Skip to main content
Log in

A method of coating analysis based on cylindrical indenter loading on coated structure

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The most common coated structure contact problems include spherical, conical and cylindrical contact. The evaluation of mechanical performance for coating structures has always been a very important issue in the field of mechanics and materials; due to the too small proportion between the thickness of the coating and the substrate, the deviation of traditional evaluation methods becomes unacceptable. Indentation technology is the basis for analysis, measurement, and the standardized application of coating structures. The research object of this paper is cylindrical contact, which is one part of building the theoretical framework of contact mechanics of coating structures. In the paper, an accurate and efficient general theory of the frictional cylindrical contact problem for the coated structure is presented. The general solutions are expressed in the form of harmonic functions. 3D exact solutions of a transversely isotropic elasticity coated structure under frictional cylindrical punch contact are derived, based on the general solution and the boundary conditions. The theory is proposed in two cases, including the frictionless contact and the frictional contact. By contrast with existing theories (obtained in this paper by degradation), the numerical calculations show the good convergence, high accuracy, efficiency, and stability. The difference of stress singularity analysis between Finite Element Method (FEM) and the presented theory is explained, which shows the theory’s validity and applicability. This analytical theory plays an important role in boundary stress singularity analysis. The finite element comparison shows that the analytical theory plays an important role in boundary stress singularity analysis and further, proves the validity and applicability of this theory. In the numerical analysis, the influence of coating thickness on interface stress is shown, the distribution forms of stress and displacement are given, and the influence of material parameters and coating thickness on interface failure is investigated. The analytical expressions are presented with the elementary functions. In the era of highly developed computer intelligence, the presented theory will be the basis of the interface failure problem analysis and material parameters’ determination, also for future use deep learning to solve the problem of contact mechanics provides the basis of large precise sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31

Similar content being viewed by others

References

  1. Wen, L., Sahu, B.B., Kim, H.R., Han, J.G.: Study on the electrical, optical, structural, and morphological properties of highly transparent and conductive AZO thin films prepared near room temperature. Appl. Surf. Sci. 473, 649–656 (2019)

    Google Scholar 

  2. Wang, Y., Liu, C.Y., Wang, Z., Song, Z.W., Zhou, X.Y., Han, N., Chen, Y.F.: Sputtered SnO2:NiO thin films on self-assembled Au nanoparticle arrays for MEMS compatible NO2 gas sensors. Sens. Actuators B Chem. 278, 28–38 (2019)

    Google Scholar 

  3. Tao, J.J., Lu, H.L., Gu, Y., Ma, H.P., Li, X., Chen, J.X., Liu, W.J., Zhang, H., Feng, J.J.: Investigation of growth characteristics, compositions, and properties of atomic layer deposited amorphous Zn-doped Ga2O3 films. Appl. Surf. Sci. 476, 733–740 (2019)

    Google Scholar 

  4. Hertz, H.: On the contact of elastic solids. J. Reine Angew. Math. 92(156), 156–171 (1882)

    MathSciNet  MATH  Google Scholar 

  5. Johnson, K., Kendall K., Roberts A.: Surface energy and the contact of elastic solids. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. (1971). The Royal Society

  6. Johnson, K.L.: Contact mechanics. J. Tribol. 108(4), 464 (1985)

    Google Scholar 

  7. Li, X.Y., Wu, F., Jin, X., Chen, W.Q.: 3D coupled field in a transversely isotropic magneto-electro-elastic half space punched by an elliptic indenter. J. Mech. Phys. Solids 75, 1–44 (2015)

    MathSciNet  MATH  Google Scholar 

  8. Vasiliev, A.S., Volkov S.S., Aizikovich S.M.: A semi-analytical method of solution of contact problems on indentation of coated elastic and electroelastic piezoelectric solids. In: Zingoni, A. (Ed.) Advances in Engineering Materials, Structures and Systems: Innovations, Mechanics and Applications, pp. 339–343 (2019)

  9. Vasiliev, A.S., Volkov, S.S., Sadyrin, E.V., Aizikovich, S.M.: Simplified analytical solution of the contact problem on indentation of a coated half-space by a conical punch. Mathematics 8(6) (2020)

  10. Chen, W.Q., Pan, E.N., Wang, H.M., Zhang, C.Z.: Theory of indentation on multiferroic composite materials. J. Mech. Phys. Solids 58(10), 1524–1551 (2010)

    MathSciNet  MATH  Google Scholar 

  11. Hou, P.F., Zhang, W.H., Chen, J.-Y.: Three-dimensional exact solutions of homogeneous transversely isotropic coated structures under spherical contact. Int. J. Solids Struct. 161, 136–173 (2019)

    Google Scholar 

  12. Hou, P.F., Zhang, W.H., Tang, J.P., Chen, J.Y.: Three-dimensional exact solutions of elastic transversely isotropic coated structures under conical contact. Surf. Coat. Technol. 369, 280–310 (2019)

    Google Scholar 

  13. Cheng, Y.-T., Cheng, C.-M.: Can stress–strain relationships be obtained from indentation curves using conical and pyramidal indenters? J. Mater. Res. 14(9), 3493–3496 (1999)

    Google Scholar 

  14. Dao, M., Chollacoop, N., Van Vliet, K.J., Venkatesh, T.A., Suresh, S.: Computational modeling of the forward and reverse problems in instrumented sharp indentation. Acta Mater. 49(19), 3899–3918 (2001)

    Google Scholar 

  15. Meng, L., Breitkopf, P., Le Quilliec, G.: An insight into the identifiability of material properties by instrumented indentation test using manifold approach based on P-h curve and imprint shape. Int. J. Solids Struct. 106–107, 13–26 (2017)

    Google Scholar 

  16. Fabrikant, V.I.: Elastic field around a circular punch. J. Appl. Mech. 55(3), 604–610 (1988)

    MATH  Google Scholar 

  17. Hanson, M.T.: The elastic field for an upright or tilted sliding circular flat punch on a transversely isotropic half space. Int. J. Solids Struct. 31(4), 567–586 (1994)

    MATH  Google Scholar 

  18. Sneddon, I.N.: Boussinesq’s problem for a flat-ended cylinder. Math. Proc. Camb. Philos. Soc. 42(1), 29–39 (2008)

    MathSciNet  MATH  Google Scholar 

  19. Ma, J., El-Borgi, S., Ke, L.L., Wang, Y.S.: Frictional contact problem between a functionally graded magnetoelectroelastic layer and a rigid conducting flat punch with frictional heat generation. J. Therm. Stress. 39(3), 245–277 (2016)

    Google Scholar 

  20. Huang, Y.L., Xia, G.Z., Chen, W.Q., Li, X.Y.: Indentation of a transversely isotropic thermoporoelastic half-space by a rigid circular cylindrical punch. J. Appl. Mech. Trans. ASME 84(11) (2017)

  21. Ke, L.L., Wang, Y.S.: Two-dimensional contact mechanics of functionally graded materials with arbitrary spatial variations of material properties. Int. J. Solids Struct. 43(18–19), 5779–5798 (2006)

    MATH  Google Scholar 

  22. Ke, L.L., Yang, J., Kitipornchai, S., Wang, Y.S.: Frictionless contact analysis of a functionally graded piezoelectric layered half-plane. Smart Mater. Struct. 17(2), 025003 (2008)

    MATH  Google Scholar 

  23. Su, J., Ke, L.L., Wang, Y.S.: Axisymmetric frictionless contact of a functionally graded piezoelectric layered half-space under a conducting punch. Int. J. Solids Struct. 90, 45–59 (2016)

    Google Scholar 

  24. Su, J., Ke, L.L., Wang, Y.S.: Axisymmetric partial slip contact of a functionally graded piezoelectric coating under a conducting punch. J. Intell. Mater. Syst. Struct. 28(14), 1925–1940 (2017)

