Skip to main content
Log in

Magneto-electro-thermo-elastic frequency response of functionally graded saturated porous annular plates via trigonometric shear deformation theory

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Due to the unique specifications of porous materials, such as lightweight, researchers are encouraged to study more about them and use them in different engineering structures. Also, they can be integrated with other stiffer materials to overwhelm their main limitation, i.e., their low stiffness. So, this work considers the frequency response of a functionally graded (FG) porous material annular plate, which is coated with two piezo-electro-magnetic layers. The FG porous core is assumed to be saturated by fluid, and the pores' compressibility effect is examined. Besides, the pores' placement patterns are regarded as three different thickness-dependent functions that affect the core's mechanical properties. Since the coating layers have electromagnetic properties, therefore electromagnetic potentials are externally applied to them. The whole structure is also rested on Pasternak elastic foundation, and the thermal environment influence is evaluated on its behavior. The trigonometric type of higher-order shear deformation theory is employed, and the governing motion equations are derived to obtain more accurate results. Then, they are solved utilizing the generalized differential quadrature method for various boundary conditions. After ensuring the validity of the results by comparing them with known data in the available literature, the effect of the most vital parameters on the frequencies of the plate is discussed. For instance, it is seen that the impact of the porosity coefficient on the natural frequencies is utterly dependent on the pores’ distribution patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Su, Y., Zhu, J., Long, X., Zhao, L., Chen, C., Liu, C.: Statistical effects of pore features on mechanical properties and fracture behaviors of heterogeneous random porous materials by phase-field modeling. Int. J. Solids Struct. 264, 112098 (2023). https://doi.org/10.1016/j.ijsolstr.2022.112098

    Article  Google Scholar 

  2. Zhang, Y., Liu, G., Ye, J., Lin, Y.: Crushing and parametric studies of polygonal substructures based hierarchical cellular honeycombs with non-uniform wall thickness. Compos. Struct. 299, 116087 (2022). https://doi.org/10.1016/J.COMPSTRUCT.2022.116087

    Article  Google Scholar 

  3. Arshid, E., Khorasani, M., Soleimani-Javid, Z., Amir, S., Tounsi, A.: Porosity-dependent vibration analysis of FG microplates embedded by polymeric nanocomposite patches considering hygrothermal effect via an innovative plate theory. Eng. Comput. (2021). https://doi.org/10.1007/s00366-021-01382-y

    Article  Google Scholar 

  4. Arshid, E., Soleimani-Javid, Z., Amir, S., Duc, N.D.: Higher-order hygro-magneto-electro-thermomechanical analysis of FG-GNPs-reinforced composite cylindrical shells embedded in PEM layers. Aerosp. Sci. Technol. 126, 107573 (2022). https://doi.org/10.1016/J.AST.2022.107573

    Article  Google Scholar 

  5. Khorasani, M., Soleimani-Javid, Z., Arshid, E., Amir, S., Civalek, Ö.: Vibration analysis of graphene nanoplatelets’ reinforced composite plates integrated by piezo-electromagnetic patches on the piezo-electromagnetic media. Waves Random Complex Media (2021). https://doi.org/10.1080/17455030.2021.1956017

    Article  Google Scholar 

  6. Kargar, J., Ghorbanpour Arani, A., Arshid, E., Irani Rahaghi, M.: Vibration analysis of spherical sandwich panels with MR fluids core and magneto-electro-elastic face sheets resting on orthotropic viscoelastic foundation. Struct. Eng. Mech. 78, 572 (2021). https://doi.org/10.12989/SEM.2021.78.5.557

    Article  Google Scholar 

  7. Liu, S., Liu, C.: Direct harmonic current control scheme for dual three-phase PMSM drive system. IEEE Trans. Power Electron. 36, 11647–11657 (2021). https://doi.org/10.1109/TPEL.2021.3069862

    Article  Google Scholar 

  8. Zhang, J., Wang, X., Zhou, L., Liu, G., Adroja, D.T., da Silva, I., Demmel, F., Khalyavin, D., Sannigrahi, J., Nair, H.S., Duan, L., Zhao, J., Deng, Z., Yu, R., Shen, X., Yu, R., Zhao, H., Zhao, J., Long, Y., Hu, Z., Lin, H., Chan, T., Chen, C., Wu, W., Jin, C.: A ferrotoroidic candidate with well-separated spin chains. Adv. Mater. 34, 2106728 (2022). https://doi.org/10.1002/adma.202106728

    Article  Google Scholar 

  9. Fan, X., Wei, G., Lin, X., Wang, X., Si, Z., Zhang, X., Shao, Q., Mangin, S., Fullerton, E., Jiang, L., Zhao, W.: Reversible switching of interlayer exchange coupling through atomically thin VO2 via electronic state modulation. Matter 2, 1582–1593 (2020). https://doi.org/10.1016/J.MATT.2020.04.001

    Article  Google Scholar 

  10. Liu, S., Liu, C.: Virtual-vector-based robust predictive current control for dual three-phase PMSM. IEEE Trans. Ind. Electron. 68, 2048–2058 (2021). https://doi.org/10.1109/TIE.2020.2973905

    Article  Google Scholar 

  11. Khorasani, M., Soleimani-Javid, Z., Arshid, E., Lampani, L., Civalek, Ö.: Thermo-elastic buckling of honeycomb micro plates integrated with FG-GNPs reinforced epoxy skins with stretching effect. Compos. Struct. (2020). https://doi.org/10.1016/j.compstruct.2020.113430

    Article  Google Scholar 

  12. Kuang, Z.-B.: An applied electro-magneto-elastic thin plate theory. Acta Mech. 225, 1153–1166 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chan, D.Q., Van Thanh, N., Khoa, N.D., Duc, N.D.: Nonlinear dynamic analysis of piezoelectric functionally graded porous truncated conical panel in thermal environments. Thin-Walled Struct. 154, 106837 (2020). https://doi.org/10.1016/j.tws.2020.106837

