Skip to main content
Log in

Wave attenuation of a multi-span continuous beam with variable cross sections

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This paper studies the vibration band-gaps of a non-uniform beam with periodically continuous variable cross sections and hinged supports. The governing equation of the beam is obtained by using spectral element method. The frequency responses of the beam under external excitation are shown. The accuracy and efficiency of the spectral element method are validated. The advantages of the proposed beam are discussed. The influences of the structural and material parameters on the band-gap properties are explored, such as the height curve, the disordered vibration absorbers, and the material attributes. The coupling effects of the local resonance band-gaps and the Bragg scattering band-gaps are explored and can be used to design the band-gap structure. The displacement amplitudes of the beam for different excitation frequencies are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Brun, M., Movchan, A.B., Jones, I.S.: Phononic band gap systems in structural mechanics: finite slender elastic structures and infinite periodic waveguides. J. Vib. Acoust. 135, 041013 (2013)

    Article  Google Scholar 

  2. Carta, G., Giaccu, G.F., Brun, M.: A phononic band gap model for long bridges. The “Brabau” bridge case. Eng. Struct. 140, 66–76 (2017)

    Article  Google Scholar 

  3. Stein, A., Nouh, M., Singh, T.: Widening, transition and coalescence of local resonance band gaps in multi-resonator acoustic metamaterials: from unit cells to finite chains. J. Sound Vib. 523, 116716 (2022)

    Article  Google Scholar 

  4. Banerjee, A., Das, R., Calius, E.P.: Waves in structured mediums or metamaterials: a review. Arch. Comput. Methods Eng 26, 1029–1058 (2019)

    Article  MathSciNet  Google Scholar 

  5. Hussein, M.I., Leamy, M.J., Ruzzene, M.: Dynamics of phononic materials and structures: historical origins, recent progress, and future outlook. Appl. Mech. Rev. 66, 040802 (2014)

    Article  Google Scholar 

  6. Wu, K., Hu, H., Wang, L.: Optimization of a type of elastic metamaterial for broadband wave suppression. Proc. R. Soc. A 477, 20210337 (2021)

    Article  MathSciNet  Google Scholar 

  7. Chen, Y., Hu, G., Huang, G.: A hybrid elastic metamaterial with negative mass density and tunable bending stiffness. J. Mech. Phys. Solids 105, 179–198 (2017)

    Article  MathSciNet  Google Scholar 

  8. Lu, Z.Q., Zhao, L., Ding, H., Chen, L.Q.: A dual-functional metamaterial for integrated vibration isolation and energy harvesting. J. Sound Vib. 509, 116251 (2021)

    Article  Google Scholar 

  9. Ozkaya, E., Yilmaz, C.: Effect of eddy current damping on phononic band gaps generated by locally resonant periodic structures. J. Sound Vib. 389, 250–265 (2017)

    Article  Google Scholar 

  10. Zhang, X., Hao, C., Luo, H., Kong, D., Li, C.: Flexural wave band gaps of steel bridge decks periodically stiffened with U-ribs: mechanism and influencing factors. J. Low Freq. Noise Vib. Active 41, 799–809 (2022)

    Article  Google Scholar 

  11. Abrahamson, A.: The Response of Periodic Structures to Aero-Acoustic Pressures, with Particular Reference to Aircraft Skin-Rib Spar Structures. University of Southampton, Southampton (1973)

    Google Scholar 

  12. Bao, J., Shi, Z., Xiang, H.: Dynamic responses of a structure with periodic foundations. J. Eng. Mech. 138, 761–769 (2012)

    Google Scholar 

  13. Zhao, C., Zeng, C., Huang, H., Dai, J., Bai, W., Wang, J., Mo, Y.L.: Preliminary study on the periodic base isolation effectiveness and experimental validation. Eng. Struct. 226, 111364 (2021)

    Article  Google Scholar 

  14. Brule, S., Javelaud, E.H., Enoch, S., Guenneau, S.: Experiments on seismic metamaterials: molding surface waves. Phys. Rev. Lett. 112, 421–431 (2014)

    Article  Google Scholar 

  15. Liu, Z.Y., Zhang, X.X., Mao, Y.W., Zhu, Y.Y., Yang, Z.Y., Chan, C.T., Sheng, P.: Locally resonant sonic materials. Science 289, 1734–1736 (2000)

    Article  Google Scholar 

  16. Lee, P.H.Y., Barter, J.D., Beach, K.L., Hindman, C.L., Lake, B.M., Rungaldier, H., Thompson, H.R., Yee, R.: Experiments on Bragg and non-Bragg scattering using single-frequency and chirped radars. Radio Sci. 32, 1725–1744 (1997)

    Article  Google Scholar 

  17. Hirsekorn, M.: Small-size sonic crystals with strong attenuation bands in the audible frequency range. Appl. Phys. Lett. 84, 3364–3366 (2004)

    Article  Google Scholar 

  18. Gao, Y., Wang, L., Sun, W., Wu, K., Hu, H.: Ultrawide bandgap in metamaterials via coupling of locally resonant and Bragg bandgaps. Acta Mech. 233, 477–493 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  19. Raghavan, L., Phani, A.S.: Local resonance bandgaps in periodic media: theory and experiment. J. Acoust. Soc. Am. 134, 1950–1959 (2013)

