Skip to main content
Log in

Non-conforming Trefftz finite element implementation of orthotropic Kirchhoff plate model based on consistent couple stress theory

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This work proposes a new 4-node non-conforming plate element for static and dynamic analyses of small-scale orthotropic thin plates within the consistent couple stress theory. By applying the Kirchhoff thin plate bending constraint to the three-dimensional consistent couple stress elasticity, the non-classical orthotropic thin plate model is established and the Trefftz functions are derived. Then, the new element is formulated in a straightforward manner based on the generalized conforming theory, by taking the obtained Trefftz functions as the basic function for construction and employing a novel set of point conforming conditions to enforce the compatibility requirement in weak sense. Several benchmark examples are examined and the results show that the element has good numerical accuracy and mesh-distortion tolerance in prediction of the size-dependent bending behavior of the small-scale orthotropic thin plates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Data availability

Data are available on request from the authors.

References

  1. Fleck, N.A., Hutchinson, J.W.: A phenomenological theory for strain gradient effects in plasticity. J. Mech. Phys. Solids 41(12), 1825–1857 (1993)

    MathSciNet  MATH  Google Scholar 

  2. Toupin, R.A.: Elastic materials with couple-stresses. Arch. Ration. Mech. Anal. 11(1), 385–414 (1962)

    MathSciNet  MATH  Google Scholar 

  3. Eringen, A.C., Edelen, D.G.B.: On nonlocal elasticity. Int. J. Eng. Sci. 10(3), 233–248 (1972)

    MathSciNet  MATH  Google Scholar 

  4. Neff, P., Ghiba, I.D., Madeo, A., Placidi, L., Rosi, G.: A unifying perspective: the relaxed linear micromorphic continuum. Continuum Mech. Thermodyn. 26(5), 639–681 (2014)

    MathSciNet  MATH  Google Scholar 

  5. Cosserat, E.: Theorie des Corps Deformables. Herman et Fils, Paris (1909)

    MATH  Google Scholar 

  6. Yang, F., Chong, A.C.M., Lam, D.C.C., Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39(10), 2731–2743 (2002)

    MATH  Google Scholar 

  7. Mindlin, R.D., Tiersten, H.F.: Effects of couple-stresses in linear elasticity. Arch. Ration. Mech. Anal. 11(1), 415–448 (1962)

    MathSciNet  MATH  Google Scholar 

  8. Koiter, W.T.: Couple stresses in the theory of elasticity, I and II. Proc. Ned. Akad. Wet. (B) 67, 17–44 (1964)

    MathSciNet  MATH  Google Scholar 

  9. Tsiatas, G.C.: A new Kirchhoff plate model based on a modified couple stress theory. Int. J. Solids Struct. 46(13), 2757–2764 (2009)

    MATH  Google Scholar 

  10. Tsiatas, G.C., Yiotis, A.J.: Size effect on the static, dynamic and buckling analysis of orthotropic Kirchhoff-type skew micro-plates based on a modified couple stress theory: comparison with the nonlocal elasticity theory. Acta Mech. 226(4), 1267–1281 (2015)

    MathSciNet  MATH  Google Scholar 

  11. Akgoz, B., Civalek, O.: Modeling and analysis of micro-sized plates resting on elastic medium using the modified couple stress theory. Meccanica 48(4), 863–873 (2013)

    MathSciNet  MATH  Google Scholar 

  12. Fang, J., Wang, H., Zhang, X.: On size-dependent dynamic behavior of rotating functionally graded Kirchhoff microplates. Int. J. Mech. Sci. 152, 34–50 (2019)

    Google Scholar 

  13. Kim, J., Zur, K.K., Reddy, J.N.: Bending, free vibration, and buckling of modified couples stress-based functionally graded porous micro-plates. Compos. Struct. 209, 879–888 (2019)

    Google Scholar 

  14. Thai, H.T., Vo, T.P., Nguyen, T.K., Kim, S.E.: A review of continuum mechanics models for size-dependent analysis of beams and plates. Compos. Struct. 177, 196–219 (2017)

    Google Scholar 

  15. Kong, S.: A Review on the size-dependent models of micro-beam and micro-plate based on the modified couple stress theory. Arch. Comput. Methods Eng. 29, 1–31 (2022)

