005

    Article  Google Scholar 

  67. Zemp, R., De la Llera, J.C., Roschke, P.: Tall building vibration control using a TM-MR damper assembly: Experimental results and implementation. Earthq. Eng. Struct. Dyn. 40, 257–271 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The first author gratefully acknowledges the financial support from the School of Science and Technology at City, University of London, through a fully funded PhD studentship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agathoklis Giaralis.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1: Energy dissipation index derivation

Appendix 1: Energy dissipation index derivation

In this Appendix, the energy-based performance criterion in Eq. (24) is derived. To this aim, the equations of motion of the ELS in Eq. (16) are first written as

$$m_{s} \ddot{x}_{s} + c_{s} \dot{x}_{s} + k_{s} x_{s} - \left( {c_{i} \left( {\dot{x}_{is} - \dot{x}_{s} } \right) + \alpha k_{i} \left( {x_{is} - x_{s} } \right) + \left( {1 - \alpha } \right)F_{y} y} \right) - b\left( {\ddot{x}_{d} - \ddot{x}_{s} } \right) = - m_{s} \ddot{x}_{g}$$
(28a)
$$m_{i} \ddot{x}_{is} \; + c_{i} \left( {\dot{x}_{is} - \dot{x}_{s} } \right) + \alpha k_{i} \left( {x_{is} - x_{s} } \right) + \left( {1 - \alpha } \right)F_{y} z - \left( {c_{d} \left( {\dot{x}_{d} - \dot{x}_{is} } \right) + k_{d} \left( {x_{d} - x_{is} } \right)} \right) = - m_{i} \ddot{x}_{g}$$
(28b)
$$m_{d} \ddot{x}_{d} + c_{d} \left( {\dot{x}_{d} - \dot{x}_{is} } \right) + k_{d} \left( {x_{d} - x_{is} } \right)\; + b\left( {\ddot{x}_{d} - \ddot{x}_{s} } \right) = - m_{d} \ddot{x}_{g}$$
(28c)

Next, the so-called equations of relative energy balance are derived by multiplying Eq. (28a) by \(\dot{x}_{s}\), Eq. (28b) by \(\dot{x}_{is}\) and Eq. (28c) by \(\dot{x}_{d}\) and integrating over time to yield (e.g. [54])

$$E_{{m_{s} }} \left( t \right) + E_{{c_{s} }} \left( t \right) + E_{{k_{s} }} \left( t \right) - E_{{c_{i,s} }} \left( t \right) - E_{{k_{i,s} }} \left( t \right) - E_{{h_{i,s} }} \left( t \right) - E_{b,s} \left( t \right) = E_{{g_{s} }} \left( t \right)$$
(29a)
$$E_{{m_{i} }} \left( t \right) + E_{{c_{i} }} \left( t \right) + E_{{h_{i} }} \left( t \right) + E_{{k_{i} }} \left( t \right) - E_{{c_{d,is} }} \left( t \right) - E_{{k_{d,is} }} \left( t \right) = E_{{g_{i} }} \left( t \right)$$
(29b)
$$E_{{m_{d} }} \left( t \right) + E_{{c_{d} }} \left( t \right) + E_{{k_{d} }} \left( t \right) + E_{b} \left( t \right) = E_{{g_{d} }} \left( t \right)$$
(29c)

In Eq. (29a), \(E_{{m_{s} }}\), \(E_{{c_{s} }}\), and \(E_{{k_{s} }}\) are the kinetic energy, viscous damping energy, and elastic strain energy of the primary structure, respectively, given by

$$E_{{m_{s} }} \left( t \right) = m_{s} \int_{0}^{t} {\ddot{x}_{s} } \dot{x}_{s} {\text{d}}t, \, E_{{c_{s} }} \left( t \right) = c_{s} \int_{0}^{t} {\dot{x}_{s}^{2} {\text{d}}t,{\text{ and}}} \;\; \, E_{{k_{s} }} \left( t \right) = k_{s} \int_{0}^{t} {x_{s} \dot{x}_{s} {\text{d}}t} { ,}$$
(30)