    Google Scholar 

  25. Wu, F., Li, C.: Theory of adhesive contact on multi-ferroic composite materials: conical indenter. Int. J. Solids Struct. 233, 111217 (2021)

    Google Scholar 

  26. Chen, F.L., He, X., Prieto-Munoz, P.A., Yin, H.M.: Opening-mode fractures of a brittle coating bonded to an elasto-plastic substrate. Int. J. Plast. 67, 171–191 (2015)

    Google Scholar 

  27. Wang, L., Liu, X.H., Li, D.C., Liu, F., Jin, Z.M.: Contact mechanics studies of an ellipsoidal contact bearing surface of metal-on-metal hip prostheses under micro-lateralization. Med. Eng. Phys. 36(4), 419–424 (2014)

    Google Scholar 

  28. Zhuang, J.J., Guo, Y.Q., Xiang, N., Xiong, Y., Hu, Q., Song, R.G.: A study on microstructure and corrosion resistance of ZrO2-containing PEO coatings formed on AZ31 Mg alloy in phosphate-based electrolyte. Appl. Surf. Sci. 357, 1463–1471 (2015)

    Google Scholar 

  29. Deyab, M.A.: Effect of carbon nano-tubes on the corrosion resistance of alkyd coating immersed in sodium chloride solution. Prog. Org. Coat. 85, 146–150 (2015)

    Google Scholar 

  30. Shen, W.N., Feng, L.J., Liu, X., Luo, H., Liu, Z., Tong, P.R., Zhang, W.H.: Multiwall carbon nanotubes-reinforced epoxy hybrid coatings with high electrical conductivity and corrosion resistance prepared via electrostatic spraying. Prog. Org. Coat. 90, 139–146 (2016)

    Google Scholar 

  31. Guan, X.Y., Wang, Y.X., Xue, Q.J., Wang, L.P.: Toward high load bearing capacity and corrosion resistance Cr/Cr2N nano-multilayer coatings against seawater attack. Surf. Coat. Technol. 282, 78–85 (2015)

    Google Scholar 

  32. Kumar, U.P., Kennady, C.J., Zhou, Q.Y.: Effect of salicylaldehyde on microstructure and corrosion resistance of electrodeposited nanocrystalline Ni-W alloy coatings. Surf. Coat. Technol. 283, 148–155 (2015)

    Google Scholar 

  33. Krella, A.K., Sobczyk, A.T., Krupa, A., Jaworek, A.: Thermal resistance of Al2O3 coating produced by electrostatic spray deposition method. Mech. Mater. 98, 120–133 (2016)

    Google Scholar 

  34. Vasiliev, A.S., Volkov, S.S., Belov, A.A., Litvinchuk, S.Y., Aizikovich, S.M.: Indentation of a hard transversely isotropic functionally graded coating by a conical indenter. Int. J. Eng. Sci. 112, 63–75 (2017)

    MathSciNet  MATH  Google Scholar 

  35. Alinia, Y., Beheshti, A., Guler, M.A., El-Borgi, S., Polycarpou, A.A.: Sliding contact analysis of functionally graded coating/substrate system. Mech. Mater. 94, 142–155 (2016)

    Google Scholar 

  36. Xu, S.K., Dall’Agnese, Y., Wei, G.D., Zhang, C., Gogotsi, Y., Han, W.: Screen-printable microscale hybrid device based on MXene and layered double hydroxide electrodes for powering force sensors. Nano Energy 50, 479–488 (2018)

    Google Scholar 

  37. Chen, M., Li, Z.K., Li, W.M., Shan, C.W., Li, W.J., Li, K.W., Gu, G.D., Feng, Y., Zhong, G.H., Wei, L., Yang, C.L.: Large-scale synthesis of single-crystalline self-standing SnSe2 nanoplate arrays for wearable gas sensors. Nanotechnology 29(45), 455501 (2018)

    Google Scholar 

  38. Miyashita, Y., Sasaki, Y., Kuroishi, T., Watanabe, T., Xu, J.Q., Mutoh, Y., Yasuoka, M.: An evaluation of the adhesive strength of the interface between a coating and substrate. JSME Int. J. Ser. A Solid Mech. Mater. Eng. 46(3), 335–340 (2003)

    Google Scholar 

  39. Zhang, Y.M., Gu, Y., Chen, J.T.: Boundary element analysis of the thermal behaviour in thin-coated cutting tools. Eng. Anal. Bound. Elem. 34(9), 775–784 (2010)

    MathSciNet  MATH  Google Scholar 

  40. Zhou, Y.T., Lee, K.Y.: Theory of sliding contact for multiferroic materials indented by a rigid punch. Int. J. Mech. Sci. 66, 156–167 (2013)

    Google Scholar 

  41. Zhu, R.K., Ming, W.J., Liu, Y.Y., Pan, K., Lei, C.H.: The intrinsic piezoresponse in piezoelectric medium under contact-mode piezoresponse force microscopy. Int. J. Mech. Sci. 145, 400–409 (2018)

    Google Scholar 

  42. Soh, A.K., Lee, K.L., Song, Y.C., Fang, D.N.: Experimental studies of peezoelectric/ferroelectric and soft ferromagnetic materials with defects. Int. J. Mod. Phys. B 20(25–27), 4643–4648 (2006)

    Google Scholar 

  43. Wang, J.H., Chen, C.Q.: Effects of thickness on the responses of piezoresponse force microscopy for piezoelectric film/substrate systems. J. Appl. Mech. Trans. ASME 84(12), 121004 (2017)

    Google Scholar 

  44. Hou, P.F., Andrew, Y.T.L., Ding, H.J.: The elliptical Hertzian contact of transversely isotropic magnetoelectroelastic bodies. Int. J. Solids Struct. 40(11), 2833–2850 (2003)

    MATH  Google Scholar 

  45. Zhou, Y.T., Lee, K.Y.: Theory of moving contact of anisotropic piezoelectric materials via real fundamental solutions approach. Eur. J. Mech. A Solids 35, 22–36 (2012)

    MathSciNet  MATH  Google Scholar 

  46. Ke, L.L., Wang, Y.S.: Fretting contact of two dissimilar elastic bodies with functionally graded coatings. Mech. Adv. Mater. Struct. 17(6), 433–447 (2010)

    Google Scholar 

  47. Zhang, Y.M., Gu, Y., Chen, J.T.: Internal stress analysis for single and multilayered coating systems using the boundary element method. Eng. Anal. Bound. Elem. 35(4), 708–717 (2011)

    MATH  Google Scholar 

  48. Gu, Y., Chen, W., Zhang, C.: Stress analysis for thin multilayered coating systems using a sinh transformed boundary element method. Int. J. Solids Struct. 50(20–21), 3460–3471 (2013)

    Google Scholar 

  49. Ranjbar-Far, M., Absi, J., Mariaux, G., Dubois, F.: Simulation of the effect of material properties and interface roughness on the stress distribution in thermal barrier coatings using finite element method. Mater. Des. 31(2), 772–781 (2010)

    Google Scholar 

  50. Asghari, S., Salimi, M.: Finite element simulation of thermal barrier coating performance under thermal cycling. Surf. Coat. Technol. 205(7), 2042–2050 (2010)

    Google Scholar 

  51. Alinia, Y., Hosseini-nasab, M., Guler, M.A.: The sliding contact problem for an orthotropic coating bonded to an isotropic substrate. Eur. J. Mech. A Solids 70, 156–171 (2018)