    Article  Google Scholar 

  14. Quan, T.Q., Anh, V.M., Mahesh, V., Duc, N.D.: Vibration and nonlinear dynamic response of imperfect sandwich piezoelectric auxetic plate. Mech. Adv. Mater. Struct. 29, 127–137 (2022). https://doi.org/10.1080/15376494.2020.1752864

    Article  Google Scholar 

  15. Dinh Dat, N., Quoc Quan, T., Dinh Duc, N.: Vibration analysis of auxetic laminated plate with magneto-electro-elastic face sheets subjected to blast loading. Compos. Struct. 280, 114925 (2022). https://doi.org/10.1016/j.compstruct.2021.114925

    Article  Google Scholar 

  16. Detournay, E., Cheng, A.H.-D.: Fundamentals of poroelasticity. In: Analysis and Design Methods. pp. 113–171. Elsevier (1995)

  17. Azimi, S.: Free vibration of circular plates with elastic edge supports using the receptance method. J. Sound Vib. 120, 19–35 (1988). https://doi.org/10.1016/0022-460X(88)90332-X

    Article  Google Scholar 

  18. Wang, Q., Quek, S.T., Sun, C.T., Liu, X.: Analysis of piezoelectric coupled circular plate. Smart Mater. Struct. 10, 229–239 (2001). https://doi.org/10.1088/0964-1726/10/2/308

    Article  Google Scholar 

  19. Hosseini-Hashemi, S., Fadaee, M., Atashipour, S.R.: A new exact analytical approach for free vibration of ReissnerMindlin functionally graded rectangular plates. Int. J. Mech. Sci. 53, 11–22 (2011). https://doi.org/10.1016/j.ijmecsci.2010.10.002

    Article  Google Scholar 

  20. Zhou, Z.H., Wong, K.W., Xu, X.S., Leung, A.Y.T.: Natural vibration of circular and annular thin plates by Hamiltonian approach. J. Sound Vib. 330, 1005–1017 (2011). https://doi.org/10.1016/J.JSV.2010.09.015

    Article  Google Scholar 

  21. Hosseini-Hashemi, S., Derakhshani, M., Fadaee, M.: An accurate mathematical study on the free vibration of stepped thickness circular/annular Mindlin functionally graded plates. Appl. Math. Model. 37, 4147–4164 (2013). https://doi.org/10.1016/j.apm.2012.08.002

    Article  MathSciNet  MATH  Google Scholar 

  22. Sahraee, S., Saidi, A.R.: Axisymmetric bending analysis of thick functionally graded circular plates using fourth-order shear deformation theory. Eur. J. Mech. A/Solids. 28, 974–984 (2009). https://doi.org/10.1016/j.euromechsol.2009.03.009

    Article  MATH  Google Scholar 

  23. Arani, A.G., Khoddami Maraghi, Z., Khani, M., Alinaghian, I.: Free vibration of embedded porous plate using third-order shear deformation and poroelasticity theories. J. Eng. 2017, 1–13 (2017). https://doi.org/10.1155/2017/1474916

    Article  Google Scholar 

  24. Alinaghizadeh, F., Kadkhodayan, M.: Large deflection analysis of moderately thick radially functionally graded annular sector plates fully and partially rested on two-parameter elastic foundations by GDQ method. Aerosp. Sci. Technol. 39, 260–271 (2014). https://doi.org/10.1016/j.ast.2014.09.014

    Article  Google Scholar 

  25. Wang, Y.Q.: Electro-mechanical vibration analysis of functionally graded piezoelectric porous plates in the translation state. Acta Astronaut. 143, 263–271 (2018). https://doi.org/10.1016/J.ACTAASTRO.2017.12.004

    Article  Google Scholar 

  26. Arteshyar, K., Mohieddin Ghomshei, M.M.: Free vibration analysis of thin annular plates integrated with piezoelectric layers using differential quadrature method. Iran. J. Mech. Eng. Trans. ISME. 20, 71–93 (2019)

    Google Scholar 

  27. Wu, T.Y., Wang, Y.Y., Liu, G.R.: Free vibration analysis of circular plates using generalized differential quadrature rule. Comput. Methods Appl. Mech. Eng. 191, 5365–5380 (2002). https://doi.org/10.1016/S0045-7825(02)00463-2

    Article  MATH  Google Scholar 

  28. Ebrahimi, F., Habibi, S.: Deflection and vibration analysis of higher-order shear deformable compositionally graded porous plate. Steel Compos. Struct. 20, 205–225 (2016). https://doi.org/10.12989/scs.2016.20.1.205

    Article  Google Scholar 

  29. Ebrahimi, F., Jafari, A., Barati, M.R.: Free vibration analysis of smart porous plates subjected to various physical fields considering neutral surface position. Arab. J. Sci. Eng. 42, 1865–1881 (2017). https://doi.org/10.1007/s13369-016-2348-3

    Article  MathSciNet  MATH  Google Scholar 

  30. Jabbari, M., Farzaneh Joubaneh, E., Mojahedin, A.: Thermal buckling analysis of porous circular plate with piezoelectric actuators based on first order shear deformation theory. Int. J. Mech. Sci. 83, 57–64 (2014). https://doi.org/10.1016/j.ijmecsci.2014.03.024

    Article  MATH  Google Scholar 

  31. Jabbari, M., Hashemitaheri, M., Mojahedin, A., Eslami, M.R.: Thermal buckling analysis of functionally graded thin circular plate made of saturated porous materials. J. Therm. Stress. 37, 202–220 (2014). https://doi.org/10.1080/01495739.2013.839768

    Article  Google Scholar 

  32. Arshid, E., Khorshidvand, A.R., Khorsandijou, S.M.: The effect of porosity on free vibration of SPFG circular plates resting on visco-Pasternak elastic foundation based on CPT FSDT and TSDT. Struct. Eng. Mech. 70, 97–112 (2019). https://doi.org/10.12989/sem.2019.70.1.097

