Skip to main content
Log in

An analysis of a discontinuous spectral element method for elastic wave propagation in a heterogeneous material

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

The numerical dispersion and dissipation properties of a discontinuous spectral element method are investigated in the context of elastic waves in one dimensional periodic heterogeneous materials. Their frequency dependence and elastic band characteristics are studied. Dispersion relations representing both pass band and stop band structures are derived and used to assess the accuracy of the numerical results. A high-order discontinuous spectral Galerkin method is used to calculate the complex dispersion relations in heterogeneous materials. Floquet–Bloch theory is used to derive the elastic band structure. The accuracy of the dispersion relation is investigated with respect to the spectral polynomial orders for three different cases of materials. Numerical investigations illustrate a spectral convergence in numerical accuracy with respect to the polynomial order based on the elastic band structure and a discontinuous jump of the maximum resolvable frequency within the pass bands resulting in a step-like increase of it with respect to the polynomial order.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Joannopoulos JD, Meade RD, Winn JN (1995) Photonic crystals: molding the flow of light. Princeton University Press, Princeton

    MATH  Google Scholar 

  2. Kushwaha MS (1996) Classical band structure of periodic elastic composites. Int J Mod Phys B 10:977–1094

    Article  Google Scholar 

  3. Kushwaha MS (1999) Band gap engineering in phononic crystals. Recent Res Dev Appl Phys 2:743–855

    Google Scholar 

  4. Sigalas M, Kushwaha MS, Economou EN, Kafesaki M, Psarobas IE, Steurer W (2005) Classical vibrational modes in phononic lattices: theory and experiments. Z Kristallogr 220:765–809

    Article  Google Scholar 

  5. Stroscio MA, Dutta M (2001) Phonons in nanostructures. Cambridge University Press, Cambridge

    Book  Google Scholar 

  6. Nelson DF (1979) Electric, optic, and acoustic interactions in dielectrics. Wiley, New York

    Google Scholar 

  7. Tamura S, Shields JA, Wolfe JP (1991) Lattice dynamics and elastic phonon scattering in silicon. Phys Rev B 44:3001–3011

    Article  Google Scholar 

  8. Liu Z, Chan CT, Sheng P, Goertzen AL, Page JH (2000) Elastic wave scattering by periodic structures of spherical objects: theory and experiment. Phys Rev B 62:2446–2457

    Article  Google Scholar 

  9. Penciu RS, Fytas G, Economou EN, Steffen W, Yannopoulos SN (2000) Acoustic excitations in suspensions of soft colloids. Phys Rev Lett 85:4622–4625

    Article  Google Scholar 

  10. Russell P, Marin E, Díez A, Guenneau S, Movchan A (2003) Sonic band gaps in PCF performs: enhancing the interaction of sound and light. Opt Express 11:2555–2560

    Article  Google Scholar 

  11. Wolfe JP (1998) Imaging phonons: acoustic wave propagation in solids. Cambridge University Press, Cambridge

    Book  Google Scholar 

  12. Odeh F, Keller JB (1964) Partial differential equations with periodic coefficients and Bloch waves in crystals. J Math Phys 5:1499–1504

    Article  MATH  MathSciNet  Google Scholar 

  13. Lee EH, Yang WH (1973) On waves in composite materials with periodic structure. SIAM J Appl Math 25:492–499

    Article  MATH  MathSciNet  Google Scholar 

  14. Karim-Panahri K (1983) Antiplane strain harmonic waves in infinite, elastic, periodically triple-layered media. J Acoust Soc Am 74:314–319

    Article  Google Scholar 

  15. Angel YC, Achenbach JD (1987) Harmonic waves in an elastic solid containing a doubly periodic array of cracks. Wave Motion 9:337–385

    Article  Google Scholar 

  16. Bai D, Keller JB (1987) Sound waves in a periodic medium containing rigid spheres. J Acoust Soc Am 82:1436–1441

    Article  Google Scholar 

  17. Sigalas M, Economou EN (1992) Elastic and acoustic wave band structure. J Sound Vib 158:377–382

    Article  Google Scholar 

  18. Kafesaki M, Economou EN (1999) Multiple-scattering theory for three-dimensional periodic acoustic composites. Phys Rev B 60:11993–12001

