Skip to main content
Log in

Response of excited microelongated non-local semiconductor layer thermomechanical waves to photothermal transport processes

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The governing equations for microelongated semiconductors are presented in a novel mathematical–physical way. The model is examined in line with the photogenerated transport processes when the microelongated elastic non-local semiconductor medium is powered. The primary governing equations reveal the interplay between elastic, thermal, and plasma waves when microelongation is taken into account. In this regard, the generalized photothermoelasticity theory is taken into consideration. The dimensionless analytical formulations for temperature, carrier density, displacement, stresses, and microelongation distributions have been obtained using the harmonic wave technique. During the electronic and thermoelastic deformation processes in two dimensions, the general solutions of the principal distributions are determined (2D). To get the full answers, several criteria are taken into account at the non-local medium's free surface. The numerical results were obtained using computer programming. These data were represented graphically for the work of the simulation and comparison with the experimental results under the influence of some of the variables under study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

\(\lambda ,\,\,\mu\) :

Lame’s elastic semiconductor parameters

\(\delta_{n} = (3\lambda + 2\mu )d_{n}\) :

The deformation potential difference

\(T\) :

The thermodynamic (temperature) heat

\(T_{0} \;\) :

Reference temperature in its natural state

\(\hat{\gamma } = (3\lambda + 2\mu + k)\alpha_{{t_{1} }}\) :

The volume thermal expansion

\(\sigma_{ij}\) :

The microelongational stress tensor

\(\rho \quad \quad\) :

The density of the non-local medium

\(\alpha_{{t_{1} }}\) :

Coefficients of linear thermal expansion

\(C_{{\text{E}}}\) :

Specific heat of the microelongated material at constant strain

\(k\) :

The thermal conductivity

\(D_{{\text{E}}}\) :

The carrier diffusion coefficient

\(\tau\) :

The carrier lifetime

\(E_{{\text{g}}}\) :

The energy gap

\(d_{n}\) :

The coefficients of electronic deformation

\(\Pi ,\Psi\) :

The scalar and vector functions, respectively

\(j_{0}\) :

The microinertia of microelement

\(a_{0} ,\,\alpha_{0} ,\lambda_{0} ,\lambda_{1}\) :

Microelongational material parameters

\(\xi_{1}\) :

The non-local scale parameter

\(\tau_{0} ,\nu_{0}\) :

Thermal relaxation times

\(\varphi\) :

The scalar microelongational function

\(m_{k}\) :

Components of the microstretch vector

\(s = s_{kk}\) :

Stress tensor component

\(\delta_{ik}\) :

Kronecker delta

References

  1. Eringen, A.C.: Microcontinuum Field Theories. Foundations and Solids, vol. 1. Springer, New York (1999)

    Book  MATH  Google Scholar 

  2. Eringen, A.C.: Linear theory of micropolar elasticity. J. Math. Mech. 15, 909–923 (1966)

    MathSciNet  MATH  Google Scholar 

  3. Eringen, A.C.: Theory of thermo-microstretch elastic solids. Int. J. Eng. Sci. 28(12), 1291–1301 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  4. Singh, B.: Reflection and refraction of plane waves at a liquid/thermo-microstretch elastic solid interface. Int. J. Eng. Sci. 39(5), 583–598 (2001)

    Article  Google Scholar 

  5. Abbas, I.: A GN model based upon two-temperature generalized thermoelastic theory in an unbounded medium with a spherical cavity. Appl. Math. Comput. 245, 108–115 (2014)

    MathSciNet  MATH  Google Scholar 

  6. De Cicco, S., Nappa, L.: On the theory of thermomicrostretch elastic solids. J. Therm. Stress. 22(6), 565–580 (1999)

    Article  MathSciNet  Google Scholar 

  7. Eringen, A.: Nonlocal polar elastic continua. Int. J. Eng. Sci. 10, 1–16 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  8. Eringen, A., Edelen, D.: On nonlocal elastic. Int. J. Eng. Sci. 10, 233–248 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  9. Eringen, A.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54, 4703–4710 (1983)

    Article  Google Scholar 

  10. Ramesh, G., Prasannakumara, B., Gireesha, B., Rashidi, M.: Casson fluid flow near the stagnation point over a stretching sheet with variable thickness and radiation. J. Appl. Fluid Mech. 9(3), 1115–1122 (2016)

    Article  Google Scholar 

  11. Ezzat, M., Abd-Elaal, M.: Free convection effects on a viscoelastic boundary layer flow with one relaxation time through a porous medium. J. Frankl. Inst. 334(4), 685–706 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  12. Shaw, S., Mukhopadhyay, B.: Periodically varying heat source response in a functionally graded microelongated medium. Appl. Math. Comput. 218(11), 6304–6313 (2012)