    Article  Google Scholar 

  33. Asgari, G.R., Arabali, A., Babaei, M., Asemi, K.: Dynamic instability of sandwich beams made of isotropic core and functionally graded graphene platelets-reinforced composite face sheets. Int. J. Struct. Stab. Dyn. (2022). https://doi.org/10.1142/S0219455422500924

    Article  MathSciNet  Google Scholar 

  34. Arshid, E., Khorshidvand, A.R.: Free vibration analysis of saturated porous FG circular plates integrated with piezoelectric actuators via differential quadrature method. Thin-Walled Struct. 125, 220–233 (2018). https://doi.org/10.1016/j.tws.2018.01.007

    Article  Google Scholar 

  35. Barati, M.R., Zenkour, A.M.: Electro-thermoelastic vibration of plates made of porous functionally graded piezoelectric materials under various boundary conditions. J. Vib. Control. 24, 1910–1926 (2018). https://doi.org/10.1177/1077546316672788

    Article  MathSciNet  Google Scholar 

  36. Lu, Z., Gu, D., Ding, H., Lacarbonara, W., Chen, L.: Nonlinear vibration isolation via a circular ring. Mech. Syst. Signal. Process. 136, 106490 (2020). https://doi.org/10.1016/j.ymssp.2019.106490

    Article  Google Scholar 

  37. Rezaei, A.S., Saidi, A.R.: Exact solution for free vibration of thick rectangular plates made of porous materials. Compos. Struct. 134, 1051–1060 (2015). https://doi.org/10.1016/j.compstruct.2015.08.125

    Article  Google Scholar 

  38. Khoddami Maraghi, Z., Amir, S., Arshid, E.: On the natural frequencies of smart circular plates with magnetorheological fluid core embedded between magnetostrictive patches on Kerr elastic substance. Mech. Based Des. Struct. Mach. (2022). https://doi.org/10.1080/15397734.2022.2156885

    Article  Google Scholar 

  39. Hosseini-Hashemi, S., Bedroud, M., Nazemnezhad, R.: An exact analytical solution for free vibration of functionally graded circular/annular Mindlin nanoplates via nonlocal elasticity. Compos. Struct. 103, 108–118 (2013). https://doi.org/10.1016/j.compstruct.2013.02.022

    Article  MATH  Google Scholar 

  40. Amir, S., Arshid, E., Ghorbanpour Arani, M.R.: Size-dependent magneto-electro-elastic vibration analysis of FG saturated porous annular/ circular micro sandwich plates embedded with nano-composite face sheets subjected to multi-physical pre loads. Smart Struct. Syst. 23, 429–447 (2019). https://doi.org/10.12989/sss.2019.23.5.429

    Article  Google Scholar 

  41. Arshid, E., Amir, S., Loghman, A.: Bending and buckling behaviors of heterogeneous temperature-dependent micro annular/circular porous sandwich plates integrated by FGPEM nano-Composite layers. J. Sandw. Struct. Mater. (2020). https://doi.org/10.1177/1099636220955027

    Article  Google Scholar 

  42. Xiao, X., Zhang, H., Li, Z., Chen, F.: Effect of temperature on the fatigue life assessment of suspension bridge steel deck welds under dynamic vehicle loading. Math. Probl. Eng. 2022, 1–14 (2022). https://doi.org/10.1155/2022/7034588

    Article  Google Scholar 

  43. Soleimani-Javid, Z., Arshid, E., Amir, S., Bodaghi, M.: On the higher-order thermal vibrations of FG saturated porous cylindrical micro-shells integrated with nanocomposite skins in viscoelastic medium. Def. Technol. (2021). https://doi.org/10.1016/J.DT.2021.07.007

    Article  Google Scholar 

  44. Mousavi, S.B., Amir, S., Jafari, A., Arshid, E.: Analytical solution for analyzing initial curvature effect on vibrational behavior of PM beams integrated with FGP layers based on trigonometric theories. Adv. Nano Res. 10, 251 (2021). https://doi.org/10.12989/ANR.2021.10.3.235

    Article  Google Scholar 

  45. Amir, S., Arshid, E., Khoddami Maraghi, Z., Loghman, A., Ghorbanpour Arani, A.: Vibration analysis of magnetorheological fluid circular sandwich plates with magnetostrictive facesheets exposed to monotonic magnetic field located on visco-Pasternak substrate. JVC/Journal Vib. Control. 26, 1523–1537 (2020). https://doi.org/10.1177/1077546319899203

    Article  MathSciNet  Google Scholar 

  46. Biot, M.A.: Theory of buckling of a porous slab and its thermoelastic analogy. J. Appl. Mech. Trans. ASME. 31, 194–198 (1964). https://doi.org/10.1115/1.3629586

    Article  MathSciNet  Google Scholar 

  47. Shahsavari, D., Karami, B., Fahham, H.R., Li, L.: On the shear buckling of porous nanoplates using a new size-dependent quasi-3D shear deformation theory. Acta Mech. 229, 4549–4573 (2018). https://doi.org/10.1007/S00707-018-2247-7

    Article  MathSciNet  Google Scholar 

  48. Arshid, E., Arshid, H., Amir, S., Mousavi, S.B.: Free vibration and buckling analyses of FG porous sandwich curved microbeams in thermal environment under magnetic field based on modified couple stress theory. Arch. Civ. Mech. Eng. 21, 6 (2021). https://doi.org/10.1007/s43452-020-00150-x

    Article  Google Scholar 

  49. Barati, M.R., Zenkour, A.M.: Electro-thermoelastic vibration of plates made of porous functionally graded piezoelectric materials under various boundary conditions. JVC/J. Vib. Control. 24, 1910–1926 (2018). https://doi.org/10.1177/1077546316672788