\(E_{{c_{i,s} }}\), \(E_{{k_{i,s} }}\), and \(E_{{h_{i,s} }}\) are the viscous damping energy, strain energy, and hysteretic dissipated energy transferred from the isolation system to the primary structure, respectively, given by

$$\begin{aligned} E_{{c_{i,s} }} \left( t \right) & = - c_{i} \int_{0}^{t} {\dot{x}_{s}^{2} {\text{d}}t + c_{i} \int_{0}^{t} {\dot{x}_{is} \dot{x}_{s} {\text{d}}t} } ,\quad E_{{k_{i,s} }} \left( t \right) = - \alpha k_{i} \int_{0}^{t} {x_{s} \dot{x}_{s} {\text{d}}t} + \alpha k_{i} \int_{0}^{t} {x_{is} \dot{x}_{s} {\text{d}}t} ,\quad {\text{and}}\quad \\ E_{{h_{i,s} }} \left( t \right) & = \left( {1 - \alpha } \right)k_{i} u_{y} \int\limits_{0}^{t} {y\dot{x}_{s} } {\text{d}}t, \\ \end{aligned}$$
(31)

\(E_{b,s}\) is the energy transferred from the inerter to the primary structure, given by

$$E_{b,s} \left( t \right) = - b\int_{0}^{t} {\ddot{x}_{s} \dot{x}_{s} {\text{d}}t} + b\int_{0}^{t} {\ddot{x}_{d} \dot{x}_{s} {\text{d}}t} ,$$
(32)

and \(\, E_{{g_{s} }}\) is the seismic excitation energy entering the primary structure, given by

$$\, E_{{g_{s} }} \left( t \right) = - m_{s} \int_{0}^{t} {\ddot{x}_{g} \dot{x}_{s} {\text{d}}t}$$
(33)

Further, in Eq. (29b), \(E_{{m_{i} }}\), \(E_{{c_{i} }}\), \(E_{{k_{i} }}\), and \(E_{{h_{i} }}\) are the kinetic energy, viscous damping energy, elastic strain energy, and hysteretic energy dissipation of the isolated rooftop, respectively, given by

$$\begin{aligned} E_{{m_{i} }} \left( t \right) & = m_{i} \int_{0}^{t} {\ddot{x}_{is} \dot{x}_{is} {\text{d}}t} ,\quad E_{{c_{i} }} \left( t \right) = c_{i} \int_{0}^{t} {\dot{x}_{is}^{2} {\text{d}}t} - c_{i} \int_{0}^{t} {\dot{x}_{s} \dot{x}_{is} {\text{d}}t} ,\quad \\ E_{{k_{i} }} \left( t \right) & = \, \alpha k_{i} \int_{0}^{t} {x_{is} \dot{x}_{is} {\text{d}}t} - \alpha k_{i} \int_{0}^{t} {x_{s} \dot{x}_{is} {\text{d}}t} \quad {\text{and }}E_{{h_{i} }} \left( t \right) = \left( {1 - \alpha } \right)k_{i} u_{y} \int\limits_{0}^{t} {y\dot{x}_{is} } {\text{d}}t, \\ \end{aligned}$$
(34)

\(E_{{c_{d,is} }}\) and \(E_{{k_{d,is} }}\) are the damping element energy and spring energy transferred from the TMDI to the isolated rooftop, respectively, given by

$$E_{{c_{d,is} }} \left( t \right) = - c_{d} \int_{0}^{t} {\dot{x}_{is}^{2} {\text{d}}t} + c_{d} \int_{0}^{t} {\dot{x}_{d} \dot{x}_{is} {\text{d}}t} \quad {\text{and}}\quad E_{{k_{d,is} }} \left( t \right) = - k_{d} \int_{0}^{t} {x_{is} \dot{x}_{is} {\text{d}}t} { + }k_{d} \int_{0}^{t} {x_{d} \dot{x}_{is} {\text{d}}t} ,$$
(35)

and \(\, E_{{g_{i} }}\) is the seismic excitation energy entering the isolated floor system, given by

$$E_{{g_{i} }} \left( t \right) = - m_{i} \int_{0}^{t} {\ddot{x}_{g} \dot{x}_{is} {\text{d}}t}$$
(36)