    MathSciNet  MATH  Google Scholar 

  52. Liu, Y.W., Ma, H.S., Wei, Y.G., Chen, P.: Size effect investigation of indentation response of stifffilm/compliant substrate composite structure. Int. J. Solids Struct. 193, 106–116 (2020)

    Google Scholar 

  53. Putignano, C., Carbone, G., Dini, D.: Mechanics of rough contacts in elastic and viscoelastic thin layers. Int. J. Solids Struct. 69–70, 507–517 (2015)

    Google Scholar 

  54. Goltsberg, R., Etsion, I.: Contact area and maximum equivalent stress in elastic spherical contact with thin hard coating. Tribol. Int. 93, 289–296 (2016)

    Google Scholar 

  55. Mokhtari, M., Schipper, D.J., Vleugels, N., Noordermeer, J.W.M.: Transversely isotropic viscoelastic materials: Contact mechanics and friction. Tribol. Int. 97, 116–123 (2016)

    Google Scholar 

  56. Bagault, C., Nélias, D., Baietto, M.C., Ovaert, T.C.: Contact analyses for anisotropic half-space coated with an anisotropic layer: effect of the anisotropy on the pressure distribution and contact area. Int. J. Solids Struct. 50(5), 743–754 (2013)

    Google Scholar 

  57. Alinia, Y., Guler, M.A., Adibnazari, S.: On the contact mechanics of a rolling cylinder on a graded coating. Part 1: analytical formulation. Mech. Mater. 68, 207–216 (2014)

    Google Scholar 

  58. Briggs, B.N., Stender, M.E., Muljadi, P.M., Donnelly, M.A., Winn, V.D., Ferguson, V.L.: A Hertzian contact mechanics based formulation to improve ultrasound elastography assessment of uterine cervical tissue stiffness. J. Biomech. 48(9), 1524–1532 (2015)

    Google Scholar 

  59. Chai, H.: Fracture mechanics analysis of thin coatings under plane-strain indentation. Int. J. Solids Struct. 40(3), 591–610 (2003)

    MATH  Google Scholar 

  60. Toyama, H., Niwa, M., Xu, J., Yonezu, A.: Failure assessment of a hard brittle coating on a ductile substrate subjected to cyclic contact loading. Eng. Fail. Anal. 57, 118–128 (2015)

    Google Scholar 

  61. Favache, A., Sacre, C.H., Coulombier, M., Libralesso, L., Guaino, P., Raskin, J.P., Bailly, C., Nysten, B., Pardoen, T.: Fracture mechanics based analysis of the scratch resistance of thin brittle coatings on a soft interlayer. Wear 330, 461–468 (2015)

    Google Scholar 

  62. Chidlow, S.J., Teodorescu, M.: Sliding contact problems involving inhomogeneous materials comprising a coating-transition layer-substrate and a rigid punch. Int. J. Solids Struct. 51(10), 1931–1945 (2014)

    Google Scholar 

  63. Chen, Y.X., Liang, X.B., Liu, Y., Bai, J.Y., Xu, B.S.: Finite element modeling of coating formation and transient heat transfer in the electric arc spray process. Int. J. Heat Mass Transf. 53(9–10), 2012–2021 (2010)

    MATH  Google Scholar 

  64. Faskova, Z., Cunderlik, R., Mikula, K.: Finite elements solutions of boundary value problems relevant to geodesy. Vii Hotine-Marussi Symposium on Mathematical Geodesy, vol. 137 (2012)

  65. Yakhno, V., Ozdek, D.: Computing the Green’s function of the initial boundary value problem for the wave equation in a radially layered cylinder. Int. J. Comput. Methods 12(05), 1550027 (2015)

    MathSciNet  MATH  Google Scholar 

  66. Shiah, Y.C., Tan, C.L., Chen, Y.H.: Efficient BEM stress analysis of 3D generally anisotropic elastic solids with stress concentrations and cracks. CMES Comput. Model. Eng. Sci. 96(4), 243–257 (2013)

    MathSciNet  MATH  Google Scholar 

  67. Sbartai, B.: Dynamic interaction of two adjacent foundations embedded in a viscoelastic soil. Int. J. Struct. Stab. Dyn. 16(3), 1450110 (2016)

    MathSciNet  MATH  Google Scholar 

  68. Romero, A., Galvin, P., Antonio, J., Dominguez, J., Tadeu, A.: Modelling of acoustic and elastic wave propagation from underground structures using a 2.5D BEM-FEM approach. Eng. Anal. Bound. Elem. 76, 26–39 (2017)

    MathSciNet  MATH  Google Scholar 

  69. Liu, Z.X., Wu, F.J., Wang, D.: The multi-domain FMM-IBEM to model elastic wave scattering by three-dimensional inclusions in infinite domain. Eng. Anal. Bound. Elem. 60, 95–105 (2015)

    MathSciNet  MATH  Google Scholar 

  70. Howard, R., Brovont, A., Pekarek, S.: Analytical evaluation of 2-D flux integral for magnetostatic Galerkin method of moments. IEEE Trans. Magn. 52(4), 1–8 (2016)

    Google Scholar 

  71. Gao, G.Y., Chen, J., Gu, X.Q., Song, J., Li, S.Y., Li, N.: Numerical study on the active vibration isolation by wave impeding block in saturated soils under vertical loading. Soil Dyn. Earthq. Eng. 93, 99–112 (2017)

    Google Scholar 

  72. Wang, F.J., Chen, W., Gu, Y.: Boundary element analysis of inverse heat conduction problems in 2D thin-walled structures. Int. J. Heat Mass Transf. 91, 1001–1009 (2015)

    Google Scholar 

  73. Xie, G.Z., Wang, L.W., Zhang, J.M., Zhang, D.H., Li, H., Du, W.L.: Calculation of three-dimensional nearly singular boundary element integrals for steady-state heat conduction. Eng. Anal. Bound. Elem. 60, 137–143 (2015)

    MathSciNet  MATH  Google Scholar 

  74. Zhang, Y.M., Gong, Y.P., Gao, X.W.: Calculation of 2D nearly singular integrals over high-order geometry elements using the sinh transformation. Eng. Anal. Bound. Elem. 60, 144–153 (2015)

    MathSciNet  MATH  Google Scholar 

  75. Gu, Y., Dong, H.Q., Gao, H.W., Chen, W., Zhang, Y.M.: An extended exponential transformation for evaluating nearly singular integrals in general anisotropic boundary element method. Eng. Anal. Bound. Elem. 65, 39–46 (2016)

    MathSciNet  MATH  Google Scholar 

  76. Gu, Y., Gao, H.W., Chen, W., Zhang, C.Z.: A general algorithm for evaluating nearly singular integrals in anisotropic three-dimensional boundary element analysis. Comput. Methods Appl. Mech. Eng. 308, 483–498 (2016)

    MathSciNet  MATH  Google Scholar 

  77. Gu, Y., Hua, Q.S., Chen, W., Zhang, C.Z.: Numerical evaluation of nearly hyper-singular integrals in the boundary element analysis. Comput. Struct. 167, 15–23 (2016)

    Google Scholar 

  78. Yang, Q.N., Miao, Y.: An improved exponential transformation for accurate evaluation of nearly singular boundary integrals in 3D BEM. Eng. Anal. Bound. Elem. 71, 27–33 (2016)

    MathSciNet  MATH  Google Scholar 

  79. Chen, P.J., Chen, S.H., Peng, J.: Frictional contact of a rigid punch on an arbitrarily oriented gradient half-plane. Acta Mech. 226(12), 4207–4221 (2015)

    MathSciNet  MATH  Google Scholar 

  80. Comez, I.: Contact problem for a functionally graded layer indented by a moving punch. Int. J. Mech. Sci. 100, 339–344 (2015)

