Skip to main content
Log in

Experimental Study on Wave Propagation in One-Dimensional Viscoelastic Metamaterial

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

A locally resonant viscoelastic mass-spring cell is experimentally realized by a unit cell design fabricated by 3D printing. The standard linear solid model is introduced for the viscoelastic metamaterial. The complex band structures of both viscoelastic unit cell and elastic cases are presented to show the effect of viscoelasticity. Both the harmonic excitation and stochastic excitation are conducted on the finite viscoelastic metamaterial in experiments. Distinct wave attenuation is found in bandgap via sweep frequency response analysis under harmonic excitation. The experiments of the metamaterial under narrow-band noise excitation demonstrate good performance of wave attenuation in bandgap. Finally, the obtained bandgaps via numerical calculation are well consistent with the frequency ranges of wave attenuation from experiments, which confirm the effectiveness of the proposed viscoelastic model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ma GC, Sheng P. Acoustic metamaterials: from local resonances to broad horizons. Sci Adv. 2016;2(2):1501595.

    Article  MathSciNet  Google Scholar 

  2. Hussein MI, Leamy MJ, Ruzzene M. Dynamics of phononic materials and structures: historical origins, recent progress, and future outlook. Appl Mech Rev. 2014;66(4):040802.

    Article  Google Scholar 

  3. Liu Z, Zhang X, Mao Y, Zhu YY, Yang Z, Chan CT, Sheng P. Locally resonant sonic materials. Sci. 2000;289:1734–6.

    Article  Google Scholar 

  4. Fang N, Xi D, Xu J, Ambati M, Srituravanich W, Sun C, Zhang X. Ultrasonic metamaterials with negative modulus. Nat Mater. 2006;5(8):452–6.

    Article  Google Scholar 

  5. Yang ZY, Mei J, Yan M, Chan NH, Sheng P. Membrane-type acoustic metamaterial with negative dynamic mass. Phys Rev Lett. 2008;101(20):204301.

    Article  Google Scholar 

  6. Park CM, Park JJ, Lee SH, Seo YM, Kim CK, Lee SH. Amplification of acoustic evanescent waves using metamaterial slabs. Phys Rev Lett. 2011;107:093018.

    Google Scholar 

  7. Ding C, Hao L, Zhao X. Two-dimensional acoustic metamaterial with negative modulus. J Appl Phys. 2010;108(9):074911.

    Google Scholar 

  8. Milton GW, Willis JR. On modifications of Newton’s second law and linear continuum elastodynamics. Proc R Soc A. 2007;463:855–80.

    Article  MathSciNet  Google Scholar 

  9. Yao S, Zhou X, Hu G. Experimental study on negative effective mass in a 1D mass-spring system. New J Phys. 2008;10(4):043020.

    Article  Google Scholar 

  10. Huang HH, Sun CT, Huang GL. On the negative effective mass density in acoustic metamaterials. Int J Eng Sci. 2009;47:610–7.

    Article  Google Scholar 

  11. Goldsberry BM, Haberman MR. Negative stiffness honeycombs as tunable elastic metamaterials. J Appl Phys. 2018;9:091711.

  12. Beli D, Arruda JRF, Ruzzene M. Wave propagation in elastic metamaterial beams and plates with interconnected resonators. Int J Solids Struct. 2018;139:105–20.

    Article  Google Scholar 

  13. Mead DJ. Wave propagation and natural modes in periodic systems: II. Multi-coupled systems, with and without damping. J Sound Vib. 1975;40(1):19–39.

    Article  Google Scholar 

  14. Woodhouse J. Linear damping models for structural vibration. J Sound Vib. 1998;215:547–69.

    Article  Google Scholar 

  15. Merheb B, Deymier PA, Jain M, Aloshyna-Lesuffleur M, Mohanty S, Berker A, Greger RW. Elastic and viscoelastic effects in rubber-air acoustic band gap structures: a theoretical and experimental study. J Appl Phys. 2008;104:064913.