    MathSciNet  MATH  Google Scholar 

  13. Shaw, S., Mukhopadhyay, B.: Moving heat source response in a thermoelastic micro-elongated solid. J. Eng. Phys. Thermophys. 86(3), 716–722 (2013)

    Article  Google Scholar 

  14. Ailawalia, P., Sachdeva, S., Pathania, D.: Plane strain deformation in a thermo-elastic microelongated solid with internal heat source. Int. J. Appl. Mech. Eng. 20(4), 717–731 (2015)

    Article  Google Scholar 

  15. Sachdeva, S., Ailawalia, P.: Plane strain deformation in thermoelastic micro-elongated solid. Civil Environ. Res. 7(2), 92–98 (2015)

    Google Scholar 

  16. Hobiny, A., Abbas, I.: Theoretical analysis of thermal damages in skin tissue induced by intense moving heat source. Int. J. Heat Mass Transf. 124, 1011–1014 (2018)

    Article  Google Scholar 

  17. Scutaru, M., Vlase, S., Marin, M., et al.: New analytical method based on dynamic response of planar mechanical elastic systems. Bound Value Probl. 2020, 104 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  18. Abouelregal, A., Marin, M.: The size-dependent thermoelastic vibrations of nanobeams subjected to harmonic excitation and rectified sine wave heating. Mathematics 8(7), 1128 (2020)

    Article  Google Scholar 

  19. Abouelregal, A., Marin, M.: The response of nanobeams with temperature-dependent properties using state-space method via modified couple stress theory. Symmetry 12(8), 1276 (2020)

    Article  Google Scholar 

  20. Marin, M., Chirila, A., Othman, M.: An extension of Dafermos’s results for bodies with a dipolar structure. Appl. Math. Comput. 361, 680–688 (2019)

    MathSciNet  MATH  Google Scholar 

  21. Marin, M., Codarcea, L., Chirila, A.: Qualitative results on mixed problem of micropolar bodies with microtemperatures. Appl. Appl. Math. 12(2), 9 (2017)

    MathSciNet  MATH  Google Scholar 

  22. Abbas, I.: Eigenvalue approach on fractional order theory of thermoelastic diffusion problem for an infinite elastic medium with a spherical cavity. Appl. Math. Model 39, 6196–6206 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gordon, J.P., Leite, R.C.C., Moore, R.S., Porto, S.P.S., Whinnery, J.R.: Long-transient effects in lasers with inserted liquid samples. Bull. Am. Phys. Soc. 119, 501–510 (1964)

    Google Scholar 

  24. Kreuzer, L.B.: Ultralow gas concentration infrared absorption spectroscopy. J. Appl. Phys. 42, 2934 (1971)

    Article  Google Scholar 

  25. Tam, A.C.: Ultrasensitive Laser Spectroscopy, pp. 1–108. Academic Press, New York (1983)

    Book  Google Scholar 

  26. Tam, A.C.: Applications of photoacoustic sensing techniques. Rev. Mod. Phys. 58, 381 (1986)

    Article  Google Scholar 

  27. Tam, A.C.: Photothermal Investigations in Solids and Fluids, pp. 1–33. Academic Press, Boston (1989)

    Google Scholar 

  28. Hobinya, A., Abbas, I.: A GN model on photothermal interactions in a two-dimensions semiconductor half space. Results Phys. 15, 102588 (2019)

    Article  Google Scholar 

  29. Todorovic, D.M., Nikolic, P.M., Bojicic, A.I.: Photoacoustic frequency transmission technique: electronic deformation mechanism in semiconductors. J. Appl. Phys. 85, 7716 (1999)

    Article  Google Scholar 

  30. Song, Y.Q., Todorovic, D.M., Cretin, B., Vairac, P.: Study on the generalized thermoelastic vibration of the optically excited semiconducting microcantilevers. Int. J. Solids Struct. 47, 1871 (2010)

    Article  MATH  Google Scholar 

  31. Lotfy, Kh.: A novel model of photothermal diffusion (PTD) fo polymer nano-composite semiconducting of thin circular plate. Physica B Condenced Matter 537, 320–328 (2018)

    Article  Google Scholar 

  32. Abbas, I., Zenkour, A.: Dual-phase-lag model on thermoelastic interactions in a semi-infinite medium subjected to a ramp-type heating. J. Comput. Theor. Nanosci. 11, 642–645 (2014)

    Article  Google Scholar 

  33. Khamis, A., El-Bary, A., Lotfy, Kh., Bakali, A.: Photothermal excitation processes with refined multi dual phase-lags theory for semiconductor elastic medium. Alex. Eng. J. 59(1), 1–9 (2020)

    Article  Google Scholar 

  34. Lotfy, Kh., El-Bary, A., El-Sharif, A.: Ramp-type heating micro-temperature for a rotator semiconducting material during photo-excited processes with magnetic field. Results Phys. 19, 103338 (2020)