    MathSciNet  Google Scholar 

  16. Hadjesfandiari, A.R., Hajesfandiari, A., Dargush, G.F.: Pure plate bending in couple stress theories, (2016) https://arxiv.org/abs/1606.02954

  17. Hadjesfandiari, A.R., Dargush, G.F.: Couple stress theory for solids. Int. J. Solids Struct. 48(18), 2496–2510 (2011)

    Google Scholar 

  18. Neff, P., Münch, I., Ghiba, I.D., Madeo, A.: On some fundamental misunderstandings in the indeterminate couple stress model. A comment on recent papers of AR Hadjesfandiari and GF Dargush. Int. J. Solids Struct. 81, 233–243 (2016)

    Google Scholar 

  19. Münch, I., Neff, P., Madeo, A., Ghiba, I.D.: The modified indeterminate couple stress model Why Yang et al.’s arguments motivating a symmetric couple stress tensor contain a gap and why the couple stress tensor may be chosen symmetric nevertheless. ZAMM J. Appl. Math. Mech. Z. Angew. Math. Mech. 97(12), 1524–1554 (2017)

    MathSciNet  Google Scholar 

  20. Hadjesfandiari, A.R.: Size-dependent piezoelectricity. Int. J. Solids Struct. 50(18), 2781–2791 (2013)

    Google Scholar 

  21. Hadjesfandiari, A.R.: Size-dependent thermoelasticity. Latin Am. J. Solids Struct. 11(9), 1679–1708 (2014)

    Google Scholar 

  22. Poya, R., Gil, A.J., Ortigosa, R., Palma, R.: On a family of numerical models for couple stress based flexoelectricity for continua and beams. J. Mech. Phys. Solids 125, 613–652 (2019)

    MathSciNet  MATH  Google Scholar 

  23. Subramaniam, C.G., Mondal, P.K.: Effect of couple stresses on the rheology and dynamics of linear Maxwell viscoelastic fluids. Phys. Fluids 32(1), 013108 (2020)

    Google Scholar 

  24. Jensen, O.E., Revell, C.K.: Couple stresses and discrete potentials in the vertex model of cellular monolayers. Biomech. Model. Mechanobiol. (2022). https://doi.org/10.1007/s10237-022-01620-2

    Article  Google Scholar 

  25. Alavi, S.E., Sadighi, M., Pazhooh, M.D., Ganghoffer, J.F.: Development of size-dependent consistent couple stress theory of Timoshenko beams. Appl. Math. Model. 79, 685–712 (2020)

    MathSciNet  MATH  Google Scholar 

  26. Wu, C.P., Hu, H.X.: A unified size-dependent plate theory for static bending and free vibration analyses of micro- and nano-scale plates based on the consistent couple stress theory. Mech. Mater. 162, 104085 (2021)

    Google Scholar 

  27. Qu, Y., Li, P., Jin, F.: A general dynamic model based on Mindlin’s high-frequency theory and the microstructure effect. Acta Mech. 231(9), 3847–3869 (2020)

    MathSciNet  MATH  Google Scholar 

  28. Ji, X., Li, A.Q.: The size-dependent electromechanical coupling response in circular micro-plate due to flexoelectricity. J. Mech. 33(6), 873–883 (2017)

    Google Scholar 

  29. Dehkordi, S.F., Beni, Y.T.: Electro-mechanical free vibration of single-walled piezoelectric/flexoelectric nano cones using consistent couple stress theory. Int. J. Mech. Sci. 128, 125–139 (2017)

    Google Scholar 

  30. Wang, Y.W., Li, X.F.: Synergistic effect of memory-size-microstructure on thermoelastic damping of a micro-plate. Int. J. Heat Mass Transf. 181, 122031 (2021)

    Google Scholar 

  31. Ajri, M., Fakhrabadi, M.M.S., Rastgoo, A.: Analytical solution for nonlinear dynamic behavior of viscoelastic nano-plates modeled by consistent couple stress theory. Latin Am. J. Solids Struct. 15(9), e113 (2018)

    Google Scholar 

  32. Chakravarty, S., Hadjesfandiari, A.R., Dargush, G.F.: A penalty-based finite element framework for couple stress elasticity. Finite Elem. Anal. Des. 130, 65–79 (2017)