    Article  Google Scholar 

  19. Korringa J (1947) On the calculation of the energy of a Bloch wave in a metal. Physica 13:392–400

    Article  MathSciNet  Google Scholar 

  20. Kohn W, Rostoker N (1954) Solution of the Schrödinger equation in periodic lattices with an application to metallic lithium. Phys Rev 94:1111–1120

    Article  MATH  Google Scholar 

  21. Taflove A (1998) Advances in computational electrodynamics: the finite-difference time-domain method. Artech House, Norwood

    MATH  Google Scholar 

  22. Kopriva DA (2009) Implementing spectral methods for partial differential equations: algorithms for scientists and engineers. Springer, Berlin

    Google Scholar 

  23. Canuto C, Hussaini MY, Quarteroni A, Zang TA (2006) Spectral methods: fundamentals in single domains. Springer, Berlin

    Google Scholar 

  24. Hu FQ, Hussaini MY, Rasetarinera P (1999) An analysis of the discontinuous Galerkin method for wave propagation problems. J Comput Phys 151:921–946

    Article  MATH  Google Scholar 

  25. Ainsworth M (2004) Discrete dispersion relation for hp-version finite element approximation at high wave number. SIAM J Numer Anal 42(2):553–575

    Article  MATH  MathSciNet  Google Scholar 

  26. Stanescu D, Kopriva DA, Hussaini MY (2000) Dispersion analysis for discontinuous spectral element methods. J Sci Comput 15:149–171

    Article  MATH  MathSciNet  Google Scholar 

  27. Gassner G, Kopriva DA (2011) A comparison of the dispersion and dissipation errors of Gauss and Gauss-Lobatto discontinuous Galerkin spectral element methods. SIAM J Sci Comput 33:2560–2579

    Article  MATH  MathSciNet  Google Scholar 

  28. Åberg M, Gudmundson P (1997) The usage of standard finite element codes for computation of dispersion relations in materials with periodic microstructure. J Acoust Soc Am 102:2007–2013

    Article  Google Scholar 

  29. Luo M, Liu QH, Li Z (2009) Spectral element method for band structures of two-dimensional anisotropic photonic crystals. Phys Rev E 79:026705

    Article  Google Scholar 

  30. Luo M, Liu QH (2010) Three-dimensional dispersive metallic photonic crystals with a band gap and a high cutoff frequency. J Opt Soc Am A 27(8):1878–1884

    Article  MathSciNet  Google Scholar 

  31. Ledger PD, Morgan K (2005) The application of the hp-finite element method to electromagnetic problems. Arch Comput Methods Eng 12(3):235–302

    Article  MATH  MathSciNet  Google Scholar 

  32. Jin J (2002) The finite element method in electromagnetics, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  33. Abeele KV, Broeckhoven T, Lacor C (2007) Dispersion and dissipation properties of the 1D spectral volume method and application to a \(p\)-multigrid algorithm. J Comput Phys 224:616–636

    Article  MATH  MathSciNet  Google Scholar 

  34. Wiart CC, Hillewaert K (2012) DNS and ILES of transitional flows around a SD7003 using a high order discontinuous Galerkin method. Seventh international conference on computational fluid dynamics (ICCFD7), Big Island, Hawaii

  35. Phani AS, Woodhouse J, Fleck NA (2006) Wave propagation in two-dimensional periodic lattices. J Acoust Soc Am 119:1995–2005

    Article  Google Scholar 

  36. Cao Y, Hou Z, Liu Y (2004) Finite difference time domain method for band-structure calculations of two-dimensional phononic crystals. Solid State Commun 132:539–543

    Article  Google Scholar 

  37. Hussein MI, Hulbert GM, Scott RA (2006) Dispersive elastodynamics of 1D banded materials and structures: analysis. J Sound Vib 289:779–806

    Article  Google Scholar 

  38. Toro EF (2009) Riemann solvers and numerical methods for fluid dynamics, 3rd edn. Springer, Berlin

    Book  MATH  Google Scholar 

  39. Fogarty TR, LeVeque RJ (1999) High-resolution finite-volume methods for acoustic waves in periodic and random media. J Acoust Soc Am 106:17–28

    Article  Google Scholar 

  40. Andrianov IV, Bolshakov VI, Danishevs’kyy VV, Weichert D (2008) Higher order asymptotic homogenization and wave propagation in periodic composite materials. Proc R Soc A 464:1181–1201

    Article  MATH  MathSciNet  Google Scholar 

  41. Santosa F, Symes WW (1991) A dispersive effective medium for wave propagation in periodic composites. SIAM J Appl Math 51:984–1005

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge support through the Federal Aviation Administration Center of Excellence on Commercial Space Transportation through FAA Grant 029994.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William S. Oates.

