Skip to main content
Log in

Growth of a semi-infinite inclusion in an elastic wave metamaterial with local resonators

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this study, the dynamic response of a growing inclusion in an elastic wave metamaterial with local resonators is investigated. It is assumed that the inclusion at a constant speed is composed of particles with larger or smaller mass than the surrounding lattice is. Based on the integral transform, wave equations of the growing inclusion are derived as the Wiener–Hopf form. In order to show the effect of local resonators, stop band properties and the ratio of the tip to end displacements of the inclusion are considered. Numerical results show that the local resonators can make the displacement ratio tend to the case without inclusion. It indicates that the outstanding ability of elastic wave metamaterials inhibits structural deformation and defect growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gao, C., Halim, D., Yi, X.: Elastic metamaterial with multiple resonant modes and asymmetric structure design for low-frequency vibration absorption. Acta Mech. 233(5321), 5333 (2022)

    MATH  Google Scholar 

  2. Huang, Y., Liu, S.T., Zhao, J.: A gradient-based optimization method for the design of layered phononic band-gap materials. Acta Mech Solida Sin. 29(429), 443 (2016)

    Google Scholar 

  3. Emerson, T.A., Manimala, J.M.: Passive-adaptive mechanical wave manipulation using nonlinear metamaterial plates. Acta Mech. 231, 4665–4681 (2020)

    Article  Google Scholar 

  4. Giorgio, I., Hild, F., Gerami, E., dell’Isola, F., Misra, A.: Experimental verification of 2D Cosserat chirality with stretch-micro-rotation coupling in orthotropic metamaterials with granular motif. Mech. Res. Commun. 126, 104020 (2022)

    Article  Google Scholar 

  5. Abali, B.E., Vazic, B., Newell, P.: Influence of microstructure on size effect for metamaterials applied in composite structures. Mech Res. Commun. 122, 103877 (2022)

    Article  Google Scholar 

  6. Zhang, G., Zheng, C., Qiu, X., Mi, C.: Microstructure-dependent band gaps for elastic wave propagation in a periodic microbeam structure. Acta Mech. Solida Sin. 34(527), 538 (2021)

    Google Scholar 

  7. Ghavanloo, E., El-Borgi, S., Fazelzadeh, S.A.: Formation of quasi-static stop band in a new one-dimensional metamaterial. Arch. Appl. Mech. 93(287), 299 (2022)

    Google Scholar 

  8. Li, Y., Challamel, N., Elishakoff, I.: Effective mass and effective stiffness of finite and infinite metamaterial lattices. Arch. Appl. Mech. 93(301), 321 (2022)

    Google Scholar 

  9. Huang, H.H., Sun, C.T., Huang, G.L.: On the negative effective mass density in acoustic metamaterials. Int. J. Eng. Sci. 47(610), 617 (2009)

    Google Scholar 

  10. Dong, L., Lakes, R.: Advanced damper with high stiffness and high hysteresis damping based on negative structural stiffness. Int. J. Solids Struct. 50(2416), 2423 (2013)

    Google Scholar 

  11. Zareei, A., Alam, M.R.: Broadband cloaking of flexural waves. Phys. Rev. E 95, 063002 (2017)

    Article  Google Scholar 

  12. Huang, G.L., Sun, C.T.: Band gaps in a multiresonator acoustic metamaterial. ASME J. Vib. Acoust. 132, 031003 (2010)

    Article  Google Scholar 

  13. Attarzadeh, M.A., Al Babaa, H., Nouh, M.: On the wave dispersion and non-reciprocal power flow in space-time traveling acoustic metamaterials. Appl. Acoust. 133, 210–214 (2018)

    Article  Google Scholar 

  14. Nassar, H., Chen, H., Norris, A.N., Haberman, M.R., Huang, G.L.: Non-reciprocal wave propagation in modulated elastic metamaterials. Proc. Roy. Soc. A 473, 20170188 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. Zhou, Y., Wei, P., Tang, Q.: Continuum model of a one-dimensional lattice of metamaterials. Acta Mech. 227, 2361–2376 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Huang, H.H., Sun, C.T.: Locally resonant acoustic metamaterials with 2D anisotropic effective mass density. Philos Mag. 91(981), 996 (2011)

    Google Scholar 

  17. Liu, C., Reina, C.: Broadband locally resonant metamaterials with graded hierarchical architecture. J. Appl. Phys. 123, 095108 (2018)