    Google Scholar 

  33. Darrall, B.T., Dargush, G.F., Hadjesfandiari, A.R.: Finite element Lagrange multiplier formulation for size-dependent skew-symmetric couple-stress planar elasticity. Acta Mech. 225(1), 195–212 (2014)

    MathSciNet  MATH  Google Scholar 

  34. Deng, G., Dargush, G.F.: Mixed Lagrangian formulation for size-dependent couple stress elastodynamic response. Acta Mech. 227(12), 3451–3473 (2016)

    MathSciNet  MATH  Google Scholar 

  35. Pedgaonkar, A., Darrall, B.T., Dargush, G.F.: Mixed displacement and couple stress finite element method for anisotropic centrosymmetric materials. Eur. J. Mech. A Solids 85, 104074 (2021)

    MathSciNet  MATH  Google Scholar 

  36. Lei, J., Ding, P.S., Zhang, C.Z.: Boundary element analysis of static plane problems in size-dependent consistent couple stress elasticity. Eng. Anal. Boundary Elem. 132, 399–415 (2021)

    MathSciNet  MATH  Google Scholar 

  37. Hajesfandiari, A., Hadjesfandiari, A.R., Dargush, G.F.: Boundary element formulation for plane problems in size-dependent piezoelectricity. Int. J. Numer. Meth. Eng. 108(7), 667–694 (2016)

    MathSciNet  Google Scholar 

  38. Hadjesfandiari, A.R., Hajesfandiari, A., Dargush, G.F.: Size-dependent contact mechanics via boundary element analysis. Eng. Anal. Boundary Elem. 136, 213–231 (2022)

    MathSciNet  MATH  Google Scholar 

  39. Dargush, G.F., Apostolakis, G., Hadjesfandiari, A.R.: Two- and three-dimensional size-dependent couple stress response using a displacement-based variational method. Eur. J. Mech. A Solids 88, 104268 (2021)

    MathSciNet  MATH  Google Scholar 

  40. Shang, Y., Cen, S., Li, C.F., Fu, X.R.: Two generalized conforming quadrilateral Mindlin-Reissner plate elements based on the displacement function. Finite Elem. Anal. Des. 99, 24–38 (2015)

    Google Scholar 

  41. Shang, Y., Li, C.F., Zhou, M.J.: A novel displacement-based Trefftz plate element with high distortion tolerance for orthotropic thick plates. Eng. Anal. Boundary Elem. 106, 452–461 (2019)

    MathSciNet  MATH  Google Scholar 

  42. Shang, Y., Mao, Y.H., Cen, S., Li, C.F.: Generalized conforming Trefftz element for size-dependent analysis of thin microplates based on the modified couple stress theory. Eng. Anal. Boundary Elem. 125, 46–58 (2021)

    MathSciNet  MATH  Google Scholar 

  43. Shang, Y., Wu, H.P., Cen, S., Li, C.F.: An efficient 4-node facet shell element for the modified couple stress elasticity. Int. J. Numer. Meth. Eng. 123(4), 992–1012 (2022)

    MathSciNet  Google Scholar 

  44. Mao, Y.H., Shang, Y., Cen, S., Li, C.F.: An efficient 3-node triangular plate element for static and dynamic analyses of microplates based on modified couple stress theory with micro-inertia. Eng. Comput.

  45. Solyaev, Y.O., Lurie, S.A.: Trefftz collocation method for two-dimensional strain gradient elasticity. Int. J. Numer. Meth. Eng. 122(3), 823–839 (2021)

    MathSciNet  Google Scholar 

  46. Petrolito, J.: Vibration and stability analysis of thick orthotropic plates using hybrid-Trefftz elements. Appl. Math. Model. 38(24), 5858–5869 (2014)

    MathSciNet  MATH  Google Scholar 

  47. Teixeira de Freitas, J.A., Tiago, C.: Hybrid-Trefftz stress elements for plate bending. Int. J. Numer. Meth. Eng. 121(9), 1946–1976 (2020)

    MathSciNet  Google Scholar 

  48. Moldovan, I.D., Climent, N., Bendea, E.D., Cismasiu, I., Gomes Correia, A.: A hybrid-Trefftz finite element platform for solid and porous elastodynamics. Eng. Anal. Boundary Elem. 124, 155–173 (2021)

