Skip to main content

Advertisement

Log in

Dynamic characterization of an aeroelastic typical section under nonlinear energy sink passive control by using multiple scales and harmonic balance methods

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Aeroelastic systems can be subjected to a self-excited behavior and experience the so-called phenomenon of flutter. Under this condition, airfoils can exhibit self-sustained oscillations. Due to structural nonlinearities, the system’s response is characterized by limit cycle oscillations (LCOs). The high vibration levels can lead to fatigue and catastrophic failure, thereby justifying flutter suppression schemes. This work proposes an investigation about the bifurcation behavior induced by vibration absorbers known as Nonlinear Energy Sinks (NES) aiming to alleviate aeroelastic LCOs in pitch, plunge, and control surface typical section. Unsteady aerodynamic loads are modeled according to generalized Theodorsen and Wagner theories, represented in state space. Pitching hardening nonlinearity is included in the model. A conventional NES approach is considered, in which a pure cubic stiffness spring is adopted. A combined methodology based on multiple scales and harmonic balance perturbation methods is used to build analytical solutions to characterize the dynamics of the aeroelastic system under the influence of NES. After a numerical validation of the analytical approach, the different response regimes and respective boundaries induced by NES are characterized based on the bifurcations of the aeroelastic system. A thorough analysis of the Target Energy Transfer (TET) phenomenon is also performed, and its relationship with response types induced by NES is discovered. Lastly, a characterization of the Slow Invariant Manifold in terms of the aeroelastic critical mode and NES motion is presented, and its significant features are discussed. Parametric studies are carried out based on both bifurcation and TET analyses to access the effect of NES parameters on the aeroelastic system dynamics aiming for a future investigation by employing an optimization process in the NES design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Al-Shudeifat, M.A.: Highly efficient nonlinear energy sink. Nonlinear Dyn. 76(4), 1905–1920 (2014). https://doi.org/10.1007/s11071-014-1256-x

    Article  MathSciNet  MATH  Google Scholar 

  2. Bergeot, B., Bellizzi, S.: Steady-state regimes prediction of a multi-degree-of-freedom unstable dynamical system coupled to a set of nonlinear energy sinks. Mech. Syst. Signal Process. 131, 728–750 (2019). https://doi.org/10.1016/j.ymssp.2019.05.045

    Article  Google Scholar 

  3. Bichiou, Y., Hajj, M.R., Nayfeh, A.H.: Effectiveness of a nonlinear energy sink in the control of an aeroelastic system. Nonlinear Dyn. 86(4), 2161–2177 (2016). https://doi.org/10.1007/s11071-016-2922-y

    Article  MathSciNet  MATH  Google Scholar 

  4. Ding, H., Chen, L.Q.: Designs, analysis, and applications of nonlinear energy sinks. Nonlinear Dyn. 100, 3061–3107 (2020). https://doi.org/10.1007/s11071-020-05724-1

    Article  Google Scholar 

  5. Dowell, E.H.: Aeroelastic control. In: A Modern Course in Aeroelasticity, pp. 531–584. Springer (2015). https://doi.org/10.1007/978-3-319-09453-3_12

  6. Ebrahimzade, N., Dardel, M., Shafaghat, R.: Performance comparison of linear and nonlinear vibration absorbers in aeroelastic characteristics of a wing model. Nonlinear Dyn. 86(2), 1075–1094 (2016). https://doi.org/10.1007/s11071-016-2948-1

    Article  Google Scholar 

  7. Fasihi, A., Shahgholi, M., Ghahremani, S.: The effects of nonlinear energy sink and piezoelectric energy harvester on aeroelastic instability of an airfoil. J. Vib. Control (2021). https://doi.org/10.1177/1077546321993585

    Article  Google Scholar 

  8. Friedmann, P.P.: Renaissance of aeroelasticity and its future. J. Aircr. 36(1), 105–121 (1999). https://doi.org/10.2514/2.2418

    Article  Google Scholar 

  9. Fung, Y.C.: An Introduction to the Theory of Aeroelasticity. Dover, New York (1995)

    Google Scholar 

  10. Guo, H., Cao, S., Yang, T., Chen, Y.: Aeroelastic suppression of an airfoil with control surface using nonlinear energy sink. Nonlinear Dyn. 94(2), 857–872 (2018). https://doi.org/10.1007/s11071-018-4398-4