In addition, in Eq. (29b), \(E_{{m_{d} }}\), \(E_{{c_{d} }}\), \(E_{{k_{d} }}\), and \(E_{b}\) are the kinetic energy, viscous damping energy, elastic strain energy, and inerter energy of the TMDI, respectively, given by

$$\begin{aligned} E_{{m_{d} }} \left( t \right) & = m_{d} \int_{0}^{t} {\ddot{x}_{d} \dot{x}_{d} {\text{d}}t} {,}\quad E_{{c_{d} }} \left( t \right) = c_{d} \int_{0}^{t} {\dot{x}_{d}^{2} {\text{d}}t} - c_{d} \int_{0}^{t} {\dot{x}_{is} \dot{x}_{d} {\text{d}}t} ,\quad \\ E_{{k_{d} }} \left( t \right) & = k_{d} \int_{0}^{t} {x_{d} \dot{x}_{d} {\text{d}}t} - k_{d} \int_{0}^{t} {x_{is} \dot{x}_{d} {\text{d}}t} ,\quad {\text{and}}\;\;\;E_{b} \left( t \right) = b\int_{0}^{t} {\ddot{x}_{d} \dot{x}_{d} {\text{d}}t} - b\int_{0}^{t} {\ddot{x}_{s} \dot{x}_{d} {\text{d}}t} , \\ \end{aligned}$$
(37)

and \(\, E_{{g_{d} }}\) is the seismic excitation energy entering the TMDI, given by

$$E_{{g_{d} }} \left( t \right) = - \int_{0}^{t} {m_{d} \ddot{x}_{g} \dot{x}_{d} {\text{d}}t} .$$
(38)

Assuming Gaussian stationary stochastic seismic excitation and taking the mathematical expectation in both sides of Eqs. (29), the following set of equations are derived in a small increment of time \(\Delta t\) under ergodic conditions (see also [37]

$$\begin{aligned} E\left[ {\Delta E_{{g_{s} }} } \right] & = E\left[ {\Delta E_{{m_{s} }} } \right] + E\left[ {\Delta E_{{c_{s} }} } \right] + E\left[ {\Delta E_{{k_{s} }} } \right] - E\left[ {\Delta E_{{c_{i,s} }} } \right] - E\left[ {\Delta E_{{k_{i,s} }} } \right] - E\left[ {\Delta E_{{h_{i,s} }} } \right] - E\left[ {\Delta E_{b,s} } \right] \\ E\left[ {\Delta E_{{g_{i} }} } \right] & = E\left[ {\Delta E_{{m_{i} }} } \right] + E\left[ {\Delta E_{{c_{i} }} } \right] + E\left[ {\Delta E_{{h_{i} }} } \right] + E\left[ {\Delta E_{{k_{i} }} } \right] - E\left[ {\Delta E_{{c_{d,is} }} } \right] - E\left[ {\Delta E_{{k_{d,is} }} } \right] \\ E\left[ {\Delta E_{{g_{d} }} } \right] & = E\left[ {\Delta E_{{m_{d} }} } \right] + E\left[ {\Delta E_{{c_{d} }} } \right] + E\left[ {\Delta E_{{k_{d} }} } \right] + E\left[ {\Delta E_{b} } \right] \\ \end{aligned}$$
(39)