    MathSciNet  MATH  Google Scholar 

  49. Rezaiee-Pajand, M., Karkon, M.: Two higher order hybrid-Trefftz elements for thin plate bending analysis. Finite Elem. Anal. Des. 85, 73–86 (2014)

    MATH  Google Scholar 

  50. Long, Y.Q., Cen, S., Long, Z.F.: Advanced Finite Element Method in Structural Engineering. Springer & Tsinghua University Press, Beijing (2009)

    MATH  Google Scholar 

  51. Jirousek, J., N’Diaye, M.: Solution of orthotropic plates based on p-extension of the hybrid-Trefftz finite element model. Comput. Struct. 34(1), 51–62 (1990)

    MATH  Google Scholar 

  52. Karkon, M., Rezaiee-Pajand, M.: Finite element analysis of orthotropic thin plates using analytical solution. Iran. J. Sci. Technol. Trans. Civil Eng. 43(2), 125–135 (2019)

    Google Scholar 

  53. Wojtaszak, I.A.: The calculation of maximum deflection, moment, and shear for uniformly loaded rectangular plate with clamped edges. J. Appl. Mech. Trans. ASME 4(4), 173–176 (1937)

    Google Scholar 

Download references

Acknowledgements

The work is financially supported by the National Natural Science Foundation of China (12072154) and the Fundamental Research Funds for the Central Universities (ns2022006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Shang.

Ethics declarations

Conflict of interest

The authors state that there is no potential conflict of interest in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

The matrix \({{\varvec{\uplambda}}}\) in Eq. (54) is composed of two parts, as follows:

$${{\varvec{\uplambda}}} = \left[ {\begin{array}{*{20}c} {{{\varvec{\uplambda}}}^{w} } \\ {{{\varvec{\uplambda}}}^{\psi } } \\ \end{array} } \right]$$
(73)

The first submatrix \({{\varvec{\uplambda}}}^{w}\) is expressed as

$${{\varvec{\uplambda}}}^{w} = \left[ {\begin{array}{*{20}c} {\hat{w}^{1} \left( {x_{1} ,y_{1} } \right)} & {\hat{w}^{2} \left( {x_{1} ,y_{1} } \right)} & \cdots & {\hat{w}^{14} \left( {x_{1} ,y_{1} } \right)} \\ {\hat{w}^{1} \left( {x_{2} ,y_{2} } \right)} & {\hat{w}^{2} \left( {x_{2} ,y_{2} } \right)} & \cdots & {\hat{w}^{14} \left( {x_{2} ,y_{2} } \right)} \\ {\hat{w}^{1} \left( {x_{3} ,y_{3} } \right)} & {\hat{w}^{2} \left( {x_{3} ,y_{3} } \right)} & \cdots & {\hat{w}^{14} \left( {x_{3} ,y_{3} } \right)} \\ {\hat{w}^{1} \left( {x_{4} ,y_{4} } \right)} & {\hat{w}^{2} \left( {x_{4} ,y_{4} } \right)} & \cdots & {\hat{w}^{14} \left( {x_{4} ,y_{4} } \right)} \\ {\hat{w}^{1} \left( {x_{5} ,y_{5} } \right) + \hat{w}^{1} \left( {x_{7} ,y_{7} } \right)} & {\hat{w}^{2} \left( {x_{5} ,y_{5} } \right) + \hat{w}^{2} \left( {x_{7} ,y_{7} } \right)} & \cdots & {\hat{w}^{14} \left( {x_{5} ,y_{5} } \right) + \hat{w}^{14} \left( {x_{7} ,y_{7} } \right)} \\ {\hat{w}^{1} \left( {x_{6} ,y_{6} } \right) + \hat{w}^{1} \left( {x_{8} ,y_{8} } \right)} & {\hat{w}^{2} \left( {x_{6} ,y_{6} } \right) + \hat{w}^{2} \left( {x_{8} ,y_{8} } \right)} & \cdots & {\hat{w}^{14} \left( {x_{6} ,y_{6} } \right) + \hat{w}^{14} \left( {x_{8} ,y_{8} } \right)} \\ \end{array} } \right]$$
(74)

while the second part \({{\varvec{\uplambda}}}^{\psi }\) is given by

$${{\varvec{\uplambda}}}^{\psi } = {\mathbf{T}}_{n} {{\varvec{\Phi}}}$$
(75)