    Article  Google Scholar 

  16. Zhao YP, Wei PJ. The band gap of 1D viscoelastic phononic crystal. Comput Mater Sci. 2009;46:603–6.

    Article  Google Scholar 

  17. Hussein MI. Theory of damped Bloch waves in elastic media. Phys Rev B. 2009;80:212301.

    Article  Google Scholar 

  18. Hussein MI, Frazier MJ. Metadamping: an emergent phenomenon in dissipative metamaterials. J Sound Vib. 2013;332(20):4767–74.

    Article  Google Scholar 

  19. Wang WQ, Yu JD, Tang ZP. General dispersion and dissipation relations in a one-dimensional viscoelastic lattice. Phys Lett A. 2008;373(1):5–8.

    Article  Google Scholar 

  20. Zhu X, Zhong S, Zhao H. Band gap structures for viscoelastic phononic crystals based on numerical and experimental investigation. Appl Acoust. 2016;106:93–104.

    Article  Google Scholar 

  21. Wang YF, Wang YS, Laude V. Wave propagation in two-dimensional viscoelastic metamaterials. Phys Rev B. 2015;92:104110.

    Article  Google Scholar 

  22. Palermo A, Marzani A. Limits of the kelvin voigt model for the analysis of wave propagation in monoatomic mass-spring chains. J Vib Acoust. 2016;138(1):011022.

  23. Belle LV, Claeys C, Deckers E, Desmet W. On the impact of damping on the dispersion curves of a locally resonant metamaterial: Modelling and experimental validation. J Sound Vib. 2017;409:1–23.

    Article  Google Scholar 

  24. Krushynska A, Kouznetsova V, Geers M. Visco-elastic effects on wave dispersion in three-phase acoustic metamaterials. J Mech Phys Solids. 2016;96:29–47.

    Article  MathSciNet  Google Scholar 

  25. Lewinska M, Kouznetsova V, van Dommelen J, Krushynska A, Geers M. The attenuation performance of locally resonant acoustic metamaterials based on generalised viscoelastic modelling. Int J Solids Struct. 2017;126:163–74.

    Article  Google Scholar 

  26. Parnell WJ, De Pascalis R. Soft metamaterials with dynamic viscoelastic functionality tuned by pre-deformation. Phil Trans R Soc A. 2019;377:20180072.

    Article  MathSciNet  Google Scholar 

  27. Aladwani A, Nouh M. Strategic damping placement in viscoelastic bandgap structures: dissecting the metadamping phenomenon in multiresonator metamaterials. J Appl Mech. 2021;88(2):021003.

    Article  Google Scholar 

  28. Fung YC. Fundamental of solid mechanics, New Jersey: Prentice Hall, 1965; Chapter 1.

  29. Wang D, Wu K, Li GL, Wang LF. The viscoelastic mechanical property and constitutive models of 3D printed photopolymer. Rapid Prototyping J. 2021;27(2):346–54.

    Article  Google Scholar 

  30. Hu HY. On the degrees of freedom of a mechanical system. Chin J Theor Appl Mech. 2018;50(7):1135–44.

    Google Scholar 

  31. Hussein MI, Frazier MJ. Band structure of phononic crystals with general damping. J Appl Phys. 2010;108:093506.

    Article  Google Scholar 

  32. Björck Å. Numerical methods for least squares problems. Philadelphia: SIAM. 1996; Chapter 1.

  33. Atkinson Kendall A. An introduction to numerical analysis. New York: Wiley; 1989.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lifeng Wang.

Ethics declarations

Competing interests’ statement

The authors declare no competing interests.

Funding

This work is supported in part by the National Natural Science Foundation of China under Grant Nos. 11632003 and 51921003, and in part by the National Science Fund for Distinguished Young Scholars under Grant No. 11925205.