    Google Scholar 

  81. Elperin, T., Rudin, G.: Thermal stresses in a coating-substrate assembly caused by internal heat source. J. Therm. Stress. 39(1), 90–102 (2016)

    Google Scholar 

  82. Zelentsov, V.B., Mitrin, B.I., Aizikovich, S.M.: Dynamic and quasi-static instability of sliding thermoelastic frictional contact. J. Frict. Wear 37(3), 213–220 (2016)

    Google Scholar 

  83. Singh, B.M., Rokne, J., Dhaliwal, R.S.: The study of quadruple integral equations involving inverse Mellin transforms and its application to a contact problem for a wedge shaped elastic solid in antiplane shear distribution. Meccanica 42(6), 567–571 (2007)

    MathSciNet  MATH  Google Scholar 

  84. Sil’vestrov, V.V., Smirnov, A.V.: The Prandtl integrodifferential equation and the contact problem for a piecewise homogeneous plate. PMM J. Appl. Math. Mech. 74(6), 679–691 (2010)

    MathSciNet  MATH  Google Scholar 

  85. Sargsyan, A.M.: Effect of the type of electric boundary conditions on the behavior of stresses in a thin piecewise homogeneous piezoelectric wedge. Mech. Compos. Mater. 51(2), 215–224 (2015)

    MathSciNet  Google Scholar 

  86. Liu, T.J., Ke, L.L., Wang, Y.S., Xing, Y.M.: Stress analysis for an elastic semispace with surface and graded layer coatings under induced torsion. Mech. Based Des. Struct. Mach. 43(1), 74–94 (2015)

    Google Scholar 

  87. Ozsahin, T.S.: Frictionless contact problem for a layer on an elastic half plane loaded by means of two dissimilar rigid punches. Struct. Eng. Mech. 25(4), 383–403 (2007)

    Google Scholar 

  88. Ma, J., Ke, L.L., Wang, Y.S.: Frictionless contact of a functionally graded magneto-electro-elastic layered half-plane under a conducting punch. Int. J. Solids Struct. 51(15–16), 2791–2806 (2014)

    Google Scholar 

  89. Ma, J., Ke, L.L., Wang, Y.S.: Sliding frictional contact of functionally graded magneto-electro-elastic materials under a conducting flat punch. J. Appl. Mech. Trans. ASME 82(1) (2015)

  90. Su, J., Ke, L.L., Wang, Y.S.: Fretting contact of a functionally graded piezoelectric layered half-plane under a conducting punch. Smart Mater. Struct. 25(2) (2016)

  91. Ershad, H., Bagheri, R., Noroozi, M.: Transient response of cracked nonhomogeneous substrate with piezoelectric coating by dislocation method. Math. Mech. Solids 23(12), 1525–1536 (2018)

    MathSciNet  MATH  Google Scholar 

  92. Shang, S.-M., Hou, P.-F., Zhang, W.-H.: Three-dimensional overall stress analysis for double-coated structure with equal coating thickness. Mech. Mater. 158, 103861 (2021)

    Google Scholar 

  93. Zhang, Z.Y., Xu, J.Q.: The interface failure criterion of coating materials. J. Shanghai Jiaotong Univ. (Chin. Ed.) 41(6), 983–987 (2007)

    MathSciNet  Google Scholar 

  94. Hou, P.F., Ding, H.J., Chen, J.Y.: Green’s functions for transversely isotropic magnetoelectroelastic media. Int. J. Eng. Sci. 43(10), 826–858 (2005)

    MathSciNet  MATH  Google Scholar 

  95. Lichinchi, M., Lenardi, C., Haupt, J., Vitali, R.: Simulation of Berkovich nanoindentation experiments on thin films using finite element method. Thin Solid Films 312(1), 240–248 (1998)

    Google Scholar 

  96. He, G.-Y., Sun, D.-Y., Zang, S.-L., Chen, J., Fang, Z.-H.: Evaluation of the elastic-plastic properties of TiN coating by nanoindentation technologies using FEM-reverse algorithm. Surf. Coat. Technol. 409, 126855 (2021)

    Google Scholar 

Download references

Acknowledgements

The authors thankfully acknowledge the financial support from the National Natural Science Foundation of China (NO. 12102143), Natural Science Foundation of Guangzhou City (202201010217), and Young Talent Support Project of Guangzhou Association for Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Hua Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In Appendixes A and B, general solutions for both frictionless and frictional situations are listed for the application of this contact theory.

1.1 Appendix A: The functions for the frictionless contact

$$ \begin{aligned} U & = u + iv = e^{i\varphi } (u_{r} + iu_{\varphi } ),\sigma_{1} = \sigma_{x} + \sigma_{y} = \sigma_{r} + \sigma_{\varphi } , \\ \sigma_{2} & = \sigma_{x} - \sigma_{y} + 2i\tau_{xy} = e^{2i\varphi } (\sigma_{r} - \sigma_{\varphi } + 2i\tau_{r\varphi } ),\tau_{z} = \tau_{xz} + i\tau_{yz} = e^{i\varphi } (\tau_{rz} + i\tau_{\varphi z} ). \\ \end{aligned} $$
(A1)

where

$$ \begin{aligned} U & = \sum\limits_{n = 1}^{\infty } {\left( {\overline{U}_{n} + U_{n} } \right)} ,w = \sum\limits_{n = 1}^{\infty } {\left( {\overline{w}_{n} + w_{n} } \right)} ,\sigma_{1} = \sum\limits_{n = 1}^{\infty } {\left( {\overline{\sigma }_{1n} + \sigma_{1n} } \right)} , \\ & \quad {\text{for}} \,\, {\text{coating}}\;0 \le z \le h, \\ \sigma_{2} & = \sum\limits_{n = 1}^{\infty } {\left( {\overline{\sigma }_{2n} + \sigma_{2n} } \right)} ,\sigma_{z} = \sum\limits_{n = 1}^{\infty } {\left( {\overline{\sigma }_{zn} + \sigma_{zn} } \right)} ,\tau_{z} = \sum\limits_{n = 1}^{\infty } {\left( {\overline{\tau }_{zn} + \tau_{zn} } \right)} , \\ \end{aligned} $$
(A2.1)
$$ \begin{aligned} U^{\prime} & = \sum\limits_{n = 1}^{\infty } {U^{\prime}_{n} } ,w^{\prime} = \sum\limits_{n = 1}^{\infty } {w^{\prime}_{n} } ,\sigma^{\prime}_{1} = \sum\limits_{n = 1}^{\infty } {\sigma^{\prime}_{1n} } , \\ & \quad {\text{for}}\, \, {\text{coating}}\;z \le 0, \\ \sigma^{\prime}_{2} & = \sum\limits_{n = 1}^{\infty } {\sigma^{\prime}_{2n} } ,\sigma^{\prime}_{z} = \sum\limits_{n = 1}^{\infty } {\sigma^{\prime}_{zn} } ,\tau^{\prime}_{z} = \sum\limits_{n = 1}^{\infty } {\tau^{\prime}_{zn} } , \\ \end{aligned} $$
(A2.2)

the functions in Eq. (A2.1) are presented in Eq. (A3.1), and the functions in Eq. (A2.2) are presented Eq. (A3.2):