    Article  Google Scholar 

  20. Pai, P.F., Peng, H., Jiang, S.: Acoustic metamaterial beams based on multi-frequency vibration absorbers. Int. J. Mech. Sci. 79, 195–205 (2014)

    Article  Google Scholar 

  21. Hao, S., Wu, Z., Li, F., Zhang, C.: Enhancement of the band-gap characteristics in disordered elastic metamaterial multi-span beams: theory and experiment. Mech. Res. Commun. 113, 103692 (2021)

    Article  Google Scholar 

  22. Wang, K., Zhou, J., Tan, D., Li, Z., Lin, Q., Xu, D.: A brief review of metamaterials for opening low-frequency band gaps. Appl. Math. Mech.-Engl. Edit. 43, 1125–1144 (2022)

    Article  Google Scholar 

  23. Xie, L., Xia, B., Liu, J., Huang, G., Lei, J.: An improved fast plane wave expansion method for topology optimization of phononic crystals. Int. J. Mech. Sci. 120, 171–181 (2017)

    Article  Google Scholar 

  24. Xu, Y., Zhou, X., Wang, W., Wang, L., Peng, F., Li, B.: On natural frequencies of non-uniform beams modulated by finite periodic cells. Phys. Lett. A 380, 3278–3283 (2016)

    Article  Google Scholar 

  25. Farzbod, F., Leamy, M.J.: Analysis of Bloch’s method and the propagation technique in periodic structures. J. Vib. Acoust. 133, 031010 (2011)

    Article  Google Scholar 

  26. Li, F.-L., Wang, Y.-S., Zhang, C., Yu, G.-L.: Boundary element method for band gap calculations of two-dimensional solid phononic crystals. Eng. Anal. Bound. Elem. 37, 225–235 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Doyle, J.F.: Wave Propagation in Structures: Spectral Analysis Using Fast Discrete Fourier Transforms. Springer, New York (1997)

    Book  MATH  Google Scholar 

  28. Bin, J., Oates, W.S., Hussaini, M.Y.: An analysis of a discontinuous spectral element method for elastic wave propagation in a heterogeneous material. Comput. Mech. 55, 789–804 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Xiong, Y., Wen, S., Li, F., Zhang, C.: Enhancement of the band-gap characteristics of hierarchical periodic elastic metamaterial beams. Waves Random Complex Media 32, 1862–1878 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  30. Garcia-Pablos, D., Sigalas, M., de Espinosa, F.R.M., Torres, M., Kafesaki, M., Garcia, N.: Theory and experiments on elastic band gaps. Phys. Rev. Lett. 84, 4349–4352 (2000)

    Article  Google Scholar 

  31. Lee, U.: Spectral Element Method in Structural Dynamics. Wiley, Singapore (2009)

    Book  MATH  Google Scholar 

  32. Wen, S., Xiong, Y., Hao, S., Li, F., Zhang, C.: Enhanced band-gap properties of an acoustic metamaterial beam with periodically variable cross-sections. Int. J. Mech. Sci. 166, 105229 (2020)

    Article  Google Scholar 

  33. Gao, F., Wu, Z., Li, F., Zhang, C.: Numerical and experimental analysis of the vibration and band-gap properties of elastic beams with periodically variable cross sections. Waves Random Complex Media 29, 299–316 (2019)

    Article  MATH  Google Scholar 

  34. An, X., Fan, H., Zhang, C.: Elastic wave and vibration bandgaps in planar square metamaterial-based lattice structures. J. Sound Vib. 475, 115292 (2020)

    Article  Google Scholar 

  35. Wen, S.R., Lu, N.L., Wu, Z.J.: Dynamic property analysis of the space-frame structure using the spectral element method. Waves Random Complex Media 24, 404–420 (2014)

    Article  MATH  Google Scholar 

  36. Ren, T., Liu, C., Li, F., Zhang, C.: Active tunability of band gaps for a novel elastic metamaterial plate. Acta Mech. 231, 4035–4053 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wu, Z.J., Li, F.M., Zhang, C.: Vibration band-gap properties of three-dimensional Kagome lattices using the spectral element method. J. Sound Vib. 341, 162–173 (2015)

    Article  Google Scholar 

  38. Hajhosseini, M., Rafeeyan, M.: Modeling and analysis of piezoelectric beam with periodically variable cross-sections for vibration energy harvesting. Appl. Math. Mech.-Engl. Edit. 37, 1053–1066 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  39. Dal Poggetto, V.F., Bosia, F., Miniaci, M., Pugno, N.M.: Band gap enhancement in periodic frames using hierarchical structures. Int. J. Solids Struct. 216, 68–82 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant Nos. 12172119 and 11872169 and Natural Science Foundation of Jiangsu Province under Grant No. BK20191295. The authors thank the anonymous reviewers for their helpful comments and suggestions that have helped to improve the presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaochen Mao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, X., Zhang, L. & Fan, X. Wave attenuation of a multi-span continuous beam with variable cross sections. Acta Mech 234, 1451–1464 (2023). https://doi.org/10.1007/s00707-022-03465-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-022-03465-3

Navigation