in which

$${{\varvec{\Phi}}} = \left[ {\begin{array}{*{20}c} {\hat{\psi }_{x}^{1} \left( {x_{A1} ,y_{A1} } \right)} & {\hat{\psi }_{x}^{2} \left( {x_{A1} ,y_{A1} } \right)} & {...} & {\hat{\psi }_{x}^{14} \left( {x_{A1} ,y_{A1} } \right)} \\ {\hat{\psi }_{y}^{1} \left( {x_{A1} ,y_{A1} } \right)} & {\hat{\psi }_{y}^{2} \left( {x_{A1} ,y_{A1} } \right)} & {...} & {\hat{\psi }_{y}^{14} \left( {x_{A1} ,y_{A1} } \right)} \\ \vdots & \vdots & \ddots & {...} \\ {\hat{\psi }_{x}^{1} \left( {x_{B4} ,y_{B4} } \right)} & {\hat{\psi }_{x}^{2} \left( {x_{B4} ,y_{B4} } \right)} & {...} & {\hat{\psi }_{x}^{14} \left( {x_{B4} ,y_{B4} } \right)} \\ {\hat{\psi }_{y}^{1} \left( {x_{B4} ,y_{B4} } \right)} & {\hat{\psi }_{y}^{2} \left( {x_{B4} ,y_{B4} } \right)} & {...} & {\hat{\psi }_{y}^{14} \left( {x_{B4} ,y_{B4} } \right)} \\ \end{array} } \right]$$
(76)

and

$${\mathbf{T}}_{n} = \left[ {\begin{array}{*{20}c} {{\mathbf{T}}_{1} } & {} & {} & {} \\ {} & {{\mathbf{T}}_{2} } & {} & {} \\ {} & {} & {{\mathbf{T}}_{3} } & {} \\ {} & {} & {} & {{\mathbf{T}}_{4} } \\ \end{array} } \right],\;\;\; {\mathbf{T}}_{i} = \left[ {\begin{array}{*{20}c} { - \frac{{y_{ij} }}{{L_{ij} }}} & {\frac{{x_{ij} }}{{L_{ij} }}} & {} & {} \\ {} & {} & { - \frac{{y_{ij} }}{{L_{ij} }}} & {\frac{{x_{ij} }}{{L_{ij} }}} \\ \end{array} } \right],\;\;\;\left( {ij = 12,\;23,\;34,\;41} \right)$$
(77)

where \(x_{ij} = x_{i} - x_{j}\) and \(y_{ij} = y_{i} - y_{j}\).

The matrix \({{\varvec{\Lambda}}}\) in Eq. (54) takes the form

$${{\varvec{\Lambda}}} = \left[ {\begin{array}{*{20}c} {{{\varvec{\Lambda}}}^{w} } \\ {{{\varvec{\Lambda}}}^{\psi } } \\ \end{array} } \right]$$
(78)

in which

$${{\varvec{\Lambda}}}^{w} = \left[ {\begin{array}{*{20}c} 1 & 0 & 0 & {} & {} & {} & {} & {} & {} & {} & {} & {} \\ {} & {} & {} & 1 & 0 & 0 & {} & {} & {} & {} & {} & {} \\ {} & {} & {} & {} & {} & {} & 1 & 0 & 0 & {} & {} & {} \\ {} & {} & {} & {} & {} & {} & {} & {} & {} & 1 & 0 & 0 \\ \frac{1}{2} & { - \frac{{x_{12} }}{8}} & { - \frac{{y_{12} }}{8}} & \frac{1}{2} & {\frac{{x_{12} }}{8}} & {\frac{{y_{12} }}{8}} & \frac{1}{2} & { - \frac{{x_{34} }}{8}} & { - \frac{{y_{34} }}{8}} & \frac{1}{2} & {\frac{{x_{34} }}{8}} & {\frac{{y_{34} }}{8}} \\ \frac{1}{2} & {\frac{{x_{41} }}{8}} & {\frac{{y_{41} }}{8}} & \frac{1}{2} & { - \frac{{x_{23} }}{8}} & { - \frac{{y_{23} }}{8}} & \frac{1}{2} & {\frac{{x_{23} }}{8}} & {\frac{{y_{23} }}{8}} & \frac{1}{2} & { - \frac{{x_{41} }}{8}} & { - \frac{{y_{41} }}{8}} \\ \end{array} } \right]$$
(79)