$$ \begin{aligned} U_{n} & = \sum\limits_{k = 1}^{2n} {\sum\limits_{j = 1}^{2} {\frac{{e^{i\varphi } }}{r}P_{z} A_{njk} \left( {1 - \frac{{\sqrt {a^{2} - l_{1njk}^{2} } }}{a}} \right)} } , \\ \overline{U}_{n} & = \sum\limits_{k = 1}^{2n} {\sum\limits_{j = 1}^{2} {\frac{{e^{i\varphi } }}{r}P_{z} \overline{A}_{njk} \left( {1 - \frac{{\sqrt {a^{2} - \overline{l}_{1njk}^{2} } }}{a}} \right)} } , \\ w_{n} & = \sum\limits_{k = 1}^{2n} {\sum\limits_{j = 1}^{2} {\frac{1}{a}s_{j} k_{j} P_{z} A_{njk} \sin^{ - 1} \left( {\frac{{l_{1njk} }}{r}} \right)} } , \\ \overline{w}_{n} & = \sum\limits_{k = 1}^{2n} {\sum\limits_{j = 1}^{2} { - \frac{1}{a}s_{j} k_{j} P_{z} \overline{A}_{njk} \sin^{ - 1} \left( {\frac{{\overline{l}_{1njk} }}{r}} \right)} } , \\ \sigma_{1n} & = \sum\limits_{k = 1}^{2n} {\sum\limits_{j = 1}^{2} { - \frac{2}{a}\left( {m_{j} - c_{66} } \right)P_{z} A_{njk} \frac{{\sqrt {a^{2} - l_{1njk}^{2} } }}{{l_{2njk}^{2} - l_{1njk}^{2} }}} } , \\ \overline{\sigma }_{1n} & = \sum\limits_{k = 1}^{2n} {\sum\limits_{j = 1}^{2} { - \frac{2}{a}\left( {m_{j} - c_{66} } \right)P_{z} \overline{A}_{njk} \frac{{\sqrt {a^{2} - \overline{l}_{1njk}^{2} } }}{{\overline{l}_{2njk}^{2} - \overline{l}_{1njk}^{2} }}} } , \\ \end{aligned} $$
$$ \begin{aligned} \sigma_{2n} & = \sum\limits_{k = 1}^{2n} {\sum\limits_{j = 1}^{2} {\frac{{2c_{66} }}{a}e^{i2\varphi } P_{z} A_{njk} } } \left[ {\frac{{\sqrt {a^{2} - l_{1njk}^{2} } }}{{l_{2njk}^{2} - l_{1njk}^{2} }} - \frac{2a}{{r^{2} }}\left( {1 - \frac{{\sqrt {a^{2} - l_{1njk}^{2} } }}{a}} \right)} \right], \\ \overline{\sigma }_{2n} & = \sum\limits_{k = 1}^{2n} {\sum\limits_{j = 1}^{2} {\frac{{2c_{66} }}{a}e^{i2\varphi } P_{z} \overline{A}_{njk} } } \left[ {\frac{{\sqrt {a^{2} - \overline{l}_{1njk}^{2} } }}{{\overline{l}_{2njk}^{2} - \overline{l}_{1njk}^{2} }} - \frac{2a}{{r^{2} }}\left( {1 - \frac{{\sqrt {a^{2} - \overline{l}_{1njk}^{2} } }}{a}} \right)} \right], \\ \sigma_{zn} & = \sum\limits_{k = 1}^{2n} {\sum\limits_{j = 1}^{2} { - \frac{1}{a}\omega_{j} P_{z} A_{njk} \frac{{\sqrt {a^{2} - l_{1njk}^{2} } }}{{l_{2njk}^{2} - l_{1njk}^{2} }}} } , \\ \overline{\sigma }_{zn} & = \sum\limits_{k = 1}^{2n} {\sum\limits_{j = 1}^{2} { - \frac{1}{a}\omega_{j} P_{z} \overline{A}_{njk} \frac{{\sqrt {a^{2} - \overline{l}_{1njk}^{2} } }}{{\overline{l}_{2njk}^{2} - \overline{l}_{1njk}^{2} }}} } , \\ \tau_{zn} & = \sum\limits_{k = 1}^{2n} {\sum\limits_{j = 1}^{2} { - \frac{1}{a}e^{i\varphi } s_{j} \omega_{j} P_{z} A_{njk} \frac{{l_{1njk} \sqrt {l_{2njk}^{2} - a^{2} } }}{{l_{2njk} \left( {l_{2njk}^{2} - l_{1njk}^{2} } \right)}}} } , \\ \overline{\tau }_{zn} & = \sum\limits_{k = 1}^{2n} {\sum\limits_{j = 1}^{2} {\frac{1}{a}e^{i\varphi } s_{j} \omega_{j} P_{z} \overline{A}_{njk} \frac{{\overline{l}_{1njk} \sqrt {\overline{l}_{2njk}^{2} - a^{2} } }}{{\overline{l}_{2njk} \left( {\overline{l}_{2njk}^{2} - \overline{l}_{1njk}^{2} } \right)}}} } , \\ \end{aligned} $$
(A3.1)
$$ \begin{aligned} U^{\prime}_{n} & = \sum\limits_{k = 1}^{2n} {\sum\limits_{j = 1}^{2} {\frac{{e^{i\varphi } }}{r}P_{z} A^{\prime}_{njk} \left( {1 - \frac{{\sqrt {a^{2} - l_{1njk}^{\prime 2} } }}{a}} \right)} } , \\ w^{\prime}_{n} & = \sum\limits_{k = 1}^{2n} {\sum\limits_{j = 1}^{2} { - \frac{1}{a}s^{\prime}_{j} k^{\prime}_{j} P_{z} A^{\prime}_{njk} \sin^{ - 1} \left( {\frac{{l^{\prime}_{1njk} }}{r}} \right)} } , \\ \sigma^{\prime}_{1n} & = \sum\limits_{k = 1}^{2n} {\sum\limits_{j = 1}^{2} { - \frac{2}{a}\left( {m^{\prime}_{j} - c^{\prime}_{66} } \right)P_{z} A^{\prime}_{njk} \frac{{\sqrt {a^{2} - l_{1njk}^{\prime 2} } }}{{l_{2njk}^{\prime 2} - l_{1njk}^{\prime 2} }}} } , \\ \sigma^{\prime}_{2n} & = \sum\limits_{k = 1}^{2n} {\sum\limits_{j = 1}^{2} {\frac{{2c^{\prime}_{66} }}{a}e^{i2\varphi } P_{z} A^{\prime}_{njk} } } \left[ {\frac{{\sqrt {a^{2} - l_{1njk}^{\prime 2} } }}{{l_{2njk}^{\prime 2} - l_{1njk}^{\prime 2} }} - \frac{2a}{{r^{2} }}\left( {1 - \frac{{\sqrt {a^{2} - l_{1njk}^{\prime 2} } }}{a}} \right)} \right], \\ \sigma^{\prime}_{zn} & = \sum\limits_{k = 1}^{2n} {\sum\limits_{j = 1}^{2} { - \frac{1}{a}\omega^{\prime}_{j} P_{z} A^{\prime}_{njk} \frac{{\sqrt {a^{2} - l_{1njk}^{\prime 2} } }}{{l_{2njk}^{\prime 2} - l_{1njk}^{\prime 2} }}} } , \\ \tau^{\prime}_{zn} & = \sum\limits_{k = 1}^{2n} {\sum\limits_{j = 1}^{2} {\frac{1}{a}e^{i\varphi } s^{\prime}_{j} \omega^{\prime}_{j} P_{z} A^{\prime}_{njk} \frac{{l^{\prime}_{1njk} \sqrt {l_{2njk}^{\prime 2} - a^{2} } }}{{l^{\prime}_{2njk} \left( {l_{2njk}^{\prime 2} - l_{1njk}^{\prime 2} } \right)}}} } . \\ \end{aligned} $$
(A3.2)