    Article  Google Scholar 

  11. Lee, Y.S., Kerschen, G., McFarland, D.M., Hill, W.J., Nichkawde, C., Strganac, T.W., Bergman, L.A., Vakakis, A.F.: Suppressing aeroelastic instability using broadband passive targeted energy transfers, Part 2: Experiments. AIAA J. 45(10), 2391–2400 (2007). https://doi.org/10.2514/1.28300

    Article  Google Scholar 

  12. Lee, Y.S., Vakakis, A.F., Bergman, L.A., McFarland, D.M., Kerschen, G.: Suppression aeroelastic instability using broadband passive targeted energy transfers, Part 1: Theory. AIAA J. 45(3), 693–711 (2007). https://doi.org/10.2514/1.24062

    Article  Google Scholar 

  13. Lee, Y.S., Vakakis, A.F., Bergman, L.A., McFarland, D.M., Kerschen, G.: Enhancing the robustness of aeroelastic instability suppression using multi-degree-of-freedom nonlinear energy sinks. AIAA J. 46(6), 1371–1394 (2008). https://doi.org/10.2514/1.30302

    Article  Google Scholar 

  14. Lu, Z., Wang, Z., Zhou, Y., Lu, X.: Nonlinear dissipative devices in structural vibration control: a review. J. Sound Vib. 423, 18–49 (2018). https://doi.org/10.1016/j.jsv.2018.02.052

    Article  Google Scholar 

  15. Luongo, A., Zulli, D.: Aeroelastic instability analysis of nes-controlled systems via a mixed multiple scale/harmonic balance algorithm. In: Proceedings of the MATEC Web of Conferences, vol. 1, p. 05003 (2012). https://doi.org/10.1051/matecconf/20120105003

  16. Luongo, A., Zulli, D.: Aeroelastic instability analysis of NES-controlled systems via a mixed multiple scale/harmonic balance method. J. Vib. Control 20(13), 1985–1998 (2014). https://doi.org/10.1177/1077546313480542

    Article  MATH  Google Scholar 

  17. Nayfeh, A.H.: Problems in Perturbation. Wiley, New York (1985)

    MATH  Google Scholar 

  18. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1995)

  19. Saeed, A.S., Al-Shudeifat, M.A., Vakakis, A.F.: Rotary-oscillatory nonlinear energy sink of robust performance. Int. J. Non-Linear Mech. 117, 103249 (2019). https://doi.org/10.1016/j.ijnonlinmec.2019.103249

    Article  Google Scholar 

  20. Sanches, L., Guimarães, T.A.M., Marques, F.D.: Aeroelastic tailoring of nonlinear typical section using the method of multiple scales to predict post-flutter stable LCOs. Aerosp. Sci. Technol. 90, 157–168 (2019). https://doi.org/10.1016/j.ast.2019.04.031

    Article  Google Scholar 

  21. Theodorsen, T.: General theory of aerodynamic instability and the mechanism of flutter. NACA Report 496 (1935)

  22. Tsiatas, G.C., Charalampakis, A.E.: A new hysteretic nonlinear energy sink (HNES). Commun. Nonlinear Sci. Numer. Simul. 60, 1–11 (2018). https://doi.org/10.1016/j.cnsns.2017.12.014

    Article  MATH  Google Scholar 

  23. Vasconcellos, R.M.G., Abdelkefi, A., Marques, F.D., Hajj, M.R.: Representation and analysis of control surface freeplay nonlinearity. J. Fluids Struct. 31, 79–91 (2012). https://doi.org/10.1016/j.jfluidstructs.2012.02.003

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful for the financial support of the São Paulo Research Foundation—FAPESP, Brazil (Grants #2019/05410-9 and #2021/14813-0) and the Brazilian National Council for Scientific and Technological Development—CNPq, Brazil (Grant #306824/2019-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Augusto I. da Silva.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