and \({{\varvec{\Lambda}}}^{\psi }\) is given by

$${{\varvec{\Lambda}}}^{\psi } = \left[ {\begin{array}{*{20}c} {{{\varvec{\Lambda}}}_{11}^{\psi } } & {{{\varvec{\Lambda}}}_{12}^{\psi } } & {} & {} \\ {} & {{{\varvec{\Lambda}}}_{22}^{\psi } } & {{{\varvec{\Lambda}}}_{23}^{\psi } } & {} \\ {} & {} & {{{\varvec{\Lambda}}}_{33}^{\psi } } & {{{\varvec{\Lambda}}}_{34}^{\psi } } \\ {{{\varvec{\Lambda}}}_{41}^{\psi } } & {} & {} & {{{\varvec{\Lambda}}}_{44}^{\psi } } \\ \end{array} } \right]$$
(80)

with

$${{\varvec{\Lambda}}}_{ii}^{\psi } = \left[ {\begin{array}{*{20}c} 0 & { - \frac{{1 + {1 \mathord{\left/ {\vphantom {1 {\sqrt 3 }}} \right. \kern-0pt} {\sqrt 3 }}}}{{2L_{ij} }}y_{ij} } & {\frac{{1 + {1 \mathord{\left/ {\vphantom {1 {\sqrt 3 }}} \right. \kern-0pt} {\sqrt 3 }}}}{{2L_{ij} }}x_{ij} } \\ 0 & { - \frac{{1 - {1 \mathord{\left/ {\vphantom {1 {\sqrt 3 }}} \right. \kern-0pt} {\sqrt 3 }}}}{{2L_{ij} }}y_{ij} } & {\frac{{1 - {1 \mathord{\left/ {\vphantom {1 {\sqrt 3 }}} \right. \kern-0pt} {\sqrt 3 }}}}{{2L_{ij} }}x_{ij} } \\ \end{array} } \right],\;\;\; {{\varvec{\Lambda}}}_{ij}^{\psi } = \left[ {\begin{array}{*{20}c} 0 & { - \frac{{1 - {1 \mathord{\left/ {\vphantom {1 {\sqrt 3 }}} \right. \kern-0pt} {\sqrt 3 }}}}{{2L_{ij} }}y_{ij} } & {\frac{{1 - {1 \mathord{\left/ {\vphantom {1 {\sqrt 3 }}} \right. \kern-0pt} {\sqrt 3 }}}}{{2L_{ij} }}x_{ij} } \\ 0 & { - \frac{{1 + {1 \mathord{\left/ {\vphantom {1 {\sqrt 3 }}} \right. \kern-0pt} {\sqrt 3 }}}}{{2L_{ij} }}y_{ij} } & {\frac{{1 + {1 \mathord{\left/ {\vphantom {1 {\sqrt 3 }}} \right. \kern-0pt} {\sqrt 3 }}}}{{2L_{ij} }}x_{ij} } \\ \end{array} } \right]$$
(81)

where \(ij = 12,\;23,\;34,\;41\).

Appendix 2

As previously discussed, the analytical solutions of some of the numerical tests are relatively easy to obtain and these are summarized in this section.

With respect to the static bending behavior of the square thin plate under uniformly distributed transverse load q, the deflection of the simply supported orthotropic case can be obtained using the Navier method:

$$w = \frac{{16qL^{4} }}{{\pi^{6} }}\sum\limits_{n = 1}^{\infty } {\sum\limits_{m = 1}^{\infty } {\frac{1}{mn}\frac{{\sin \frac{m\pi }{L}x\sin \frac{n\pi }{L}y}}{{\left( {D_{x} + D_{l} } \right)m^{4} + 2\left( {H + D_{l} } \right)m^{2} n^{2} + \left( {D_{y} + D_{l} } \right)n^{4} }}} }$$
(82)

in which L is the edge length of the square plate. Then, by substituting Eq. (82) into the definitions given in Sect. 2, the resultants can be also obtained. From Eq. (82), the deflection of the simply supported isotropic case is delivered:

$$w = \frac{{16qL^{4} }}{{\left( {D + D_{l} } \right)\pi^{6} }}\sum\limits_{m = 1}^{\infty } {\sum\limits_{n = 1}^{\infty } {\frac{1}{mn}\frac{{\sin \frac{m\pi }{L}x\sin \frac{n\pi }{L}y}}{{\left( {m^{4} + 2m^{2} n^{2} + n^{4} } \right)}}} }$$
(83)