The undetermined coefficients \(A_{njk}\), \(A^{\prime}_{njk}\) and \(\overline{A}_{njk}\) are determined by the following recursive formulas (A4.1)–(A4.3):

$$ \overline{A}_{112} = \overline{A}_{121} = 0,\,\sum\limits_{j = 1}^{2} {s_{j} \omega_{j} \overline{A}_{1jj} } = 0,\,\sum\limits_{j = 1}^{2} {\omega_{j} \overline{A}_{1jj} } = \frac{1}{2\pi }, $$
(A4.1)
$$ \begin{aligned} & \overline{A}_{{\left( {n + 1} \right)21}} = \overline{A}_{{\left( {n + 1} \right)1\left( {2n + 2} \right)}} = 0, \\ & \omega_{1} \overline{A}_{{\left( {n + 1} \right)11}} + \omega_{2} \overline{A}_{{\left( {n + 1} \right)22}} = - \omega_{1} A_{n11} , \\ & \omega_{1} \overline{A}_{{\left( {n + 1} \right)1\left( {2n + 1} \right)}} + \omega_{2} \overline{A}_{{\left( {n + 1} \right)2\left( {2n + 2} \right)}} = - \omega_{2} A_{{n2\left( {2n} \right)}} , \\ & \omega_{1} \overline{A}_{{\left( {n + 1} \right)1\left( {m + 1} \right)}} + \omega_{2} \overline{A}_{{\left( {n + 1} \right)2\left( {m + 2} \right)}} = - \omega_{1} A_{{n1\left( {m + 1} \right)}} - \omega_{2} A_{n2m} , \\ & s_{1} \omega_{1} \overline{A}_{{\left( {n + 1} \right)11}} + s_{2} \omega_{2} \overline{A}_{{\left( {n + 1} \right)22}} = s_{1} \omega_{1} A_{n11} , \\ & s_{1} \omega_{1} \overline{A}_{{\left( {n + 1} \right)1\left( {2n + 1} \right)}} + s_{2} \omega_{2} \overline{A}_{{\left( {n + 1} \right)2\left( {2n + 2} \right)}} = s_{2} \omega_{2} A_{{n2\left( {2n} \right)}} , \\ & s_{1} \omega_{1} \overline{A}_{{\left( {n + 1} \right)1\left( {m + 1} \right)}} + s_{2} \omega_{2} \overline{A}_{{\left( {n + 1} \right)2\left( {m + 2} \right)}} = s_{1} \omega_{1} A_{{n1\left( {m + 1} \right)}} + s_{2} \omega_{2} A_{n2m} , \\ & \quad (n = 1,2, \ldots ,\infty ;m = 1,2, \ldots ,2n - 1), \\ \end{aligned} $$
(A4.2)
$$ \begin{aligned} & \sum\limits_{j = 1}^{2} {\left( {A_{njk} - A^{\prime}_{njk} } \right) = - \sum\limits_{j = 1}^{2} {\overline{A}_{njk} } } , \\ & \sum\limits_{j = 1}^{2} {\left( {s_{j} k_{j} A_{njk} + s^{\prime}_{j} k^{\prime}_{j} A^{\prime}_{njk} } \right) = \sum\limits_{j = 1}^{2} {s_{j} k_{j} \overline{A}_{njk} } } , \\ & \sum\limits_{j = 1}^{2} {\left( { - \omega_{j} A_{njk} + \omega^{\prime}_{j} A^{\prime}_{njk} } \right) = \sum\limits_{j = 1}^{2} {\omega_{j} \overline{A}_{njk} } } , \\ & \sum\limits_{j = 1}^{2} {\left( {s_{j} \omega_{j} A_{njk} + s^{\prime}_{j} \omega^{\prime}_{j} A^{\prime}_{njk} } \right) = \sum\limits_{j = 1}^{2} {s_{j} \omega_{j} \overline{A}_{njk} } } , \\ & \quad ( n = 1,2, \ldots ,\infty ;j = 1,2;k = 1,2, \ldots ,2n). \\ \end{aligned} $$
(A4.3)

1.2 Appendix B: The functions for the frictional contact

$$ \begin{aligned} U & = u + iv = e^{i\varphi } (u_{r} + iu_{\varphi } ),\,\sigma_{1} = \sigma_{x} + \sigma_{y} = \sigma_{r} + \sigma_{\varphi } , \\ \sigma_{2} & = \sigma_{x} - \sigma_{y} + 2i\tau_{xy} = e^{2i\varphi } (\sigma_{r} - \sigma_{\varphi } + 2i\tau_{r\varphi } ),\,\tau_{z} = \tau_{xz} + i\tau_{yz} = e^{i\varphi } (\tau_{rz} + i\tau_{\varphi z} ), \\ \end{aligned} $$
(B1)

where

$$ \begin{aligned} U & = \sum\limits_{n = 1}^{\infty } {\left( {\overline{U}_{n} + U_{n} } \right)} ,w = \sum\limits_{n = 1}^{\infty } {\left( {\overline{w}_{n} + w_{n} } \right)} ,\sigma_{1} = \sum\limits_{n = 1}^{\infty } {\left( {\overline{\sigma }_{1n} + \sigma_{1n} } \right)} , \\ & \quad {\text{for}}\, {\text{coating}}\;0 \le z \le h. \\ \sigma_{2} & = \sum\limits_{n = 1}^{\infty } {\left( {\overline{\sigma }_{2n} + \sigma_{2n} } \right)} ,\sigma_{z} = \sum\limits_{n = 1}^{\infty } {\left( {\overline{\sigma }_{zn} + \sigma_{zn} } \right)} ,\tau_{z} = \sum\limits_{n = 1}^{\infty } {\left( {\overline{\tau }_{zn} + \tau_{zn} } \right)} , \\ \end{aligned} $$
(B2.1)
$$ \begin{aligned} U^{\prime} & = \sum\limits_{n = 1}^{\infty } {U^{\prime}_{n} } ,w^{\prime} = \sum\limits_{n = 1}^{\infty } {w^{\prime}_{n} } ,\sigma^{\prime}_{1} = \sum\limits_{n = 1}^{\infty } {\sigma^{\prime}_{1n} } , \\ & \quad {\text{for}} \,{\text{coating}}\;z \le 0, \\ \sigma^{\prime}_{2} & = \sum\limits_{n = 1}^{\infty } {\sigma^{\prime}_{2n} } ,\sigma^{\prime}_{z} = \sum\limits_{n = 1}^{\infty } {\sigma^{\prime}_{zn} } ,\tau^{\prime}_{z} = \sum\limits_{n = 1}^{\infty } {\tau^{\prime}_{zn} } , \\ \end{aligned} $$
(B2.2)

the functions in Eq. (B2.1) are presented in Eq. (B3.1), and the functions in Eq. (B2.2) are presented Eq. (B3.2):