    Article  MathSciNet  Google Scholar 

  50. Barati, M.R., Zenkour, A.M.: Vibration analysis of functionally graded graphene platelet reinforced cylindrical shells with different porosity distributions. Mech. Adv. Mater. Struct. 26, 1580–1588 (2019). https://doi.org/10.1080/15376494.2018.1444235

    Article  Google Scholar 

  51. Gupta, A., Talha, M.: Influence of initial geometric imperfections and porosity on the stability of functionally graded material plates. Mech. Based Des. Struct. Mach. 46, 693–711 (2018). https://doi.org/10.1080/15397734.2018.1449656

    Article  Google Scholar 

  52. Arshid, E., Amir, S.: Size-dependent vibration analysis of fluid-infiltrated porous curved microbeams integrated with reinforced functionally graded graphene platelets face sheets considering thickness stretching effect. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. (2021). https://doi.org/10.1177/1464420720985556

    Article  Google Scholar 

  53. Sobhy, M.: Magneto-electro-thermal bending of FG-graphene reinforced polymer doubly-curved shallow shells with piezoelectromagnetic faces. Compos. Struct. 203, 844–860 (2018). https://doi.org/10.1016/J.COMPSTRUCT.2018.07.056

    Article  Google Scholar 

  54. Subhani, S.M., Maniprakash, S., Arockiarajan, A.: (2017): Nonlinear magneto-electro-mechanical response of layered magneto-electric composites: Theoretical and experimental approach. Acta Mech. 2289(228), 3185–3201 (2017). https://doi.org/10.1007/S00707-017-1889-1

    Article  MATH  Google Scholar 

  55. Arshid, E., Kiani, A., Amir, S.: Magneto-electro-elastic vibration of moderately thick FG annular plates subjected to multi physical loads in thermal environment using GDQ method by considering neutral surface. Proc. Inst. Mech Eng. Part L J. Mater. Des. Appl. 233, 2140–2159 (2019). https://doi.org/10.1177/1464420719832626

    Article  Google Scholar 

  56. Lu, C., Zhou, H., Li, L., Yang, A., Xu, C., Ou, Z., Wang, J., Wang, X., Tian, F.: Split-core magnetoelectric current sensor and wireless current measurement application. Measurement 188, 110527 (2022). https://doi.org/10.1016/j.measurement.2021.110527

    Article  Google Scholar 

  57. Milazzo, A.: Variable kinematics models and finite elements for nonlinear analysis of multilayered smart plates. Compos. Struct. 122, 537–545 (2015). https://doi.org/10.1016/j.compstruct.2014.12.003

    Article  Google Scholar 

  58. Dong, C.Y.: Vibration of electro-elastic versus magneto-elastic circular/annular plates using the Chebyshev-Ritz method. J. Sound Vib. 317, 219–235 (2008)

    Article  Google Scholar 

  59. Duc, N.D.: Nonlinear static and dynamic stability of functionally graded plates and shells. Vietnam Natl. Univ Press (2014)

    Google Scholar 

  60. Wang, X., Jin, C., Yuan, Z.: Free vibration of FGM annular sectorial plates with arbitrary boundary supports and large sector angles. Mech. Based Des. Struct. Mach. (2020). https://doi.org/10.1080/15397734.2020.1717342

    Article  Google Scholar 

  61. Duc, N.D., Quan, T., Cong, P.: Nonlinear vibration of auxetic plates and shells. Vietnam National University Press, Hanoi (2021)

    Google Scholar 

  62. Akgöz, B., Civalek, Ö.: Buckling analysis of functionally graded microbeams based on the strain gradient theory. Acta Mech. 224, 2185–2201 (2013). https://doi.org/10.1007/s00707-013-0883-5

    Article  MathSciNet  MATH  Google Scholar 

  63. Fu, Q., Gu, M., Yuan, J., Lin, Y.: Experimental study on vibration velocity of piled raft supported embankment and foundation for ballastless high speed railway. Buildings 12, 1982 (2022). https://doi.org/10.3390/buildings12111982

    Article  Google Scholar 

  64. Ebrahimi, F., Sedighi, S.B.: Wave dispersion characteristics of a rectangular sandwich composite plate with tunable magneto-rheological fluid core rested on a visco-Pasternak foundation. Mech. Based Des. Struct. Mach. (2020). https://doi.org/10.1080/15397734.2020.1716244

    Article  Google Scholar 

  65. Nguyen, D.D.: Nonlinear thermo- electro-mechanical dynamic response of shear deformable piezoelectric sigmoid functionally graded sandwich circular cylindrical shells on elastic foundations. J. Sandw. Struct. Mater. 20, 351–378 (2018). https://doi.org/10.1177/1099636216653266

    Article  Google Scholar 

  66. Zenkour, A.M., Alghanmi, R.A.: Stress analysis of a functionally graded plate integrated with piezoelectric faces via a four-unknown shear deformation theory. Results Phys. 12, 268–277 (2019). https://doi.org/10.1016/j.rinp.2018.11.045

    Article  Google Scholar 

  67. Panda, H.S., Sahu, S.K., Parhi, P.K.: Buckling behavior of bidirectional composite flat panels with delaminations in hygrothermal field. Acta Mech. 226, 1971–1992 (2015). https://doi.org/10.1007/s00707-014-1280-4

    Article  MathSciNet  MATH  Google Scholar 

  68. Amir, S., Arshid, E., Rasti-Alhosseini, S.M.A., Loghman, A.: Quasi-3D tangential shear deformation theory for size-dependent free vibration analysis of three-layered FG porous micro rectangular plate integrated by nano-composite faces in hygrothermal environment. J. Therm. Stress. 43, 133–156 (2020). https://doi.org/10.1080/01495739.2019.1660601

    Article  Google Scholar 

  69. Zaoui, F.Z., Ouinas, D., Tounsi, A.: New 2D and quasi-3D shear deformation theories for free vibration of functionally graded plates on elastic foundations. Compos. Part B Eng. 159, 231–247 (2019). https://doi.org/10.1016/J.COMPOSITESB.2018.09.051

