Skip to main content
Log in

Passive-adaptive mechanical wave manipulation using nonlinear metamaterial plates

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In many controlled acoustics applications, it is desirable to engineer passive-adaptive manipulation of mechanical waves through waveguides based solely on varying dynamic input. We investigate the potential of achieving this using experiments on several types of nonlinear acoustic metamaterial plates. By tuning the amplitude-dependent response of locally resonant attachments and tailoring their patterning on or within a host plate-type medium, amplitude-activated shifts in bandgap frequency ranges could be utilized to tailor the direction and bandwidth of wave propagation through such metamaterials. Prototype test articles for passive-adaptive wave rejection, steering, sorting and selective beaming were constructed and tested using customized rigs. The location, extent and shift of bandgaps were experimentally and numerically verified. Scalable waveguide designs are experimentally evaluated for low (150–250 Hz) and much higher (16–20 kHz) frequency ranges. The potential to steer and sort waves in a tunable frequency range toward specific regions or paths within the waveguide is demonstrated. With current precision and hybrid fabrication techniques attaining commercial maturity, metamaterials-based approaches offer great promise in realizing waveguides with built-in, adaptive functionalities related to filtering, transduction and actuation for mechanical waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Zangeneh-Nejad, F., Fleury, R.: Active times for acoustic metamaterials. Rev. Phys. 4, 100031 (2019). https://doi.org/10.1016/j.revip.2019.100031

    Article  Google Scholar 

  2. Grimberg, R.: Electromagnetic metamaterials. Mater. Sci. Eng. B 178(19), 1285–1295 (2013). https://doi.org/10.1016/j.mseb.2013.03.022

    Article  Google Scholar 

  3. Milton, G.W., Briane, M., Willis, J.R.: On cloaking for elasticity and physical equations with a transformation invariant form. New J. Phys. 8, 248 (2006). https://doi.org/10.1088/1367-2630/8/10/248

    Article  Google Scholar 

  4. Vincent, J.H.: On the construction of a mechanical model to illustrate Helmholtz’s theory of dispersion. Philos. Mag. 46, 557–63 (1898)

    Article  Google Scholar 

  5. Özgüven, H.N., Çandir, B.: Suppressing the first and second resonances of beams by dynamic vibration absorbers. J. Sound Vib. 111–3, 377–390 (1986). https://doi.org/10.1016/S0022-460X(86)81399-2

    Article  Google Scholar 

  6. Liu, Z., Zhang, X., Mao, Y., Zhu, Y.Y., Yang, Z., Chan, C.T., Sheng, P.: Locally resonant sonic materials. Science 289(5458), 1734–1736 (2000). https://doi.org/10.1126/science.289.5485.1734

    Article  Google Scholar 

  7. Fang, N., Xi, D., Xu, J., Ambati, M., Srituravanich, W., Sun, C., Zhang, X.: Ultrasonic metamaterials with negative modulus. Nat. Mater. 5(6), 452–456 (2006). https://doi.org/10.1038/nmat1644

    Article  Google Scholar 

  8. Lu, M., Feng, L., Chen, Y.: Phononic crystals and acoustic metamaterials. Mater. Today 12(12), 34–42 (2009). https://doi.org/10.1016/S1369-7021(09)70315-3

    Article  Google Scholar 

  9. Haberman, M.R., Guild, M.D.: Acoustic metamaterials. Phys. Today 69(6), 42–48 (2016). https://doi.org/10.1063/PT.3.3198

    Article  Google Scholar 

  10. Wu, Y., Yang, M., Sheng, P.: Perspective: acoustic metamaterials in transition. J. Appl. Phys. 123, 090901 (2018). https://doi.org/10.1063/1.5007682

    Article  Google Scholar 

  11. Cummer, S., Christensen, J., Alù, A.: Controlling sound with acoustic metamaterials. Nat. Rev. Mater. 1, 16001 (2016). https://doi.org/10.1038/natrevmats.2016.1

    Article  Google Scholar 

  12. Smith, T.L., Rao, K., Dyer, I.: Attenuation of plate flexural waves by a layer of dynamic absorbers. Noise Control Eng. 26, 56–61 (1986)