Note that it is difficult to derive the solution of the clamped orthotropic square plate analytically, only that of the clamped isotropic case is provided by using the superposition method [53]:

$$w = \frac{q}{{8\left( {D + D_{l} } \right)}}\left[ {\left( {\frac{{L^{2} }}{4} - x^{2} } \right)\left( {\frac{{L^{2} }}{4} - y^{2} } \right) - \frac{{L^{3} }}{2}\left( {\sum\limits_{n = 1,3...}^{\infty } {\frac{{A_{n} Y_{n} }}{{n^{2} }}\frac{{\cos \frac{n\pi x}{L}}}{{\cosh^{2} \frac{n\pi }{2}}} + \sum\limits_{m = 1,3...}^{\infty } {\frac{{A_{m} X_{m} }}{{m^{2} }}\frac{{\cos \frac{m\pi y}{L}}}{{\cosh^{2} \frac{m\pi }{2}}}} } } \right)} \right]$$
(84)

in which

$$X_{m} = L\sinh \frac{m\pi }{2}\cosh \frac{m\pi x}{L} - 2x\cosh \frac{m\pi }{2}\sinh \frac{m\pi x}{L}$$
(85)
$$Y_{n} = L\sinh \frac{n\pi }{2}\cosh \frac{n\pi y}{L} - 2y\cosh \frac{n\pi }{2}\sinh \frac{n\pi y}{L}$$
(86)

and the coefficients \(A_{n}\) and \(A_{m}\) are determined in accordance with the boundary conditions and summarized in Table

Table 13 The coefficients used in Eq. (84)

13.

Besides, the reference frequency of the free vibration of the simply supported isotropic square plate is given by

$$\theta_{mn} = \pi^{2} \left(\frac{{m^{2} }}{{L^{2} }} + \frac{{n^{2} }}{{L^{2} }}\right)\sqrt {\frac{{D[1 + 24(1 - \nu )\frac{{l^{2} }}{{h^{2} }}]}}{{\rho h + \frac{\rho }{12}h^{3} \pi^{2} (\frac{{m^{2} }}{{L^{2} }} + \frac{{n^{2} }}{{L^{2} }})}}} ,\;\;\;m\;{\text{and}}\;n = 1,2,3 \ldots$$
(87)

With respect to the static bending behavior of the circular thin plate under uniformly distributed transverse load q, the deflection of the clamped orthotropic case can be obtained:

$$w = \frac{{q\left( {R^{2} - r^{2} } \right)^{2} }}{{8\left[ {3\left( {D_{x} + D_{l} } \right) + 2\left( {H + D_{l} } \right) + 3\left( {D_{y} + D_{l} } \right)} \right]}}$$
(88)

in which R is the radius of the circular plate and \(r^{2} = x^{2} + y^{2}\). From Eq. (88), the deflection of the clamped isotropic case is further deduced:

$$w = \frac{q}{{64\left( {D + D_{l} } \right)}}\left( {R^{2} - r^{2} } \right)^{2}$$
(89)

In addition, the deflection of the simply supported isotropic circular plate is given by

$$w = \frac{{qR^{4} }}{{64\left( {D + D_{l} } \right)\left[ {\left( {1 + \nu } \right)D + 2D_{l} } \right]}}\left( {{\text{A}}\frac{{r^{4} }}{{R^{4} }} + {\text{B}}\frac{{r^{2} }}{{R^{2} }} + {\text{C}}} \right)$$
(90)

with

$${\text{A}} = \left( {1 + \nu } \right)D + 2D_{l} {,}\;\;\;{\text{B}} = - 2\left( {3 + \nu } \right)D - 8D_{l} {,}\;\;\;{\text{C}} = \left( {5 + \nu } \right)D + 6D_{l}$$
(91)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, YH., Shang, Y. & Wang, YD. Non-conforming Trefftz finite element implementation of orthotropic Kirchhoff plate model based on consistent couple stress theory. Acta Mech 234, 1857–1887 (2023). https://doi.org/10.1007/s00707-023-03479-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03479-5

Navigation