Appendix. Numerical Investigation of Finite Viscoelastic Metamaterial

Appendix. Numerical Investigation of Finite Viscoelastic Metamaterial

The detailed procedures to get the responses of the finite system are described in this appendix. For the finite viscoelastic metamaterial composed of N cells shown in Fig. 5d, the dynamic equations are given in Eq. (A.1),

$$\begin{aligned}&\left\{ {{\begin{array}{*{20}l} {M\ddot{{u}}_{n} +k_{3} (2u_{n} -u_{n+\text{1 }} -u_{n-\text{1 }} )+c_{2} (\dot{{u}}_{n} -\dot{{q}}_{n} )+k_{1} (u_{n} -v_{n} )+k_{2} (u_{n} -p_{n} )+k_{4} (u_{n} -q_{n+\text{1 }} )=0,} \\ {c_{2} (\dot{{q}}_{n} -\dot{{u}}_{n} )+k_{4} (q_{n} -u_{n-\text{1 }} )=0,} \\ {m\ddot{{v}}_{n} +c_{1} (\dot{{v}}_{n} -\dot{{p}}_{n} )+k_{1} (v_{n} -u_{n} )=0,} \\ {c_{1} (\dot{{p}}_{n} -\dot{{v}}_{n} )+k_{2} (p_{n} -u_{n} )=0 \quad \text{( }n=1,\ldots ,N-1)} \\ \end{array} }} \right. \end{aligned}$$
(A.1a)
$$\begin{aligned}&\left\{ {{\begin{array}{*{20}l} {M\ddot{{u}}_{N} +k_{3} (u_{N} -u_{N-\text{1 }} )+c_{2} (\dot{{u}}_{N} -\dot{{q}}_{N} )+k_{1} (u_{N} -v_{N} )+k_{2} (u_{N} -p_{N} )=0} \\ {c_{2} (\dot{{q}}_{N} -\dot{{u}}_{N} )+k_{4} (q_{N} -u_{N-\text{1 }} )=0} \\ {m\ddot{{v}}_{N} +c_{1} (\dot{{v}}_{N} -\dot{{p}}_{N} )+k_{1} (v_{N} -u_{N} )=0} \\ {c_{1} (\dot{{p}}_{N} -\dot{{v}}_{N} )+k_{2} (p_{N} -u_{N} )=0} \\ \end{array} }} \right. \end{aligned}$$
(A.1b)

where \(u_{0} (t)\) in Eq. (A.1a) is the displacement excitation. The multiple variables of the n-th unit cell are defined as

$$\begin{aligned}&{{{\varvec{y}}}}_{n} (t_{j} )\equiv \left\{ {u_{n} (t_{j} )\dot{{u}}_{n} (t_{j} )v_{n} (t_{j} )\dot{{v}}_{n} (t_{j} )p_{n} (t_{j} )q_{n} (t_{j} )} \right\} ^{\mathrm{T}}\text{( }n=1,2,\ldots ,N) \end{aligned}$$
(A.2a)
$$\begin{aligned}&t_{j} =t_{0} +h\cdot j \text{( }j=0,1,\ldots ,Nt) \end{aligned}$$
(A.2b)

where \(t_{0} \) is the initial moment, h is the time step, and Nt is the total calculation steps. The Runge–Kutta method of order 4 (RK4) is utilized to numerically solve the ordinary differential Eq. (A.1). The initial conditions \({{\varvec{y}}}_{n} (t_{0} ),n=1,2,\ldots ,N\) should be given before calculation. Based on the finite-difference time-domain (FDTD) method [33], the second-order differential equations can be rewritten as the algebraic equations in matrix form,

$$\begin{aligned} {{{\varvec{y}}}}_{n} (t_{j+1} )={{{\varvec{ y}}}}_{n} (t_{j} )+\frac{1}{6}(\mathrm{{{\varvec{K}}}}_{\!1} +2{{{\varvec{K}}}}_{\!2} +2{{{\varvec{K}}}}_{\!3} +{{{\varvec{K}}}}_{\!4} )\cdot h \end{aligned}$$
(A.3)