$$ \begin{aligned} U_{n} &= \sum\limits_{k = 1}^{2n} {\sum\limits_{j = 1}^{2} { - \frac{{P_{z} }}{2a}B_{njk} \left[ { - f\sin^{ - 1} \left( {\frac{{l_{1njk} }}{r}} \right) + \overline{f}e^{i2\varphi } \left( {\frac{{2z_{njk} }}{{r^{2} }}\sqrt {a^{2} - l_{1njk}^{2} } - \frac{{2az_{njk} }}{{r^{2} }} + \frac{{l_{1njk} }}{{r^{2} }}\sqrt {r^{2} - l_{1njk}^{2} } } \right)} \right]} } \\ & \quad - \frac{{P_{z} }}{2a}B_{n0} \left[ {f\sin^{ - 1} \left( {\frac{{l_{1n0} }}{r}} \right) + \overline{f}e^{i2\varphi } \left( {\frac{{2z_{n0} }}{{r^{2} }}\sqrt {a^{2} - l_{1n0}^{2} } - \frac{{2az_{n0} }}{{r^{2} }} + \frac{{l_{1n0} }}{{r^{2} }}\sqrt {r^{2} - l_{1n0}^{2} } } \right)} \right], \\ \end{aligned} $$
$$ \begin{aligned} \overline{U}_{n} &= \sum\limits_{k = 1}^{2n} {\sum\limits_{j = 1}^{2} { - \frac{{P_{z} }}{2a}\overline{B}_{njk} \left[ { - f\sin^{ - 1} \left( {\frac{{\overline{l}_{1njk} }}{r}} \right) + \overline{f}e^{i2\varphi } \left( { - \frac{{2\overline{z}_{njk} }}{{r^{2} }}\sqrt {a^{2} - \overline{l}_{1njk}^{2} } + \frac{{2a\overline{z}_{njk} }}{{r^{2} }} + \frac{{\overline{l}_{1njk} }}{{r^{2} }}\sqrt {r^{2} - \overline{l}_{1njk}^{2} } } \right)} \right]} } \\ & \quad - \frac{{P_{z} }}{2a}\overline{B}_{n0} \left[ {f\sin^{ - 1} \left( {\frac{{\overline{l}_{1n0} }}{r}} \right) + \overline{f}e^{i2\varphi } \left( { - \frac{{2\overline{z}_{n0} }}{{r^{2} }}\sqrt {a^{2} - \overline{l}_{1n0}^{2} } + \frac{{2a\overline{z}_{n0} }}{{r^{2} }} + \frac{{\overline{l}_{1n0} }}{{r^{2} }}\sqrt {r^{2} - \overline{l}_{1n0}^{2} } } \right)} \right], \\ \end{aligned} $$
$$ \begin{aligned} w_{n} &= \sum\limits_{k = 1}^{2n} {\sum\limits_{j = 1}^{2} { - \frac{{P_{z} }}{2a}\left( {\overline{f}e^{i\varphi } + fe^{ - i\varphi } } \right)s_{j} k_{j} B_{njk} } } \left( {\frac{a}{r} - \frac{{\sqrt {a^{2} - l_{1njk}^{2} } }}{r}} \right), \\ \overline{w}_{n} &= \sum\limits_{k = 1}^{2n} {\sum\limits_{j = 1}^{2} {\frac{{P_{z} }}{2a}\left( {\overline{f}e^{i\varphi } + fe^{ - i\varphi } } \right)s_{j} k_{j} \overline{B}_{njk} } } \left( {\frac{a}{r} - \frac{{\sqrt {a^{2} - \overline{l}_{1njk}^{2} } }}{r}} \right), \\ \sigma_{1n} &= \sum\limits_{k = 1}^{2n} {\sum\limits_{j = 1}^{2} {\frac{{P_{z} }}{a}\left( {\overline{f}e^{i\varphi } + fe^{ - i\varphi } } \right)\left( {m_{j} - c_{66} } \right)B_{njk} \frac{{l_{1njk} \sqrt {r^{2} - l_{1njk}^{2} } }}{{r\left( {l_{2njk}^{2} - l_{1njk}^{2} } \right)}}} } , \\ \overline{\sigma }_{1n} &= \sum\limits_{k = 1}^{2n} {\sum\limits_{j = 1}^{2} {\frac{{P_{z} }}{a}\left( {\overline{f}e^{i\varphi } + fe^{ - i\varphi } } \right)\left( {m_{j} - c_{66} } \right)\overline{B}_{njk} \frac{{\overline{l}_{1njk} \sqrt {r^{2} - \overline{l}_{1njk}^{2} } }}{{r\left( {\overline{l}_{2njk}^{2} - \overline{l}_{1njk}^{2} } \right)}}} } , \\ \end{aligned} $$
$$ \begin{aligned} \sigma_{2n} &= \sum\limits_{k = 1}^{2n} {\sum\limits_{j = 1}^{2} { - \frac{{c_{66} P_{z} }}{a}B_{njk} \left[ {fe^{i\varphi } \frac{{l_{1njk} \sqrt {r^{2} - l_{1njk}^{2} } }}{{r\left( {l_{2njk}^{2} - l_{1njk}^{2} } \right)}} + \overline{f}e^{i3\varphi } \left\{ {\frac{{8az_{njk} }}{{r^{3} }}} \right.} \right.} } \\ & \quad - \left. {\left. {\frac{{\sqrt {r^{2} - l_{1njk}^{2} } }}{{r^{3} l_{1njk} \left( {l_{2njk}^{2} - l_{1njk}^{2} } \right)}}\left[ {8a^{2} l_{2njk}^{2} - 8a^{2} r^{2} + \left( {3r^{2} - 4a^{2} + 4z_{njk}^{2} } \right)l_{1njk}^{2} } \right]} \right\}} \right] \\ & \quad + \frac{{c_{66} P_{z} }}{a}B_{n0} \left[ {fe^{i\varphi } \frac{{l_{1n0} \sqrt {r^{2} - l_{1n0}^{2} } }}{{r\left( {l_{2n0}^{2} - l_{1n0}^{2} } \right)}} - \overline{f}e^{i3\varphi } \left\{ {\frac{{8az_{n0} }}{{r^{3} }}} \right.} \right. \\ & \quad - \left. {\left. {\frac{{\sqrt {r^{2} - l_{1n0}^{2} } }}{{r^{3} l_{1n0} \left( {l_{2n0}^{2} - l_{1n0}^{2} } \right)}}\left[ {8a^{2} l_{2n0}^{2} - 8a^{2} r^{2} + \left( {3r^{2} - 4a^{2} + 4z_{n0}^{2} } \right)l_{1n0}^{2} } \right]} \right\}} \right], \\ \end{aligned} $$
$$ \begin{aligned} \overline{\sigma }_{2n} &= \sum\limits_{k = 1}^{2n} {\sum\limits_{j = 1}^{2} { - \frac{{c_{66} P_{z} }}{a}\overline{B}_{njk} \left[ {fe^{i\varphi } \frac{{\overline{l}_{1njk} \sqrt {r^{2} - \overline{l}_{1njk}^{2} } }}{{r\left( {\overline{l}_{2njk}^{2} - \overline{l}_{1njk}^{2} } \right)}} + \overline{f}e^{i3\varphi } \left\{ { - \frac{{8a\overline{z}_{njk} }}{{r^{3} }}} \right.} \right.} } \\ & \quad - \left. {\left. {\frac{{\sqrt {r^{2} - \overline{l}_{1njk}^{2} } }}{{r^{3} \overline{l}_{1njk} \left( {\overline{l}_{2njk}^{2} - \overline{l}_{1njk}^{2} } \right)}}\left[ {8a^{2} \overline{l}_{2njk}^{2} - 8a^{2} r^{2} + \left( {3r^{2} - 4a^{2} + 4\overline{z}_{njk}^{2} } \right)\overline{l}_{1njk}^{2} } \right]} \right\}} \right] \\ & \quad + \frac{{c_{66} P_{z} }}{a}\overline{B}_{n0} \left[ {fe^{i\varphi } \frac{{\overline{l}_{1n0} \sqrt {r^{2} - \overline{l}_{1n0}^{2} } }}{{r\left( {\overline{l}_{2n0}^{2} - \overline{l}_{1n0}^{2} } \right)}} - \overline{f}e^{i3\varphi } \left\{ { - \frac{{8a\overline{z}_{n0} }}{{r^{3} }}} \right.} \right. \\ & \quad - \left. {\left. {\frac{{\sqrt {r^{2} - \overline{l}_{1n0}^{2} } }}{{r^{3} \overline{l}_{1n0} \left( {\overline{l}_{2n0}^{2} - \overline{l}_{1n0}^{2} } \right)}}\left[ {8a^{2} \overline{l}_{2n0}^{2} - 8a^{2} r^{2} + \left( {3r^{2} - 4a^{2} + 4\overline{z}_{n0}^{2} } \right)\overline{l}_{1n0}^{2} } \right]} \right\}} \right], \\ \end{aligned} $$