Appendix

Appendix

We derive the numerical dispersion relation of DSEM scheme chosen to simulate the elastic wave propagation through homogeneous materials in this study. Equation (12) can be expressed in the matrix form

$$\begin{aligned} \frac{\delta }{2}\mathbf{Q}\frac{\partial \mathbf{C}^{n}}{\partial t}+\mathbf{N}_{-1} \mathbf{C}^{n-1}+\mathbf{N}_0 \mathbf{C}^{n}+\mathbf{N}_1 \mathbf{C}^{n+1}=0, \end{aligned}$$
(41)

where \(\mathbf{C}^{n} =[{\mathbf{C}_{0}^{n}} ,{\mathbf{C}_{1}^{n}} ,\ldots ,\mathbf{C}_{\mathrm{p}}^{n} ]^{\mathrm{T}}\). Here, \(\mathbf{A}_{\mathrm{L}}^{n-1} =\mathbf{A}_{\mathrm{L}}^n \) and \(\mathbf{A}_\mathrm{R}^{n+1} =\mathbf{A}_\mathrm{R}^n \) since the medium is homogeneous. If the element is uniform in one dimension, then we can seek solutions of the form

$$\begin{aligned} \mathbf{C}^{n}={\tilde{\mathbf{C}}}\hbox {e}^{\mathrm{j}(\omega t-kn\delta )}, \end{aligned}$$
(42)

where \({\tilde{\mathbf{C}}}\) is a complex vector of dimension \([\hbox {N}\times (\hbox {p}+1)]\). The substitution of Eq. (42) into (41) gives an algebraic system for \({\tilde{\mathbf{C}}}\)

$$\begin{aligned} \left( \frac{\hbox {j}\omega \delta }{2}\mathbf{Q}+\hbox {e}^{\mathrm{j}k\delta }\mathbf{N}_{-1} +\mathbf{N}_0 +\hbox {e}^{-\mathrm{j}k\delta }\mathbf{N}_1 \right) {\tilde{\mathbf{C}}}=0. \end{aligned}$$
(43)

If we define the non-dimensional wave number and frequency as \(\tilde{k}=k\delta \) and \(\tilde{\omega }=\omega \delta /c\) where \(c=\sqrt{K/\rho }\), Eq. (43) has a non-trivial solution when the determinant of the following matrix is zero, which leads to the numerical dispersion relation given by

$$\begin{aligned} \det \bigg (\frac{\hbox {j}c\tilde{\omega }}{2}\mathbf{Q}+\hbox {e}^{\mathrm{j}\tilde{k}}\mathbf{N}_{-1} +\mathbf{N}_0 +\hbox {e}^{-\mathrm{j}\tilde{k}}\mathbf{N}_1 \bigg )=0, \end{aligned}$$
(44)

where

$$\begin{aligned}&\{Q\}_{lm} =\mathbf{I}\int _{-1}^1 {L_l (\xi )L_m (\xi )\hbox {d}\xi } , \nonumber \\&\{N_0 \}_{lm} =\mathbf{A}_\mathrm{L}^n L_l (1)L_m (1)\nonumber \\&\quad -\mathbf{A}_\mathrm{R}^n L_l (-1)L_m (-1) -\mathbf{A}^{n}\int _{-1}^1 {L_m (\xi ) \frac{\partial L_l (\xi )}{\partial \xi }\hbox {d}\xi ,} \nonumber \\&\{N_{-1} \}_{lm} =-\mathbf{A}_\mathrm{L}^n L_m (1)L_l (-1),\nonumber \\&\{N_1 \}_{lm} =\mathbf{A}_\mathrm{R}^n L_m (-1)L_l (1), \nonumber \\&\quad \hbox { where }l,m=0,1,\ldots ,\hbox {p}. \end{aligned}$$
(45)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bin, J., Oates, W.S. & Yousuff Hussaini, M. An analysis of a discontinuous spectral element method for elastic wave propagation in a heterogeneous material. Comput Mech 55, 789–804 (2015). https://doi.org/10.1007/s00466-015-1137-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-015-1137-2

Keywords

Navigation