Skip to main content
Log in

Passive flutter mitigation with rotary nonlinear energy sink

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The control of aeroelastic phenomena, such as flutter, is of great interest due to its high amplitude self-excited characteristic. Nonlinear Energy Sinks (NES) are vibration absorbers whose nonlinear coupling to the structure contributes to broad excitation ranges for passive suppression. This paper investigates the attachment of a rotary-type NES (RNES) to an aeroelastic typical section to suppress nonlinear flutter oscillations passively. An unsteady aerodynamic loads model is used based on the Theodorsen and Wagner approaches. Pitching structural nonlinearity is added, inducing limit cycle oscillations in the airfoil. The system is modeled and numerically simulated. A dynamic characterization is done, obtaining the mechanisms of action of RNES through a regime identification, and its typical bifurcation behavior is accessed. A parametric analysis based on the system bifurcation over different RNES configurations is used to understand how each design parameter influences vibration mitigation performance and how absorption regimes correlate with RNES effectiveness. An energy analysis is carried through to conceive the activation of the Targeted Energy Transfer suppression mechanism and an energy-based parametric analysis of RNES performance. The results indicate that NES efficiency for flutter postponement is related mainly to low-radius devices located near the leading edge. RNES mass and angular damping parameters also present an impact but are limited due to subcritical behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article. Additional data are available from the corresponding author on reasonable request.

References

  1. Vakakis, A. F., Gendelman, O. V., Bergman, L. A., McFarland, D. M., Kerschen, G., Lee, Y. S.: Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems. Springer Science & Business Media (2008)

  2. Vakakis, A. F.: Inducing passive nonlinear energy sinks in vibrating systems. J. Vib. Acoust. https://doi.org/10.1115/1.1368883

  3. AL-Shudeifat, M.A.: Highly efficient nonlinear energy sink. Nonlinear Dyn. https://doi.org/10.1007/s11071-014-1256-x

  4. Gendelman, O.V., Sigalov, G., Manevitch, L.I., Mane, M., Vakakis, A.F., Bergman, L.A.: Dynamics of an eccentric rotational nonlinear energy sink. J. Appl. Mech. https://doi.org/10.1115/1.4005402

  5. Saeed, A.S., AL-Shudeifat, M.A., Vakakis, A.F.: Rotary-oscillatory nonlinear energy sink of robust performance. Int. J. Non Linear Mech. https://doi.org/10.1016/j.ijnonlinmec.2019.103249

  6. Lu, Z., Wang, Z., Zhou, Y., Lu, X.: Nonlinear dissipative devices in structural vibration control: a review. J. Sound Vib. https://doi.org/10.1016/j.jsv.2018.02.052

  7. Ding, H., Chen, L.-Q.: Designs, analysis, and applications of nonlinear energy sinks. Nonlinear Dyn. https://doi.org/10.1007/s11071-020-05724-1

  8. Dowell, E.H.: A Modern Course in Aeroelasticity. Springer Cham, fifth revised and enlarged edn (2014). https://doi.org/10.1007/978-3-319-09453-3

  9. Nayfeh, A., Mook, D.: Nonlinear Oscillations, Wiley Classics Library, Wiley, ISBN 9780471121428, (1995)

  10. Livne, E.: Aircraft active flutter suppression: state of the art and technology maturation needs. J. Aircraft 55(1), 410–452 (2018). https://doi.org/10.2514/1.C034442

    Article  Google Scholar 

  11. Chai, Y., Gao, W., Ankay, B., Li, F., Zhang, C.: Aeroelastic analysis and flutter control of wings and panels: a review. Int. J. Mech. Syst. Dyn. 1(1), 5–34 (2021). https://doi.org/10.1002/msd2.12015

    Article  Google Scholar 

  12. Saeed, A.S., Abdul Nasar, R., AL-Shudeifat, M.A.: A review on nonlinear energy sinks: designs, analysis and applications of impact and rotary types. Nonlinear Dyn. 111. https://doi.org/10.1007/s11071-022-08094-y

  13. Lee, Y. S., Vakakis, A. F., Bergman, L. A., McFarland, D. M., Kerschen, G.: Suppression aeroelastic instability using broadband passive targeted energy transfers, part 1: theory. AIAA J. https://doi.org/10.2514/1.24062

  14. Lee, Y. S., Kerschen, G., McFarland, D. M., Hill, W. J., Nichkawde, C., Strganac, T. W., Bergman, L. A., Vakakis, A. F.: Suppressing Aeroelastic Instability Using Broadband Passive Targeted Energy Transfers, Part 2: Experiments, AIAA Journal https://doi.org/10.2514/1.28300

  15. Lee, Y.S., Vakakis, A.F., Bergman, L.A., McFarland, D.M., Kerschen, G.: Enhancing the robustness of aeroelastic instability suppression using multi-degree-of-freedom nonlinear energy sinks. AIAA J. https://doi.org/10.2514/1.30302

  16. Bichiou, Y., Hajj, M.R., Nayfeh, A.H.: Effectiveness of a nonlinear energy sink in the control of an aeroelastic system. Nonlinear Dyn. https://doi.org/10.1007/s11071-016-2922-y