    Article  Google Scholar 

  13. Herbold, E.B., Nesterenko, V.F.: Solitary and shockwaves in strongly nonlinear metamaterials. In: Proceedings of the AIP Conference on Shock Compression of Condensed Matter, vol. 955, p. 231 (2007)

  14. Yao, S., Zhou, X., Hu, G.: Experimental study on negative effective mass in a 1D mass-spring system. New J. Phys. 10, 043020 (2008). https://doi.org/10.1088/1367-2630/10/4/043020

    Article  Google Scholar 

  15. Huang, H.H., Sun, C.T.: Wave attenuation mechanism in an acoustic metamaterial with negative effective mass density. New J. Phys. (2009). https://doi.org/10.1088/1367-2630/11/1/013003

    Article  Google Scholar 

  16. Manimala, J.M., Huang, H.H., Sun, C.T., Snyder, R., Bland, S.: Dynamic load mitigation using negative effective mass structures. Eng. Struct. 80, 458–468 (2014). https://doi.org/10.1016/j.engstruct.2014.08.052

    Article  Google Scholar 

  17. Krushynska, A.O., Kouznetsova, V.G., Geers, M.G.D.: Towards optimal design of locally resonant acoustic metamaterials. J. Mech. Phys. Solids 71, 179–196 (2014). https://doi.org/10.1016/j.jmps.2014.07.004

    Article  Google Scholar 

  18. Chang, I.-L., Liang, Z.-X., Kao, H.-W., Chang, S.-H., Yang, C.-Y.: The wave attenuation mechanism of the periodic local resonant metamaterial. J. Sound Vib. 412, 349–359 (2018). https://doi.org/10.1016/j.jsv.2017.10.008

    Article  Google Scholar 

  19. Manimala, J.M., Sun, C.T.: Microstructural design studies for locally dissipative acoustic metamaterials. J. Appl. Phys. 115, 023518 (2014). https://doi.org/10.1063/1.4861632

    Article  Google Scholar 

  20. Chronopoulos, D., Antoniadis, I., Collet, M., Ichchou, M.: Enhancement of wave damping within metamaterials having embedded negative stiffness inclusions. Wave Motion 58, 165–179 (2015). https://doi.org/10.1016/j.wavemoti.2015.05.005

    Article  MathSciNet  MATH  Google Scholar 

  21. Kulkarni, P.P., Manimala, J.M.: Longitudinal elastic wave propagation characteristics of inertant acoustic metamaterials. J. Appl. Phys. 119, 245101 (2016). https://doi.org/10.1063/1.4954074

    Article  Google Scholar 

  22. Khajehtourian, R., Hussein, M.I.: Dispersion characteristics of a nonlinear elastic metamaterial. AIP Adv. 4, 124308 (2014). https://doi.org/10.1063/1.4905051

    Article  Google Scholar 

  23. Jiménez, N., Mehrem, A., Picó, R., García-Raffi, L.M., Sánchez-Morcillo, V.J.: Nonlinear propagation and control of acoustic waves in phononic superlattices. C. R. Phys. 17(5), 543–554 (2016). https://doi.org/10.1016/j.crhy.2016.02.004

    Article  Google Scholar 

  24. Manimala, J.M., Sun, C.T.: Numerical investigation of amplitude-dependent dynamic response in acoustic metamaterials with nonlinear oscillators. J. Acoust. Soc. Am. 139(6), 3365–3372 (2016). https://doi.org/10.1121/1.4949543

    Article  Google Scholar 

  25. Kulkarni, P.P., Manimala, J.M.: Nonlinear and inertant acoustic metamaterials and their device implications. In: Proceedings of the SEM Annual Conference on Experimental Mechanics. Indiana, USA (2018)

  26. Kulkarni, P.P., Manimala, J.M.: Realizing passive direction-bias for mechanical wave propagation using a nonlinear metamaterial. Acta Mech. 230, 2521–2537 (2019). https://doi.org/10.1007/s00707-019-02415-w

    Article  MathSciNet  Google Scholar 

  27. Snowdon, J.: Plate-like dynamic vibration absorbers. J. Manuf. Sci. Eng. 97(1), 88–93 (1975). https://doi.org/10.1115/1.3438595