    Article  Google Scholar 

  70. Zhang, H., Ouyang, Z., Li, L., Ma, W., Liu, Y., Chen, F., Xiao, X.: Numerical study on welding residual stress distribution of corrugated steel webs. Metals 12, 1831 (2022). https://doi.org/10.3390/met12111831

    Article  Google Scholar 

  71. Li, S., Zhao, M., Xue, J., Zhao, R.: Effects of edge type and reconstruction on the electronic properties and magnetism of 1T′-ReS2 nanoribbons: A study based on DFT calculations. J. Magn. Magn. Mater. 567, 170351 (2023). https://doi.org/10.1016/j.jmmm.2022.170351

    Article  Google Scholar 

  72. Luo, C., Wang, L., Xie, Y., Chen, B.: A new conjugate gradient method for moving force identification of vehicle-bridge system. J. Vib. Eng. Technol. (2022). https://doi.org/10.1007/s42417-022-00824-1

    Article  Google Scholar 

  73. Soleimani-Javid, Z., Arshid, E., Khorasani, M., Amir, S., Tounsi, A.: Size-dependent flexoelectricity-based vibration characteristics of honeycomb sandwich plates with various boundary conditions. Adv. Nano Res. 10, 460 (2021). https://doi.org/10.12989/ANR.2021.10.5.449

    Article  Google Scholar 

  74. Saberi, L., Nahvi, H.: Vibration analysis of a nonlinear system with a nonlinear absorber under the primary and super-harmonic resonances. Int. J. Eng. 27, 499–508 (2014). https://doi.org/10.5829/idosi.ije.2014.27.03c.18

    Article  Google Scholar 

  75. Hamidizadeh, H., Mashhadi, M.M., Mohammadi, Y.: Static pull in analysis of stepped microcantilever beam based on strain gradient theory using differential quadrature method. Mech. Based Des. Struct. Mach. (2020). https://doi.org/10.1080/15397734.2020.1715229

    Article  Google Scholar 

  76. Arshid, E., Amir, S., Loghman, A.: Static and dynamic analyses of FG-GNPs reinforced porous nanocomposite annular micro-plates based on MSGT. Int. J. Mech. Sci. 180, 105656 (2020). https://doi.org/10.1016/j.ijmecsci.2020.105656

    Article  Google Scholar 

  77. Safarpour, M., Rahimi, A.R., Alibeigloo, A.: Static and free vibration analysis of graphene platelets reinforced composite truncated conical shell, cylindrical shell, and annular plate using theory of elasticity and DQM. Mech. Based Des. Struct. Mach. 48, 496–524 (2020). https://doi.org/10.1080/15397734.2019.1646137

    Article  Google Scholar 

  78. Arshid, E., Amir, S., Loghman, A.: Thermal buckling analysis of FG graphene nanoplatelets reinforced porous nanocomposite MCST-based annular/circular microplates. Aerosp. Sci. Technol. (2021). https://doi.org/10.1016/j.ast.2021.106561

    Article  Google Scholar 

  79. Shu, C.: Differential Quadrature and Its Application in Engineering. Springer Science & Business Media (2000)

    Book  MATH  Google Scholar 

  80. Chakraverty, S., Bhat, R.B., Stiharu, I.: Free vibration of annular elliptic plates using boundary characteristic orthogonal polynomials as shape functions in the Rayleigh-Ritz method. J. Sound Vib. 241, 524–539 (2001). https://doi.org/10.1006/jsvi.2000.3243

    Article  Google Scholar 

  81. Dat, N.D., Quan, T.Q., Mahesh, V., Duc, N.D.: Analytical solutions for nonlinear magneto-electro-elastic vibration of smart sandwich plate with carbon nanotube reinforced nanocomposite core in hygrothermal environment. Int. J. Mech. Sci. 186, 105906 (2020). https://doi.org/10.1016/j.ijmecsci.2020.105906

    Article  Google Scholar 

  82. Mohammadimehr, M., Arshid, E., Alhosseini, S.M.A.R., Amir, S., Arani, M.R.G.: Free vibration analysis of thick cylindrical MEE composite shells reinforced CNTs with temperature-dependent properties resting on viscoelastic foundation. Struct. Eng. Mech. 70, 683–702 (2019). https://doi.org/10.12989/sem.2019.70.6.683

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Reza Khorshidvand.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Rewriting the governing motion equations of (32)–(36) in terms of displacement and axisymmetric state leads to the below equations:

$$\begin{gathered} \delta u: \hfill \\ - A_{1} {\mkern 1mu} \frac{{\partial^{2} }}{{\partial r^{2} }}u + \left( {A_{13} {\mkern 1mu} - A_{7} {\mkern 1mu} - A_{1} {\mkern 1mu} } \right)\frac{1}{r}\frac{\partial }{\partial r}u + \frac{{A_{{19{\mkern 1mu} }} }}{{r^{2} }}u + A_{2} {\mkern 1mu} \frac{{\partial^{3} }}{{\partial r^{3} }}w + \left( {A_{2} {\mkern 1mu} + A_{8} {\mkern 1mu} - A_{14} {\mkern 1mu} } \right)\frac{1}{r}\frac{{\partial^{2} }}{{\partial r^{2} }}w \hfill \\ - \frac{{A_{20} {\mkern 1mu} }}{{r^{2} }}\frac{\partial }{\partial r}w - A_{4} {\mkern 1mu} \frac{{\partial^{2} }}{{\partial r^{2} }}\psi_{r} + \left( {A_{16} {\mkern 1mu} - A_{10} {\mkern 1mu} - A_{4} {\mkern 1mu} } \right)\frac{1}{r}\frac{\partial }{\partial r}\psi_{r} + \frac{{A_{22} {\mkern 1mu} }}{{r^{2} }}\psi_{r} - P_{1} {\mkern 1mu} \frac{\partial }{\partial r}\phi + \left( {P_{4} {\mkern 1mu} - P_{1} {\mkern 1mu} } \right)\frac{1}{r}\phi \hfill \\ - M_{1} {\mkern 1mu} \frac{\partial }{\partial r}\chi + \left( {M_{4} {\mkern 1mu} - M_{1} {\mkern 1mu} } \right)\frac{1}{r}\chi - I_{0} {\mkern 1mu} \frac{{\partial^{2} }}{{\partial t^{2} }}u + I_{1} {\mkern 1mu} \frac{{\partial^{3} }}{{\partial t^{2} \partial r}}w - I_{3} {\mkern 1mu} \frac{{\partial^{2} }}{{\partial t^{2} }}\psi_{r} = 0, \hfill \\ \end{gathered}$$
(49)
$$\begin{gathered} \delta w: \hfill \\ - A_{2} {\mkern 1mu} \frac{{\partial^{3} }}{{\partial r^{3} }}u + \left( {A_{14} {\mkern 1mu} - A_{8} {\mkern 1mu} - 2{\mkern 1mu} A_{2} {\mkern 1mu} } \right)\frac{1}{r}\frac{{\partial^{2} }}{{\partial r^{2} }}u + \frac{{A_{20} {\mkern 1mu} }}{{r^{2} }}\frac{\partial }{\partial r}u - \frac{{A_{20} {\mkern 1mu} }}{{r^{3} }}u + A_{3} {\mkern 1mu} \frac{{\partial^{4} }}{{\partial r^{4} }}w + \left( {A_{9} {\mkern 1mu} + 2{\mkern 1mu} A_{3} {\mkern 1mu} - A_{15} {\mkern 1mu} } \right)\frac{1}{r}\frac{{\partial^{3} }}{{\partial r^{3} }}w \hfill \\ - \left( {\frac{{A_{21} {\mkern 1mu} }}{{r^{2} }} + K_{G} - N_{r}^{ext} } \right)\frac{{\partial^{2} }}{{\partial r^{2} }}w + \left( {\frac{{A_{21} {\mkern 1mu} }}{{r^{3} }} - K_{G} + N_{r}^{ext} } \right)\frac{\partial }{\partial r}w + K_{W} w - A_{5} {\mkern 1mu} \frac{{\partial^{3} }}{{\partial r^{3} }}\psi_{r} \hfill \\ + \left( {A_{17} {\mkern 1mu} - A_{11} {\mkern 1mu} - 2{\mkern 1mu} A_{5} {\mkern 1mu} } \right)\frac{1}{r}\frac{{\partial^{2} }}{{\partial r^{2} }}\psi_{r} + \frac{{A_{23} {\mkern 1mu} }}{{r^{2} }}\frac{\partial }{\partial r}\psi_{r} - \frac{{A_{23} {\mkern 1mu} }}{{r^{3} }}\psi_{r} - P_{2} {\mkern 1mu} \frac{{\partial^{2} }}{{\partial r^{2} }}\phi + \left( {P_{{5{\mkern 1mu} }} - 2{\mkern 1mu} P_{2} } \right)\frac{1}{r}\frac{\partial }{\partial r}\phi - M_{2} {\mkern 1mu} \frac{{\partial^{2} }}{{\partial r^{2} }}\chi \hfill \\ + \left( {M_{5} {\mkern 1mu} - 2{\mkern 1mu} M_{2} {\mkern 1mu} } \right)\frac{1}{r}\frac{\partial }{\partial r}\chi - \frac{{I_{1} {\mkern 1mu} }}{r}\frac{{\partial^{2} }}{{\partial t^{2} }}u - I_{1} {\mkern 1mu} \frac{{\partial^{3} }}{{\partial t^{2} \partial r}}u - I_{0} {\mkern 1mu} \frac{{\partial^{2} }}{{\partial t^{2} }}w + I_{2} {\mkern 1mu} \frac{{\partial^{4} }}{{\partial t^{2} \partial r^{2} }}w + \frac{{I_{2} {\mkern 1mu} }}{r}\frac{{\partial^{3} }}{{\partial t^{2} \partial r}}w - \frac{{I_{4} {\mkern 1mu} }}{r}\frac{{\partial^{2} }}{{\partial t^{2} }}\psi_{r} \hfill \\ - I_{4} {\mkern 1mu} \frac{{\partial^{3} }}{{\partial t^{2} \partial r}}\psi_{r} = 0, \hfill \\ \end{gathered}$$