where

$$\begin{aligned} \left\{ {{\begin{array}{*{20}l} {{{{\varvec{K}}}}_{\!1} ={{{\varvec{f}}}}(t_{j} ,{{{\varvec{y}}}}_{n} (t_{j} ))} \\ {{{{\varvec{K}}}}_{\!2} ={{{\varvec{f}}}}(t_{j} +\frac{1}{2}h,{{{\varvec{y}}}}_{n} (t_{j} )+\frac{1}{\!2}{{{\varvec{K}}}}_{\!1} h)} \\ {{{{\varvec{K}}}}_{\!3} ={{{\varvec{f}}}}(t_{j} +\frac{1}{2}h,{{{\varvec{y}}}}_{n} (t_{j} )+\frac{1}{\!2}{{{\varvec{K}}}}_{\!2} h)} \\ {{{{\varvec{K}}}}_{\!4} ={{{\varvec{f}}}}(t_{j} +h,{{{\varvec{y}}}}_{n} (t_{j} )+\mathrm{{{\varvec{K}}}}_{\!3} h)} \\ \end{array} }} \right. \end{aligned}$$
(A.4)

The function \({{\varvec{f}}}\) is defined as

$$\begin{aligned} {{{\varvec{f}}}}(t,{{{\varvec{y}}}}_{n} )={{{\varvec{A}}}}_{3} \cdot {{{\varvec{y}}}}_{n} +{{{\varvec{B}}}}_{n} (t)\quad (n=1,2,\ldots ,N) \end{aligned}$$
(A.5)

where

$$\begin{aligned}&{{{\varvec{A}}}}_{3} =\left[ {{\begin{array}{*{20}c} 0 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 \\ {\frac{-(2k_{3} +k_{1} +k_{2} +k_{4} )}{M}} &{} 0 &{} {\frac{k_{1} }{M}} &{} 0 &{} {\frac{k_{2} }{M}} &{} {-\frac{k_{4} }{M}} \\ 0 &{} 0 &{} 0 &{} 1 &{} 0 &{} 0 \\ {\frac{k_{1} +k_{2} }{m}} &{} 0 &{} {-\frac{k_{1} }{m}} &{} 0 &{} {-\frac{k_{2} }{m}} &{} 0 \\ {\frac{k_{2} }{c_{1} }} &{} 0 &{} 0 &{} 1 &{} {-\frac{k_{2} }{c_{1} }} &{} 0 \\ 0 &{} 1 &{} 0 &{} 0 &{} 0 &{} {-\frac{k_{4} }{c_{2} }} \\ \end{array} }} \right] \end{aligned}$$
(A.6a)
$$\begin{aligned}&\left\{ {\begin{array}{l} {{{\varvec{B}}}}_{1} (t)=\left\{ {{\begin{array}{*{20}l} 0 &{} {\frac{(k_{3} +k_{4} )u_{0} (t)+k_{3} u_{2} +k_{4} q_{2} }{M}} &{} 0 &{} 0 &{} 0 &{} {\frac{k_{4} u_{0} (t)}{c_{2} }} \\ \end{array} }} \right\} ^{\mathrm{T}} \\ {{{\varvec{B}}}}_{n} (t)=\left\{ {{\begin{array}{*{20}c} 0 &{} {\frac{(k_{3} +k_{4} )u_{n-1} +k_{3} u_{n+1} +k_{4} q_{n+1} }{M}} &{} 0 &{} 0 &{} 0 &{} {\frac{k_{4} u_{n-1} }{c_{2} }} \\ \end{array} }} \right\} ^{\mathrm{T}}\text{( }n=2,3,\ldots ,N-1) \\ {{{\varvec{B}}}}_{N} (t)=\left\{ {{\begin{array}{*{20}c} 0 &{} {\frac{(k_{3} +k_{4} )(u_{N} +u_{N-1} )}{M}} &{} 0 &{} 0 &{} 0 &{} {\frac{k_{4} u_{N-1} }{c_{2} }} \\ \end{array} }} \right\} ^{\mathrm{T}} \\ \end{array}} \right. \end{aligned}$$
(A.6b)

The displacement excitations and boundary conditions are all taken into account in Eq. (A.5). By the iterative computation of Eq. (A.3) in each time step, the transient simulation of proposed structure in the time domain would be obtained.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, K., Hu, H. & Wang, L. Experimental Study on Wave Propagation in One-Dimensional Viscoelastic Metamaterial. Acta Mech. Solida Sin. 34, 597–611 (2021). https://doi.org/10.1007/s10338-021-00245-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10338-021-00245-9

Keywords

Navigation