    Article  Google Scholar 

  28. Zhu, R., Huang, G.L., Huang, H.H., Sun, C.T.: Experimental and numerical study of guided wave propagation in a thin metamaterial plate. Phys. Lett. A 375, 2863–2867 (2011). https://doi.org/10.1016/j.physleta.2011.06.006

    Article  Google Scholar 

  29. Peng, H., Frank Pai, P.: Acoustic metamaterial plates for elastic wave absorption and structural vibration suppression. Int. J. Mech. Sci. 89, 350–361 (2014). https://doi.org/10.1016/j.ijmecsci.2014.09.018

    Article  Google Scholar 

  30. Nouh, M., Aldraihem, O., Baz, A.: Wave propagation in metamaterial plates with periodic local resonances. J. Sound Vib. 341, 53–73 (2015). https://doi.org/10.1016/j.jsv.2014.12.030

    Article  Google Scholar 

  31. Andreassen, E., Manktelow, K., Ruzzene, M.: Directional bending wave propagation in periodically perforated plates. J. Sound Vib. 335, 187–203 (2015)

    Article  Google Scholar 

  32. Zhu, R., Liu, X.N., Hu, G.K., Yuan, F.G., Huang, G.L.: Microstructural designs of plate-type elastic metamaterial and their potential applications: a review. Int. J. Smart Nano Mater. 6(1), 14–40 (2015). https://doi.org/10.1080/19475411.2015.1025249

    Article  Google Scholar 

  33. Li, Y., Zhu, L., Chen, T.: Plate-type elastic metamaterials for low-frequency broadband elastic wave attenuation. Ultrasonics 73, 34–42 (2017). https://doi.org/10.1016/j.ultras.2016.08.019

    Article  Google Scholar 

  34. Al Ba’ba’a, H., Attarzadeh, M.A., Nouh, M.: Experimental evaluation of structural intensity in two-dimensional plate-type locally resonant elastic metamaterials. J. Appl. Mech. 85, 041005-1 (2018). https://doi.org/10.1115/1.4039042

    Article  Google Scholar 

  35. Carrara, M., Cacan, M.R., Toussaint, J., Leamy, M.J., Ruzzene, M., Erturk, A.: Metamaterial-inspired structures and concepts for elastoacoustic wave energy harvesting. Smart Mater. Struct. 22, 065004 (2013). https://doi.org/10.1088/0964-1726/22/6/065004

    Article  Google Scholar 

  36. Mikoshiba, K., Manimala, J.M., Sun, C.T.: Energy harvesting using an array of multifunctional resonators. J. Intell. Mater. Syst. Struct. 24, 168–179 (2013). https://doi.org/10.1177/1045389X12460335

    Article  Google Scholar 

  37. Hedayati, R., Leeflang, A.M., Zadpoor, A.A.: Additively manufactured metallic pentamode meta-materials. Appl. Phys. Lett. 110, 091905 (2017). https://doi.org/10.1063/1.4977561

    Article  Google Scholar 

  38. Tao, H., Strikwerda, A.C., Fan, K., Padilla, W.J., Zhang, X., Averitt, R.D.: MEMS-based structurally tunable metamaterials at terahertz frequencies. J. Infrared Milli Terahz Waves 32, 580–595 (2011). https://doi.org/10.1007/s10762-010-9646-8

    Article  Google Scholar 

  39. Brûlé, S., Javelaud, E.H., Enoch, S., Guenneau, S.: Experiments on seismic metamaterials: molding surface waves. Phys. Rev. Lett. 112, 133901 (2014). https://doi.org/10.1103/PhysRevLett.112.133901

    Article  Google Scholar 

Download references

Acknowledgements

Support for this work through Defense Advanced Research Projects Agency (DARPA) Grant No. D16AP00032 is gratefully acknowledged. Thanks are also due to Jeffrey Callicoat, Catherine Sheehan and Alessio Lozzi for help with parts of the fabrication and testing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Manimala.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The authors declare that they have abided by the ethical standards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emerson, T.A., Manimala, J.M. Passive-adaptive mechanical wave manipulation using nonlinear metamaterial plates. Acta Mech 231, 4665–4681 (2020). https://doi.org/10.1007/s00707-020-02782-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-020-02782-9

Navigation