The aeroelastic typical section with an NES: equations of motion

Admitting the system as illustrated in Fig. 1, the kinetic energy of the system can be expressed by:

$$\begin{aligned} {\mathcal {T}} = {\mathcal {T}}_s + {\mathcal {T}}_n , \end{aligned}$$
(31)

where \({\mathcal {T}}_s\) and \({\mathcal {T}}_n\) are the kinetic energies of the airfoil with control surface and the NES, respectively, given by:

$$\begin{aligned} {\mathcal {T}}_s= & {} \frac{1}{2} m {\dot{h}}^2 + S_\alpha {\dot{\alpha }} {\dot{h}} + S_\beta {\dot{\beta }} {\dot{h}} + \frac{1}{2} I_\alpha {\dot{\alpha }}^2 + \frac{1}{2} I_\beta {\dot{\beta }}^2 + (I_\beta + S_\beta (c- a)b) {\dot{\alpha }} {\dot{\beta }} ,\end{aligned}$$
(32)
$$\begin{aligned} {\mathcal {T}}_n= & {} \frac{1}{2} m_n {\dot{z}}^2_n . \end{aligned}$$
(33)

Similarly, the potential energy can be given by:

$$\begin{aligned} {\mathcal {V}} = {\mathcal {V}}_s + {\mathcal {V}}_n , \end{aligned}$$
(34)

where \({\mathcal {V}}_s\) and \({\mathcal {V}}_n\) are the potential energies of the airfoil with control surface and the NES, respectively, given by:

$$\begin{aligned} {\mathcal {V}}_s= & {} \frac{1}{2} k_h h^2 + \frac{1}{2} k_\alpha \alpha ^2 + \frac{1}{4} k_\alpha H_\alpha \alpha ^4 + \frac{1}{2} k_\beta \beta ^2 , \end{aligned}$$
(35)
$$\begin{aligned} {\mathcal {V}}_n= & {} \frac{1}{4} k_n (h - d \alpha - z_n)^4 . \end{aligned}$$
(36)

Admitting no structural damping from the typical section, the work done by the damping forces corresponds only to the NES, i.e., \({\mathcal {B}} = {\mathcal {B}}_n\). From the Rayleigh function:

$$\begin{aligned} {\mathcal {B}}_n = \frac{1}{2} c_n ({\dot{h}} - d {\dot{\alpha }} - {\dot{z}}_n)^2 . \end{aligned}$$
(37)

The Lagrange equations can be applied to the problem, resulting in:

$$\begin{aligned}{} & {} \frac{\textrm{d}}{\textrm{d}t}\left( \frac{\partial {\mathcal {T}}}{\partial {\dot{\alpha }}}\right) - \frac{\partial {\mathcal {T}}}{\partial \alpha } + \frac{\partial {\mathcal {B}}}{\partial {\dot{\alpha }}} + \frac{\partial {\mathcal {V}}}{\partial \alpha } = M_\alpha , \end{aligned}$$
(38.1)
$$\begin{aligned}{} & {} \frac{\textrm{d}}{\textrm{d}t}\left( \frac{\partial {\mathcal {T}}}{\partial {\dot{\beta }}}\right) - \frac{\partial {\mathcal {T}}}{\partial \beta } + \frac{\partial {\mathcal {B}}}{\partial {\dot{\beta }}} + \frac{\partial {\mathcal {V}}}{\partial \beta } = M_\beta , \end{aligned}$$
(38.2)
$$\begin{aligned}{} & {} \frac{\textrm{d}}{\textrm{d}t}\left( \frac{\partial {\mathcal {T}}}{\partial {\dot{h}}}\right) - \frac{\partial {\mathcal {T}}}{\partial h} + \frac{\partial {\mathcal {B}}}{\partial {\dot{h}}} + \frac{\partial {\mathcal {V}}}{\partial h} = - L, \end{aligned}$$
(38.3)
$$\begin{aligned}{} & {} \frac{\textrm{d}}{\textrm{d}t}\left( \frac{\partial {\mathcal {T}}}{\partial {\dot{z}}_n}\right) - \frac{\partial {\mathcal {T}}}{\partial z_n} + \frac{\partial {\mathcal {B}}}{\partial {\dot{z}}_n} + \frac{\partial {\mathcal {V}}}{\partial z_n} = 0 , \end{aligned}$$
(38.4)

where L, \(M_\alpha \), and \(M_\beta \) are the aerodynamic loading terms.