    Article  Google Scholar 

  35. Mondal, S., Sur, A.: Photo-thermo-elastic wave propagation in an orthotropic semiconductor with a spherical cavity and memory responses. Complex Media Waves Rand. (2020). https://doi.org/10.1080/17455030.2019.1705426

    Article  MATH  Google Scholar 

  36. Ezzat, M.: Hyperbolic thermal-plasma wave propagation in semiconductor of organic material. Waves Rand. Complex Media (2020). https://doi.org/10.1080/17455030.2020.1772524

    Article  MATH  Google Scholar 

  37. Ezzat, M.: A novel model of fractional thermal and plasma transfer within a non-metallic plate. Smart Strut. Syst. 27(1), 73–87 (2021)

    Google Scholar 

  38. Zhang, Y., Liu, G., Xie, X.: Free transverse vibrations of double walled carbon nano tubes using a theory of nonlocal elasticity. Phys. Rev. B 71, 195404 (2005)

    Article  Google Scholar 

  39. El-Sapa, S., Almoneef, A., Lotfy, Kh., El-Bary, A., Saeed, A.: Moore-Gibson-Thompson theory of a non-local excited semiconductor medium with stability studies. Alex. Eng. J. 61(12), 11753–11764 (2022)

    Article  Google Scholar 

  40. Alhejaili, W., Nasr, M., Lotfy, Kh., et al.: Laser short-pulse effect on magneto-photo-elasto-thermodiffusion waves of fractional heat equation for non-local excited semiconductor. Opt. Quant. Electron. 54, 833 (2022)

    Article  Google Scholar 

  41. Alhejaili, W., Lotfy, Kh., El-Bary, A., et al.: Thermodiffusion waves of mechanical ramp non-local excited semiconductor medium with variable thermal conductivity. SILICON (2022). https://doi.org/10.1007/s12633-022-01970-7

    Article  Google Scholar 

  42. Lord, H., Shulman, Y.: A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solid. 15, 299–309 (1967)

    Article  MATH  Google Scholar 

  43. Green, A., Lindsay, K.: Thermoelasticity. J. Elast. 2, 1–7 (1972)

    Article  MATH  Google Scholar 

  44. Biot, M.: Thermoelasticity and irreversible thermodynamics. J. Appl. Phys. 27, 240–253 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  45. Abbas, I.: Analytical solution for a free vibration of a thermoelastic hollow sphere. Mech. Based Des. Struct. Mach. 43, 265–276 (2015)

    Article  Google Scholar 

  46. Chadwick, P., Sneddon, I.N.: Plane waves in an elastic solid conducting heat. J. Mech. Phys. Solids 6, 223–230 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  47. Chadwick, P.: Thermoelasticity: the dynamic theory. In: Hill, R., Sneddon, I.N. (eds.) Progress in Solid Mechanics, vol. I, pp. 263–328. North-Holland, Amsterdam (1960)

    Google Scholar 

  48. Todorović, D.M., Nikolić, P.M., Bojičić, A.I.: Photoacoustic frequency transmission technique: electronic deformation mechanism in semiconductors. J. Appl. Phys. 85, 7716–7726 (1999)

    Article  Google Scholar 

  49. Mandelis, A., Nestoros, M., Christofides, C.: Thermoelectronic-wave coupling in laser photothermal theory of semiconductors at elevated temperatures. Opt. Eng. 36(2), 459–468 (1997)

    Article  Google Scholar 

  50. Lotfy, Kh., Abo-Dahab, S.M., Tantawi, R., Anwer, N.: Thermomechanical response model of a reflection photo thermal diffusion waves (RPTD) for semiconductor medium. SILICON 12(1), 199–209 (2020)

    Article  Google Scholar 

  51. Lotfy, Kh., Hassan, W., El-Bary, A.A., Kadry, M.A.: Response of electromagnetic and Thomson effect of semiconductor mediu due to laser pulses and thermal memories during photothermal excitation. Results Phys. 16, 102877 (2020)

    Article  Google Scholar 

  52. Liu, J., Han, M., Wang, R., Xu, S., Wang, X.: Photothermal phenomenon: Extended ideas for thermophysical properties characterization. J. Appl. Phys. 131, 065107 (2022). https://doi.org/10.1063/5.0082014

    Article  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia for funding this research work through the project number RI-44-0334.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kh. Lotfy.

Ethics declarations

Conflict of interest

The authors have declared that no competing interests exist.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Sapa, S., Alhejaili, W., Lotfy, K. et al. Response of excited microelongated non-local semiconductor layer thermomechanical waves to photothermal transport processes. Acta Mech 234, 2373–2388 (2023). https://doi.org/10.1007/s00707-023-03504-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03504-7

Navigation