In Eq. (39), the following incremental energy terms vanish \(E\left[ {\Delta E_{{m_{s} }} } \right] = E\left[ {\Delta E_{{m_{i} }} } \right] = E\left[ {\Delta E_{{m_{d} }} } \right] = E\left[ {\Delta E_{{k_{s} }} } \right] = 0\) due to the property \(E\left[ {u\dot{u}} \right] = 0\) which holds for any Gaussian temporal stochastic process u (e.g. [42]). Further, it can be shown that \(E\left[ {\Delta E_{{k_{i} }} } \right] - E\left[ {\Delta E_{{k_{i,s} }} } \right] + E\left[ {\Delta E_{{k_{d} }} } \right] - E\left[ {\Delta E_{{k_{d,is} }} } \right] + E\left[ {\Delta E_{b} } \right] - E\left[ {\Delta E_{b,s} } \right] = 0\) by making use of the previous property together with the coordinate transformations xi = xis − xs and xk = xd − xis and some algebraic manipulation. To this end, by summing the three expressions in Eq. (39), the total expected incremental seismic input energy in the ELS system \(\, E\left[ {\Delta E_{{{\text{Total}}}} } \right]\) is found as

$$\begin{aligned} \, E\left[ {\Delta E_{{{\text{Total}}}} } \right] &= E\left[ {\Delta E_{{g_{s} }} } \right] + \, E\left[ {\Delta E_{{g_{i} }} } \right] + E\left[ {\Delta E_{{g_{d} }} } \right] \\&= c_{s} \sigma_{{\dot{x}_{s} }}^{2} \Delta t + c_{d} \sigma_{{\dot{x}_{k} }}^{2} \Delta t + c_{i} \sigma_{{\dot{x}_{i} }}^{2} \Delta t + \left( {1 - \alpha } \right)k_{i} u_{y} \sigma_{{y\dot{x}_{i} }}^{2} \Delta t, \hfill \\ \end{aligned}$$
(40)

by noting that

$$\begin{aligned} & E\left[ {\Delta E_{{c_{s} }} } \right] = c_{s} E\left[ {\dot{x}_{s}^{2} } \right]\Delta t = c_{s} \sigma_{{\dot{x}_{s} }}^{2} \Delta t,\quad E\left[ {\Delta E_{{c_{i} }} } \right] - E\left[ {\Delta E_{{c_{i,s} }} } \right] = c_{i} E\left[ {\left( {\dot{x}_{s}^{{}} - \dot{x}_{is}^{{}} } \right)^{2} } \right]\Delta t = c_{i} \sigma_{{\dot{x}_{i} }}^{2} \Delta t, \\ & E\left[ {\Delta E_{{c_{d} }} } \right] - E\left[ {\Delta E_{{c_{d,is} }} } \right] = c_{d} E\left[ {\left( {\dot{x}_{d}^{{}} - \dot{x}_{is}^{{}} } \right)^{2} } \right]\Delta t = c_{d} \sigma_{{\dot{x}_{k} }}^{2} \Delta t,\quad {\text{and}} \\ & E\left[ {\Delta E_{{h_{i} }} } \right] - E\left[ {\Delta E_{{h_{i,s} }} } \right] = \left( {1 - \alpha } \right)k_{i} u_{y} E\left[ {y\left( {\dot{x}_{is} - \dot{x}_{s} } \right)} \right]\Delta t = \left( {1 - \alpha } \right)k_{i} u_{y} \sigma_{{y\dot{x}_{i} }}^{2} \Delta t \\ \end{aligned}$$
(41)

Finally, the energy dissipation index (EDI) defined by Pietrosanti et al. [37] as the ratio of the energy dissipated by the TMDI damping element over the total input energy is given as

$${\text{EDI}} = \frac{{E\left[ {\Delta E_{{c_{d} }} } \right] - E\left[ {\Delta E_{{c_{d,is} }} } \right]}}{{E\left[ {\Delta E_{{{\text{Total}}}} } \right]}}$$
(42)

for the herein considered ELS. Then, Eq. (24) follows from Eqs. (4042).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajana, K., Giaralis, A. A novel nonlinear isolated rooftop tuned mass damper-inerter (IR-TMDI) system for seismic response mitigation of buildings. Acta Mech 234, 3751–3777 (2023). https://doi.org/10.1007/s00707-023-03556-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03556-9

Navigation