Introducing Eqs. (31)–(37) into Eqs. (38.1)–(38.4), the typical aeroelastic section with an NES equations of motion is:

$$\begin{aligned} \left\{ \begin{array}{l} I_{\alpha } \ddot{\alpha } + \left[ I_{\beta } + b(c - a) S_\beta \right] \ddot{\beta } + S_{\alpha } \ddot{h} + k_{\alpha } \left( \alpha + H_\alpha \alpha ^3 \right) \\ \quad - d c_n ({\dot{h}} - d {\dot{\alpha }} - {\dot{z}}_n) - d k_n (h - d \alpha - z_n)^3 = M_{\alpha } \\ I_{\beta } \ddot{\beta } + \left[ I_{\beta } + b (c - a) S_{\beta } \right] \ \ddot{\alpha } + S_{\beta } \ddot{h} + k_{\beta } \beta = M_{\beta } \\ m \ddot{h} + S_{\alpha } \ddot{\alpha } + S_{\beta } \ddot{\beta } + k_{h} h + c_n ({\dot{h}} - d {\dot{\alpha }} - {\dot{z}}_n) + k_n (h - d \alpha - z_n)^3 = -L \\ m_n \ddot{z}_n - c_n ({\dot{h}} - d {\dot{\alpha }} - {\dot{z}}_n) - k_n (h - d \alpha - z_n)^3 = 0 \end{array} \right. . \end{aligned}$$
(39)

Equations and formulae

1.1 Matrices from Eq. (7)

The total inertia, damping and stiffness matrices can be detailed as:

$$\begin{aligned} {\textbf{M}}_t = \left[ \begin{array}{ll} {\textbf{M}}_s - {\textbf{M}}_a &{} {\textbf{0}}_{3 \times 1} \\ {\textbf{0}}_{1 \times 3} &{} 1 \end{array}\right] \ , \ {\textbf{B}}_t = \left[ \begin{array}{ll} -{\textbf{B}}_a &{} \quad - {\textbf{A}}_{1} \\ - {\textbf{A}}_{2} &{} \quad (c_2 + c_4)(U/b) \end{array} \right] \ , \ {\textbf{K}}_t = \left[ \begin{array}{ll} {\textbf{K}}_s - {\textbf{K}}_a &{} \quad - {\textbf{A}}_{3} \\ - {\textbf{A}}_{4} &{} \quad c_2 c_4 (U/b)^2 \end{array}\right] , \end{aligned}$$
(40)

where the subscripts s and a are referred to structural and aerodynamic terms.

The structural matrices are:

$$\begin{aligned} {\textbf{M}}_{s}= & {} \begin{bmatrix} r_{\alpha }^{2} &{} \quad r_{\beta }^{2} + (c - a) x_{\beta } &{} \quad x_{\alpha } \\ r_{\beta }^{2} + (c - a) x_{\beta } &{} \quad r_{\beta }^{2} &{} \quad x_{\beta } \\ x_{\alpha } &{} \quad x_{\beta } &{} \quad 1 \end{bmatrix} \ , \end{aligned}$$
(41)
$$\begin{aligned} {\textbf{K}}_{s}= & {} \begin{bmatrix} r_{\alpha }^{2} \omega _{\alpha }^{2} &{} \quad 0 &{} \quad 0 \\ 0 &{} \quad r_{\beta }^{2} \omega _{\beta }^{2} &{} \quad 0 \\ 0 &{} \quad 0 &{} \quad \omega _{h}^{2} \end{bmatrix} \ . \end{aligned}$$
(42)

The aerodynamic inertia matrix comprises the effects due to the non-circulatory flow around the airfoil and can be given as:

$$\begin{aligned} {\textbf{M}}_{a} = - \dfrac{\rho b^2}{m}\begin{bmatrix} \pi \left( \frac{1}{8} + a^2 \right) &{} \quad - T_7 + (c - a) T_1 &{} \quad -\pi a \\ 2 T_{13} &{} \quad - \frac{T_3}{\pi } &{} \quad - T_1 \\ - \pi a &{} \quad - T_1 &{} \quad \pi \end{bmatrix} \ . \end{aligned}$$
(43)