(50)
$$\begin{gathered} \delta \psi_{r} : \hfill \\ - A_{4} {\mkern 1mu} \frac{{\partial^{2} }}{{\partial r^{2} }}u + \left( {A_{16} {\mkern 1mu} - A_{4} {\mkern 1mu} - A_{{10{\mkern 1mu} }} } \right)\frac{1}{r}\frac{\partial }{\partial r}u + \frac{{A_{22} {\mkern 1mu} }}{{r^{2} }}u + A_{{5{\mkern 1mu} }} \frac{{\partial^{3} }}{{\partial r^{3} }}w + \left( {A_{11} {\mkern 1mu} + A_{5} {\mkern 1mu} - A_{17} {\mkern 1mu} } \right)\frac{1}{r}\frac{{\partial^{2} }}{{\partial r^{2} }}w \hfill \\ - \frac{{A_{23} {\mkern 1mu} }}{{r^{2} }}\frac{\partial }{\partial r}w - A_{6} {\mkern 1mu} \frac{{\partial^{2} }}{{\partial r^{2} }}\psi_{r} + \left( {A_{18} {\mkern 1mu} - A_{12} {\mkern 1mu} - A_{6} {\mkern 1mu} } \right)\frac{1}{r}\frac{\partial }{\partial r}\psi_{r} + \left( {A_{31} {\mkern 1mu} + \frac{{A_{24} {\mkern 1mu} }}{{r^{2} }}} \right)\psi_{r} - \left( {P_{3} {\mkern 1mu} + P_{7} {\mkern 1mu} } \right)\frac{\partial }{\partial r}\phi \hfill \\ + \left( {P_{6} {\mkern 1mu} - P_{{3{\mkern 1mu} }} } \right)\frac{1}{r}\phi - \left( {M_{3} {\mkern 1mu} + M_{7} } \right){\mkern 1mu} \frac{\partial }{\partial r}\chi + \left( {M_{6} {\mkern 1mu} - M_{3} {\mkern 1mu} } \right)\frac{1}{r}\chi - I_{3} {\mkern 1mu} \frac{{\partial^{2} }}{{\partial t^{2} }}u + I_{4} {\mkern 1mu} \frac{{\partial^{3} }}{{\partial t^{2} \partial r}}w - I_{{5{\mkern 1mu} }} \frac{{\partial^{2} }}{{\partial t^{2} }}\psi_{r} = 0, \hfill \\ \end{gathered}$$
(51)
$$\begin{gathered} \delta \phi : \hfill \\ P_{1} {\mkern 1mu} \frac{\partial }{\partial r}u + \frac{{P_{4} {\mkern 1mu} }}{r}u - P_{2} {\mkern 1mu} \frac{{\partial^{2} }}{{\partial r^{2} }}w - \frac{{P_{5} {\mkern 1mu} }}{r}\frac{\partial }{\partial r}w + P_{11} {\mkern 1mu} \frac{{\partial^{2} }}{{\partial r^{2} }}\phi + \frac{{P_{11} {\mkern 1mu} }}{r}\frac{\partial }{\partial r}\phi - P_{13} {\mkern 1mu} \phi + \left( {P_{9} {\mkern 1mu} + P_{3} } \right){\mkern 1mu} \frac{\partial }{\partial r}\psi_{r} \hfill \\ + \left( {P_{9} {\mkern 1mu} + P_{6} {\mkern 1mu} } \right)\frac{1}{r}\psi_{r} + P_{14} {\mkern 1mu} \frac{{\partial^{2} }}{{\partial r^{2} }}\chi + \frac{{P_{14} {\mkern 1mu} }}{r}\frac{\partial }{\partial r}\chi - P_{16} {\mkern 1mu} \chi = 0, \hfill \\ \end{gathered}$$
(52)
$$\begin{gathered} \delta \chi : \hfill \\ M_{1} {\mkern 1mu} \frac{\partial }{\partial r}u + \frac{{M_{4} {\mkern 1mu} }}{r}u - M_{2} {\mkern 1mu} \frac{{\partial^{2} }}{{\partial r^{2} }}w - \frac{{M_{5} {\mkern 1mu} }}{r}\frac{\partial }{\partial r}w + \left( {M_{9} {\mkern 1mu} + M_{3} {\mkern 1mu} } \right)\frac{\partial }{\partial r}\psi_{r} + \left( {M_{9} {\mkern 1mu} + M_{6} {\mkern 1mu} } \right)\frac{1}{r}\psi_{r} \hfill \\ + P_{14} {\mkern 1mu} \frac{{\partial^{2} }}{{\partial r^{2} }}\phi + \frac{{P_{14} {\mkern 1mu} }}{r}\frac{\partial }{\partial r}\phi - P_{16} {\mkern 1mu} \phi + M_{{11{\mkern 1mu} }} \frac{{\partial^{2} }}{{\partial r^{2} }}\chi + \frac{{M_{{11{\mkern 1mu} }} }}{r}\frac{\partial }{\partial r}\chi - M_{13} {\mkern 1mu} \chi = 0 \hfill \\ \end{gathered}$$
(53)