  17. Ebrahimzade, N., Dardel, M., Shafaghat, R.: Performance comparison of linear and nonlinear vibration absorbers in aeroelastic characteristics of a wing model. Nonlinear Dyn. 86. https://doi.org/10.1007/s11071-016-2948-1

  18. Yan, Z., Ragab, S.A., Hajj, M.R.: Passive control of transonic flutter with a nonlinear energy sink. Nonlinear Dyn. https://doi.org/10.1007/s11071-017-3894-2

  19. Silva, J.A.I.d., Sanches, L.,Marques, F.D.: Dynamic characterization of an aeroelastic typical section under nonlinear energy sink passive control by using multiple scales and harmonic balance methods Acta Mech. https://doi.org/10.1007/s00707-022-03457-3

  20. Fasihi, A., Shahgholi, M., Ghahremani, S.: The effects of nonlinear energy sink and piezoelectric energy harvester on aeroelastic instability of an airfoil. J. Vib. Control. https://doi.org/10.1177/1077546321993585

  21. Zhang, H., Li, Z., Yang, Z., Zhou, S.: Flutter suppression of an airfoil using a nonlinear energy sink combined with a piezoelectric energy harvester. Commun. Nonlinear Sci. Numer. Simul. https://doi.org/10.1016/j.cnsns.2023.107350

  22. Amar, L.: Contrôle passif non linéaire d’un profil aéroélastique, simulations et expérimentations, Ph.D. thesis, École Polytechnique de Montréal, (2017)

  23. Escudero, C. F.: Passive aeroelastic control of aircraft wings via nonlinear oscillators, Ph.D. thesis, Polytechnique Montréal, https://publications.polymtl.ca/6578/ (2021)

  24. García Pérez, J., Ghadami, A., Sanches, L., Michon, G., Epureanu, B.I.: Data-driven optimization for flutter suppression by using an aeroelastic nonlinear energy sink. J. Fluids Struct. https://doi.org/10.1016/j.jfluidstructs.2022.103715

  25. Gendelman, O., Sigalov, G., Manevitch, L., Mane, M., Vakakis, A., Bergman, L.: Dynamics of an eccentric rotational nonlinear energy sink. J. Appl. Mech. 79(1), 011012 (2012)

    Article  Google Scholar 

  26. Blanchard, A., Bergman, L. A., Vakakis, A. F.: Targeted energy transfer in laminar vortex-induced vibration of a sprung cylinder with a nonlinear dissipative rotator. Phys. D Nonlinear Phenomena. https://doi.org/10.1016/j.physd.2017.03.003

  27. Blanchard, A.B., Pearlstein, A.J.: On-off switching of vortex shedding and vortex-induced vibration in crossflow past a circular cylinder by locking or releasing a rotational nonlinear energy sink. Phys. Rev. Fluids. https://link.aps.org/doi/10.1103/PhysRevFluids.5.023902

  28. Blanchard, A., Bergman, L.A., Vakakis, A.F.: Vortex-induced vibration of a linearly sprung cylinder with an internal rotational nonlinear energy sink in turbulent flow. Nonlinear Dyn. https://doi.org/10.1007/s11071-019-04775-3

  29. Ueno, T., Franzini, G.R.: Numerical studies on passive suppression of one and two degrees-of-freedom vortex-induced vibrations using a rotative non-linear vibration absorber. Int. J. Non Linear Mech. Dhttps://doi.org/10.1016/j.ijnonlinmec.2019.07.001

  30. Araujo, G.P., da Silva, J.A.I., Marques, F.D.: Energy harvesting from a rotational nonlinear energy sink in vortex-induced vibrations. J. Fluids Struct. https://doi.org/10.1016/j.jfluidstructs.2022.103656

  31. Selwanis, M.M., Franzini, G.R., Béguin, C., Gosselin, F.P.: Wind tunnel demonstration of galloping mitigation with a purely nonlinear energy sink. J. Fluids Struct. https://doi.org/10.1016/j.jfluidstructs.2020.103169

  32. Selwanis, M.M., Franzini, G.R., Béguin, C., Gosselin, F.P.: How a ball free to orbit in a circular track mitigates the galloping of a square prism. Nonlinear Dyn. https://doi.org/10.1007/s11071-022-07830-8

  33. Selwanis, M.M., Franzini, G.R., Béguin, C., Gosselin, F.P.: Multi-ball rotative nonlinear energy sink for galloping mitigation. J. Sound Vib. https://doi.org/10.1016/j.jsv.2022.116744

  34. Fung, Y.: An introduction to the theory of aeroelasticity, Dover Publications (2008)

  35. Vasconcellos, R., Abdelkefi, A., Marques, F., Hajj, M.: Representation and analysis of control surface freeplay nonlinearity. J. Fluids Struct. https://doi.org/10.1016/j.jfluidstructs.2012.02.003

Download references

Funding

The authors acknowledge the financial support from the Brazilian National Council for Scientific and Technological Development (CNPq grant #306824/2019-1 and #131713/2023-0) and the São Paulo State Research Foundation (FAPESP grants #2019/05410-9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel P. Araujo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Araujo, G.P., da Silva, J.A.I. & Marques, F.D. Passive flutter mitigation with rotary nonlinear energy sink. Nonlinear Dyn (2024). https://doi.org/10.1007/s11071-024-09515-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11071-024-09515-w

Keywords

Navigation