The aerodynamic damping and stiffness matrices regarding circulatory (c) and non-circulatory (nc) flow dynamics (\({\textbf{B}}_a = {\textbf{B}}_{nc} + {\textbf{B}}_{c}\) and \({\textbf{K}}_a = {\textbf{K}}_{nc} + {\textbf{K}}_{c}\)) are:

$$\begin{aligned} {\textbf{B}}_{nc}= & {} - \dfrac{\rho b^2}{m}\begin{bmatrix} \pi \left( \frac{1}{8} + a^2 \right) &{} \quad - T_7 + (c - a) T_1 &{} \quad -\pi a \\ 2 T_{13} &{} \quad - \frac{T_3}{\pi } &{} \quad - T_1 \\ - \pi a &{} \quad - T_1 &{} \quad \pi \end{bmatrix} \ ,\end{aligned}$$
(44)
$$\begin{aligned} {\textbf{B}}_{c}= & {} - \dfrac{\rho b^2}{m}\begin{bmatrix} \pi \left( \frac{1}{8} + a^2 \right) &{} \quad - T_7 + (c - a) T_1 &{} \quad -\pi a \\ 2 T_{13} &{} \quad - \frac{T_3}{\pi } &{} \quad - T_1 \\ - \pi a &{} \quad - T_1 &{} \quad \pi \end{bmatrix} \ . \end{aligned}$$
(45)

1.2 Theodorsen’s constants

The Theodorsen constants are [21]:

$$\begin{aligned} \begin{aligned} T_1&= - \dfrac{2 + c^2}{3} \sqrt{1 - c^2} + c \cos ^{-1}(c) \ , \\ T_3&= - \dfrac{1 - c^2}{8} \left( 5 c^2 + 4 \right) + \dfrac{1}{4} c \left( 7 + 2 c^2\right) \sqrt{1 - c^2} \cos ^{-1}(c) - \left( \dfrac{1}{8} + c^2\right) \left( \cos ^{-1}(c)\right) ^2 \ , \\ T_4&= c \sqrt{1 - c^2} - \cos ^{-1}(c) \ , \\ T_5&= - \left( 1 - c^2 \right) - \left( \cos ^{-1}(c)\right) ^2 + 2 c \sqrt{1 - c^2} \cos ^{-1}(c) \ , \\ T_7&= c \left( \dfrac{7 + 2 c^2}{8}\right) \sqrt{1 - c^2} - \left( \dfrac{1}{8} + c^2\right) \cos ^{-1}(c) \ , \\ T_8&= - \dfrac{1}{3} \left( 1 + 2 c^2 \right) \sqrt{1 - c^2} + c \cos ^{-1}(c) \ , \\ T_9&= \dfrac{1}{2}\left[ \dfrac{\sqrt{1 - c^2} \left( 1 - c^2\right) }{3} + a T_4 \right] \ , \\ T_{10}&= \sqrt{1 - c^2} + \cos ^{-1}(c) \ , \\ T_{11}&= \left( 2 - c \right) \sqrt{1 - c^2} - \left( 1 - 2 c\right) \cos ^{-1}(c) \ , \\ T_{12}&= \left( 2 + c \right) \sqrt{1 - c^2} - \left( 1 + 2 c\right) \cos ^{-1}(c) \ , \\ T_{13}&= - \dfrac{1}{2}\left[ T_7 + \left( c-a\right) T_1 \right] \ . \end{aligned} \end{aligned}$$
(46)

1.3 Matrices from Eq. (10)

The matrices from Eq. (10) are defined by:

$$\begin{aligned} {\textbf{B}}_{t_0} = \begin{bmatrix} \delta _{11} U_c &{} \quad \delta _{12} U_c &{} \quad \delta _{13} U_c &{} \quad \delta _{14} U_c^2\\ \delta _{21} U_c &{} \quad \delta _{22} U_c &{} \quad \delta _{23} U_c &{} \quad \delta _{24} U_c^2\\ \delta _{31} U_c &{} \quad \delta _{32} U_c &{} \quad \delta _{33} U_c &{} \quad \delta _{34} U_c^2\\ \delta _{41} &{} \quad \delta _{42} &{} \quad \delta _{43} &{} \quad \delta _{44} U_c \end{bmatrix}, \quad {\textbf{B}}_{t_1} = \begin{bmatrix} \delta _{11} &{} \quad \delta _{12} &{} \quad \delta _{13} &{} \quad 2 \delta _{14} U_c \\ \delta _{21} &{} \quad \delta _{22} &{} \quad \delta _{23} &{} \quad 2 \delta _{24} U_c \\ \delta _{31} &{} \quad \delta _{32} &{} \quad \delta _{33} &{} \quad 2 \delta _{34} U_c \\ 0 &{} \quad 0 &{} \quad 0 &{} \quad \delta _{44} \end{bmatrix}, \end{aligned}$$
(47)