    Article  Google Scholar 

  18. Slepyan, L.I., Movchan, A.B., Mishuris, G.S.: Crack in a lattice waveguide. Int J. Fract. 162(91), 106 (2010)

    MATH  Google Scholar 

  19. Pechenik, L., Levine, H., Kessler, D.A.: Steady-state mode I cracks in a viscoelastic triangular lattice. J. Mech. Phys. Solids 50(583), 613 (2002)

    MATH  Google Scholar 

  20. Slepyan, L.I.: Feeding and dissipative waves in fracture and phase transition II. Phase-transition waves. J. Mech. Phys. Solids 49(513), 550 (2001)

    MathSciNet  MATH  Google Scholar 

  21. Slepyan, L.I.: Feeding and dissipative waves in fracture and phase transition. III. Triangular-cell lattice. J. Mech. Phys. Solids 49, 2839–2875 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sharma, B.L.: Diffraction of waves on square lattice by semi-infinite crack SIAM. J. Appl. Math. 75(1171), 1192 (2015)

    MATH  Google Scholar 

  23. Özturk, T., Poole, W.J., Embury, J.D.: The deformation of Cu–W laminates. Mater. Sci. Eng. A 148, 175–178 (1991)

    Article  Google Scholar 

  24. Yue, Q., Chen, H., Yao, C., Lu, D., Zhang, J., Huang, F.: Review of collision and growth on non-metallic inclusion in steel. J. Iron Steel Res. 24, 1–5 (2012)

    Google Scholar 

  25. Dal Corso, F., Bigoni, D., Gei, M.: The stress concentration near a rigid line inclusion in a prestressed, elastic material. Part I. Full-field solution and asymptotics. J. Mech. Phys. Solids 56, 815–838 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Bigoni, D., Dal Corso, F., Gei, M.: The stress concentration near a rigid line inclusion in a prestressed, elastic material. Part II. Implications on shear band nucleation, growth and energy release rate. J. Mech. Phys. Solids 56, 839–857 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Nugent, E.E., Calhoun, R.B., Mortensen, A.: Experimental investigation of stress and strain fields in a ductile matrix surrounding an elastic inclusion. Acta Mater. 48, 1451–1467 (2000)

    Article  Google Scholar 

  28. Sharma, B.L.: Diffraction of waves on square lattice by semi-infinite rigid constraint. Wave Motion 59(52), 68 (2015)

    MathSciNet  MATH  Google Scholar 

  29. Sharma, B.L., Maurya, G.: Discrete scattering by a pair of parallel defects. Philos. Trans. R. Soc. A 378, 20190102 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  30. Colquitt, D.J., Nieves, M.J., Jones, I.S., Movchan, A.B., Movchan, N.V.: Localization for a line defect in an infinite square lattice. Proc. R. Soc. A 469, 20120579 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Osharovich, G.G., Ayzenberg-Stepanenko, M.V.: Wave localization in stratified square-cell lattices: the antiplane problem. J. Sound Vib. 331(1378), 1397 (2012)

    MATH  Google Scholar 

  32. Nieves, M.J., Jones, I.S., Movchan, A.B.: Dynamic response of a growing inclusion in a discrete system. Int. J. Solids Struct. 51(2990), 3001 (2014)

    Google Scholar 

  33. Mishuris, G.S., Movchan, A.B., Slepyan, L.I.: Waves and fracture in an inhomogeneous lattice structure. Waves Random Complex Media 17, 409–428 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  34. Mishuris, G.S., Movchan, A.B., Slepyan, L.I.: Dynamics of a bridged crack in a discrete lattice Q. J. Mech. Appl. Mech. 61(151), 160 (2008)

    MathSciNet  MATH  Google Scholar 

  35. Huang, K.X., Shui, G.S., Wang, Y.Z., Wang, Y.S.: Meta-arrest of a fast propagating crack in elastic wave metamaterials with local resonators. Mech Mater. 148, 103497 (2020)

    Article  Google Scholar 

  36. Slepyan, L.I.: Models and Phenomena in Fracture Mechanics. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  37. Gorbushin, N., Mishuris, G.: Dynamic fracture of a discrete media under moving load. Int J. Solids Struct. 130–131(280), 295 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuan-Xin Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, KX., Shui, GS. Growth of a semi-infinite inclusion in an elastic wave metamaterial with local resonators. Acta Mech 234, 3161–3171 (2023). https://doi.org/10.1007/s00707-023-03549-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03549-8

Navigation