The used integral coefficients are introduced as:

$$\left[ {\begin{array}{*{20}c} {A_{1} ,} & {A_{2} ,} & {A_{3} ,} & {A_{4} ,} & {A_{5} ,} & {A_{6} } \\ \end{array} } \right] = \int\nolimits_{z} {Q_{11} (z)\left[ {\begin{array}{*{20}c} {1,} & {z,} & {z^{2} ,} & {f(z),} & {zf(z),} & {f(z)^{2} } \\ \end{array} } \right]} \,{\text{d}}z,$$
$$\left[ {\begin{array}{*{20}c} {A_{7} ,} & {A_{8} ,} & {A_{9} ,} & {A_{10} ,} & {A_{11} ,} & {A_{12} } \\ \end{array} } \right] = \int\nolimits_{z} {Q_{12} (z)\left[ {\begin{array}{*{20}c} {1,} & {z,} & {z^{2} ,} & {f(z),} & {zf(z),} & {f(z)^{2} } \\ \end{array} } \right]} \,{\text{d}}z,$$
$$\left[ {\begin{array}{*{20}c} {A_{13} ,} & {A_{14} ,} & {A_{15} ,} & {A_{16} ,} & {A_{17} ,} & {A_{18} } \\ \end{array} } \right] = \int\nolimits_{z} {Q_{21} (z)\left[ {\begin{array}{*{20}c} {1,} & {z,} & {z^{2} ,} & {f(z),} & {zf(z),} & {f(z)^{2} } \\ \end{array} } \right]} \,{\text{d}}z,$$
$$\left[ {\begin{array}{*{20}c} {A_{19} ,} & {A_{20} ,} & {A_{21} ,} & {A_{22} ,} & {A_{23} ,} & {A_{24} } \\ \end{array} } \right] = \int\nolimits_{z} {Q_{22} (z)\left[ {\begin{array}{*{20}c} {1,} & {z,} & {z^{2} ,} & {f(z),} & {zf(z),} & {f(z)^{2} } \\ \end{array} } \right]} \,{\text{d}}z,$$
$$\left[ {\begin{array}{*{20}c} {A_{25} ,} & {A_{26} ,} & {A_{27} ,} & {A_{28} ,} & {A_{29} ,} & {A_{30} } \\ \end{array} } \right] = \int\nolimits_{z} {Q_{66} (z)\left[ {\begin{array}{*{20}c} {1,} & {z,} & {z^{2} ,} & {f(z),} & {zf(z),} & {f(z)^{2} } \\ \end{array} } \right]} \,{\text{d}}z,$$
$$\left[ {\begin{array}{*{20}c} {A_{31} ,} & {A_{32} } \\ \end{array} } \right] = \int\nolimits_{z} {\left[ {\begin{array}{*{20}c} {Q_{55} (z),} & {Q_{44} (z)} \\ \end{array} } \right]\left( {\frac{df(z)}{{dz}}} \right)^{2} } \,{\text{d}}z,$$
$$\left[ {\begin{array}{*{20}c} {P_{1} ,} & {P_{2} ,} & {P_{3} } \\ \end{array} } \right] = \int\nolimits_{z} {e_{31} \frac{\pi }{{h_{f} }}\sin \left( {\frac{\pi z}{{h_{f} }}} \right)\left[ {\begin{array}{*{20}c} {1,} & {z,} & {f(z)} \\ \end{array} } \right]} \,{\text{d}}z,$$
$$\left[ {\begin{array}{*{20}c} {P_{4} ,} & {P_{5} ,} & {P_{6} } \\ \end{array} } \right] = \int\nolimits_{z} {e_{32} \frac{\pi }{{h_{f} }}\sin \left( {\frac{\pi z}{{h_{f} }}} \right)\left[ {\begin{array}{*{20}c} {1,} & {z,} & {f(z)} \\ \end{array} } \right]} \,{\text{d}}z,$$
$$\left[ {\begin{array}{*{20}c} {P_{7} ,} & {P_{9} } \\ \end{array} } \right] = \int\nolimits_{z} {e_{15} \cos \left( {\frac{\pi z}{{h_{f} }}} \right)\left[ {\begin{array}{*{20}c} {1,} & {\frac{df(z)}{{dz}}} \\ \end{array} } \right]} \,{\text{d}}z,\;\left[ {\begin{array}{*{20}c} {P_{8} ,} & {P_{10} } \\ \end{array} } \right] = \int\nolimits_{z} {e_{24} \cos \left( {\frac{\pi z}{{h_{f} }}} \right)\left[ {\begin{array}{*{20}c} {1,} & {\frac{df(z)}{{dz}}} \\ \end{array} } \right]} \,{\text{d}}z,$$
$$\left[ {\begin{array}{*{20}c} {P_{11} ,} & {P_{12} } \\ \end{array} } \right] = \int\nolimits_{z} {\left[ {\begin{array}{*{20}c} {s_{11} ,} & {s_{22} } \\ \end{array} } \right]\cos^{2} \left( {\frac{\pi z}{{h_{f} }}} \right)} \,{\text{d}}z,\;P_{13} = \int\nolimits_{z} {s_{33} \frac{{\pi^{2} }}{{h_{f}^{2} }}\sin^{2} \left( {\frac{\pi z}{{h_{f} }}} \right)} \,{\text{d}}z,$$
$$\left[ {\begin{array}{*{20}c} {P_{14} ,} & {P_{15} } \\ \end{array} } \right] = \int\nolimits_{z} {\left[ {\begin{array}{*{20}c} {d_{11} ,} & {d_{22} } \\ \end{array} } \right]\cos^{2} \left( {\frac{\pi z}{{h_{f} }}} \right)} \,{\text{d}}z,\;P_{16} = \int\nolimits_{z} {d_{33} \frac{{\pi^{2} }}{{h_{f}^{2} }}\sin^{2} \left( {\frac{\pi z}{{h_{f} }}} \right)} \,{\text{d}}z,$$
$$\left[ {\begin{array}{*{20}c} {M_{1} ,} & {M_{2} ,} & {M_{3} } \\ \end{array} } \right] = \int\nolimits_{z} {q_{31} \frac{\pi }{{h_{f} }}\sin \left( {\frac{\pi z}{{h_{f} }}} \right)\left[ {\begin{array}{*{20}c} {1,} & {z,} & {f(z)} \\ \end{array} } \right]} \,{\text{d}}z,$$
$$\left[ {\begin{array}{*{20}c} {M_{4} ,} & {M_{5} ,} & {M_{6} } \\ \end{array} } \right] = \int\nolimits_{z} {q_{32} \frac{\pi }{{h_{f} }}\sin \left( {\frac{\pi z}{{h_{f} }}} \right)\left[ {\begin{array}{*{20}c} {1,} & {z,} & {f(z)} \\ \end{array} } \right]} \,{\text{d}}z,$$
$$\left[ {\begin{array}{*{20}c} {M_{7} ,} & {M_{9} } \\ \end{array} } \right] = \int\nolimits_{z} {q_{15} \cos \left( {\frac{\pi z}{{h_{f} }}} \right)\left[ {\begin{array}{*{20}c} {1,} & {\frac{df(z)}{{dz}}} \\ \end{array} } \right]} \,{\text{d}}z,\;\left[ {\begin{array}{*{20}c} {M_{8} ,} & {M_{10} } \\ \end{array} } \right] = \int\nolimits_{z} {q_{24} \cos \left( {\frac{\pi z}{{h_{f} }}} \right)\left[ {\begin{array}{*{20}c} {1,} & {\frac{df(z)}{{dz}}} \\ \end{array} } \right]} \,{\text{d}}z,$$
$$M_{13} = \int\nolimits_{z} {\mu_{33} \frac{{\pi^{2} }}{{h_{f}^{2} }}\sin^{2} \left( {\frac{\pi z}{{h_{f} }}} \right)} \,{\text{d}}z$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allah Gholi, A.M., Khorshidvand, A.R., Jabbari, M. et al. Magneto-electro-thermo-elastic frequency response of functionally graded saturated porous annular plates via trigonometric shear deformation theory. Acta Mech 234, 3665–3685 (2023). https://doi.org/10.1007/s00707-023-03530-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03530-5

Navigation