where

$$\begin{aligned} \begin{aligned} \delta _{11}&= (a^2 - a + 1/4) \rho \pi b/m, \\ \delta _{12}&= (T_1 + (a - c) T_4 - T_8 + T_{11}(1/2 - a \pi ^2/2 - \pi ^2/4)) \rho b/m, \\ \delta _{13}&= - (a + 1/2) b \pi \rho /m, \\ \delta _{14}&= -2 (a + 1/2)(c_3 c_4 + c_1 c_2) \pi \rho /m, \\ \delta _{21}&= T_{12} (1/2 - a) b \rho /(2 m) + (T_4 (a - 1/2) - 2 T_9 - T_1) b \rho /m, \\ \delta _{22}&= T_{11} T_{12} b \pi \rho /(4 m) - T_{11} T_4 b \rho /(2 m \pi ), \\ \delta _{23}&= T_{12} b \rho /(2 m), \\ \delta _{24}&= T_{12} (c_3 c_4 + c_1 c_2) \rho /m, \\ \delta _{31}&= (1/2 - a) b \pi \rho /m + b \pi \rho /m, \\ \delta _{32}&= T_{11} b \pi ^2 \rho /(2 m) - T_4 b \rho /m, \\ \delta _{33}&= b \pi \rho /m, \\ \delta _{34}&= 2 (c_3 c_4 + c_1 c_2) \pi \rho /m, \\ \delta _{41}&= a - 1/2, \\ \delta _{42}&= - T_{11}/(2 \pi ), \\ \delta _{43}&= -1, \\ \delta _{44}&= (c_4 + c_2)/b, \end{aligned} \end{aligned}$$
(48)

and

$$\begin{aligned} {\textbf{K}}_{t_0} = \begin{bmatrix} r_\alpha ^2 \omega _\alpha ^2 - \eta _{11} U_c^2 &{} \quad \eta _{12} U_c^2 &{} \quad \eta _{13} &{} \quad \eta _{14} U_c^3\\ \eta _{21} U_c^2 &{} \quad r_\beta ^2 \omega _\beta ^2 + \eta _{22} U_c^2 &{} \quad \eta _{23} &{} \quad \eta _{24} U_c^3\\ \eta _{31} U_c^2 &{} \quad \eta _{32} U_c^2 &{} \quad \eta _{33} &{} \quad \eta _{34} U_c^3\\ \eta _{41} U_c &{} \quad \eta _{42} U_c &{} \quad \eta _{43} &{} \quad \eta _{44} U_c^2 \end{bmatrix}, \end{aligned}$$
(49)

and

$$\begin{aligned} {\textbf{K}}_{t_1} = \begin{bmatrix} -2 \eta _{11} U_c &{} \quad 2 \eta _{12} U_c &{} \quad 0 &{} \quad 3 \eta _{14} U_c^2 \\ 2 \eta _{21} U_c &{} \quad 2 \eta _{22} U_c &{} \quad 0 &{} \quad 3 \eta _{24} U_c^2 \\ 2 \eta _{31} U_c &{} \quad 2 \eta _{32} U_c &{} \quad 0 &{} \quad 3 \eta _{34} U_c^2 \\ \eta _{41} &{} \quad \eta _{42} &{} \quad 0 &{} \quad 2 \eta _{44} U_c \end{bmatrix}, \end{aligned}$$
(50)

where

$$\begin{aligned} \begin{aligned} \eta _{11}&= (a + 1/2) \pi \rho /m, \\ \eta _{12}&= (T_4 + T_{10}) \rho /m - T_{10}(a+1/2)\rho /m, \\ \eta _{13}&= 0, \\ \eta _{14}&= - 2 (a + 1/2) c_2 (c_3 + c_1) c_4 \pi \rho /(b m), \\ \eta _{21}&= T_{12} \rho /(2 m), \\ \eta _{22}&= (T_5 - T_{10} T_4) \rho /(m \pi ) + (T_{10} T_{12} \rho )/(2 m \pi ), \\ \eta _{23}&= 0, \\ \eta _{24}&= T_{12} c_2 (c_3 + c_1) c_4 \rho /(b m) , \\ \eta _{31}&= \pi \rho /m, \\ \eta _{32}&= (T_{10} \rho )/m, \\ \eta _{33}&= \omega _h^2, \\ \eta _{34}&= 2 c_2 (c_3 + c_1) c_4 \pi \rho /(b m), \\ \eta _{41}&= -1/b, \\ \eta _{42}&= - T_{10}/(b \pi ), \\ \eta _{43}&= 0, \\ \eta _{44}&= c_2 c_4/b^2. \end{aligned} \end{aligned}$$
(51)

1.4 Polynomial functions of Eq. (21)

The polynomial functions \({\mathcal {F}}_1(b)\) and \({\mathcal {F}}_2(b)\) of Eq. (21) are given by:

$$\begin{aligned} {\mathcal {F}}_1(b)= & {} \theta _1 b + 2 \theta _2 b^3 + 3 \theta _3 b^5, \end{aligned}$$
(52)
$$\begin{aligned} {\mathcal {F}}_2(b)= & {} \varTheta _1 b^2 + \theta _2 b^4 + \varTheta _3 b^6 + \varTheta _4 b^8 + \varTheta _5 b^{10} + \varTheta _6 b^{12} \end{aligned}$$
(53)

where

$$\begin{aligned} \begin{aligned} \varTheta _1&= \theta _1 \sigma {\mathcal {R}}e\left\{ \varUpsilon _1\right\} + {\mathcal {R}}e\left\{ \varUpsilon _3\right\} {\mathcal {R}}e\left\{ \varphi _1\right\} + {\mathcal {I}}m\left\{ \varUpsilon _3\right\} {\mathcal {I}}m\left\{ \varphi _1\right\} , \\ \varTheta _2&= \theta _2 \sigma {\mathcal {R}}e\left\{ \varUpsilon _1\right\} + \theta _1^2 {\mathcal {R}}e\left\{ \varUpsilon _2\right\} + {\mathcal {R}}e\left\{ \varUpsilon _3\right\} {\mathcal {R}}e\left\{ \varphi _2\right\} + {\mathcal {I}}m\left\{ \varUpsilon _3\right\} {\mathcal {I}}m\left\{ \varphi _2\right\} + \\&\quad + {\mathcal {R}}e\left\{ \varUpsilon _4\right\} {\mathcal {R}}e\left\{ \psi _1\right\} + {\mathcal {I}}m\left\{ \varUpsilon _4\right\} {\mathcal {I}}m\left\{ \varphi _1\right\} , \\ \varTheta _3&= \theta _3 \sigma {\mathcal {R}}e\left\{ \varUpsilon _1\right\} + 2 \theta _1 \theta _2 {\mathcal {R}}e\left\{ \varUpsilon _2\right\} + {\mathcal {R}}e\left\{ \varUpsilon _4\right\} {\mathcal {R}}e\left\{ \varphi _2\right\} + {\mathcal {I}}m\left\{ \varUpsilon _4\right\} {\mathcal {I}}m\left\{ \varphi _2\right\} , \\ \varTheta _4&= (\theta _2^2 + 2 \theta _1 \theta _3) {\mathcal {R}}e\left\{ \varUpsilon _2\right\} ,\\ \varTheta _5&= 2 \theta _2 \theta _3 {\mathcal {R}}e\left\{ \varUpsilon _2\right\} ,\\ \varTheta _6&= {\mathcal {R}}e\left\{ \varUpsilon _2\right\} \theta _3^2. \end{aligned} \end{aligned}$$
(54)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, J.A.I., Sanches, L. & Marques, F.D. Dynamic characterization of an aeroelastic typical section under nonlinear energy sink passive control by using multiple scales and harmonic balance methods. Acta Mech 234, 1571–1598 (2023). https://doi.org/10.1007/s00707-022-03457-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-022-03457-3

Navigation