$$ \begin{aligned} \sigma_{zn} &= \sum\limits_{k = 1}^{2n} {\sum\limits_{j = 1}^{2} {\frac{{P_{z} }}{2a}\left( {\overline{f}e^{i\varphi } + fe^{ - i\varphi } } \right)\omega_{j} B_{njk} \frac{{l_{1njk} \sqrt {r^{2} - l_{1njk}^{2} } }}{{r\left( {l_{2njk}^{2} - l_{1njk}^{2} } \right)}}} }, \\ \overline{\sigma }_{zn} &= \sum\limits_{k = 1}^{2n} {\sum\limits_{j = 1}^{2} {\frac{{P_{z} }}{2a}\left( {\overline{f}e^{i\varphi } + fe^{ - i\varphi } } \right)\omega_{j} \overline{B}_{njk} \frac{{\overline{l}_{1njk} \sqrt {r^{2} - \overline{l}_{1njk}^{2} } }}{{r\left( {\overline{l}_{2njk}^{2} - \overline{l}_{1njk}^{2} } \right)}}} }, \\ \end{aligned} $$
$$ \begin{aligned} \tau_{zn} & = \sum\limits_{k = 1}^{2n} {\sum\limits_{j = 1}^{2} { - \frac{{P_{z} }}{2a}s_{j} \omega_{j} B_{njk} \left[ {f\frac{{\sqrt {a^{2} - l_{1njk}^{2} } }}{{l_{2njk}^{2} - l_{1njk}^{2} }} + \overline{f}e^{i2\varphi } \left( {\frac{{\sqrt {a^{2} - l_{1njk}^{2} } }}{{l_{2njk}^{2} - l_{1njk}^{2} }} - \frac{2a}{{r^{2} }} + \frac{2}{{r^{2} }}\sqrt {a^{2} - l_{1njk}^{2} } } \right)} \right]} } \\ & \quad + \frac{{s_{0} c_{44} P_{z} }}{2a}B_{n0} \left[ {f\frac{{\sqrt {a^{2} - l_{1n0}^{2} } }}{{l_{2n0}^{2} - l_{1n0}^{2} }} - \overline{f}e^{i2\varphi } \left( {\frac{{\sqrt {a^{2} - l_{1n0}^{2} } }}{{l_{2n0}^{2} - l_{1n0}^{2} }} - \frac{2a}{{r^{2} }} + \frac{2}{{r^{2} }}\sqrt {a^{2} - l_{1n0}^{2} } } \right)} \right], \\ \overline{\tau }_{zn} &= \sum\limits_{k = 1}^{2n} {\sum\limits_{j = 1}^{2} {\frac{{P_{z} }}{2a}s_{j} \omega_{j} \overline{B}_{njk} \left[ {f\frac{{\sqrt {a^{2} - \overline{l}_{1njk}^{2} } }}{{\overline{l}_{2njk}^{2} - \overline{l}_{1njk}^{2} }} + \overline{f}e^{i2\varphi } \left( {\frac{{\sqrt {a^{2} - \overline{l}_{1njk}^{2} } }}{{\overline{l}_{2njk}^{2} - \overline{l}_{1njk}^{2} }} - \frac{2a}{{r^{2} }} + \frac{2}{{r^{2} }}\sqrt {a^{2} - \overline{l}_{1njk}^{2} } } \right)} \right]} } \\ & \quad - \frac{{s_{0} c_{44} P_{z} }}{2a}\overline{B}_{n0} \left[ {f\frac{{\sqrt {a^{2} - \overline{l}_{1n0}^{2} } }}{{\overline{l}_{2n0}^{2} - \overline{l}_{1n0}^{2} }} - \overline{f}e^{i2\varphi } \left( {\frac{{\sqrt {a^{2} - \overline{l}_{1n0}^{2} } }}{{\overline{l}_{2n0}^{2} - \overline{l}_{1n0}^{2} }} - \frac{2a}{{r^{2} }} + \frac{2}{{r^{2} }}\sqrt {a^{2} - \overline{l}_{1n0}^{2} } } \right)} \right], \\ \end{aligned} $$
(B3.1)
$$ \begin{aligned} U^{\prime}_{n} &= \sum\limits_{{k = 1}}^{{2n}} {\sum\limits_{{j = 1}}^{2} { - \frac{{P_{z} }}{{2a}}B^{\prime}_{{njk}} \left[ { - f\sin ^{{ - 1}} \left( {\frac{{l^{\prime}_{{1njk}} }}{r}} \right) + \bar{f}e^{{i2\varphi }} \left( { - \frac{{2z^{\prime}_{{njk}} }}{{r^{2} }}\sqrt {a^{2} - l_{{1njk}}^{{\prime 2}} } + \frac{{2az^{\prime}_{{njk}} }}{{r^{2} }} + \frac{{l^{\prime}_{{1njk}} }}{{r^{2} }}\sqrt {r^{2} - l_{{1njk}}^{{\prime 2}} } } \right)} \right]} } \\ & \quad - \frac{{P_{z} }}{{2a}}B^{\prime}_{{n0}} \left[ {f\sin ^{{ - 1}} \left( {\frac{{l^{\prime}_{{1n0}} }}{r}} \right) + \bar{f}e^{{i2\varphi }} \left( { - \frac{{2z^{\prime}_{{n0}} }}{{r^{2} }}\sqrt {a^{2} - l_{{1n0}}^{{\prime 2}} } + \frac{{2az^{\prime}_{{n0}} }}{{r^{2} }} + \frac{{l^{\prime}_{{1n0}} }}{{r^{2} }}\sqrt {r^{2} - l _{{1n0}}^{{\prime 2}} } } \right)} \right], \\ \end{aligned} $$
$$ \begin{gathered} w^{\prime}_{n} = \sum\limits_{k = 1}^{2n} {\sum\limits_{j = 1}^{2} {\frac{{P_{z} }}{2a}\left( {\overline{f}e^{i\varphi } + fe^{ - i\varphi } } \right)s^{\prime}_{j} k^{\prime}_{j} B^{\prime}_{njk} } } \left( {\frac{a}{r} - \frac{{\sqrt {a^{2} - l_{1njk}^{\prime 2} } }}{r}} \right), \hfill \\ \sigma^{\prime}_{1n} = \sum\limits_{k = 1}^{2n} {\sum\limits_{j = 1}^{2} {\frac{{P_{z} }}{a}\left( {\overline{f}e^{i\varphi } + fe^{ - i\varphi } } \right)\left( {m^{\prime}_{j} - c^{\prime}_{66} } \right)B^{\prime}_{njk} \frac{{l^{\prime}_{1njk} \sqrt {r^{2} - l_{1njk}^{\prime 2} } }}{{r\left( {l_{2njk}^{\prime 2} - l_{1njk}^{\prime 2} } \right)}}} } , \hfill \\ \end{gathered} $$
$$ \begin{aligned} \sigma^{\prime}_{2n} &= \sum\limits_{k = 1}^{2n} {\sum\limits_{j = 1}^{2} { - \frac{{c^{\prime}_{66} P_{z} }}{a}B^{\prime}_{njk} \left[ {fe^{i\varphi } \frac{{l^{\prime}_{1njk} \sqrt {r^{2} - l_{1njk}^{\prime 2} } }}{{r\left( {l_{2njk}^{\prime 2} - l_{1njk}^{\prime 2} } \right)}} + \overline{f}e^{i3\varphi } \left\{ { - \frac{{8az^{\prime}_{njk} }}{{r^{3} }}} \right.} \right.} } \\ & \quad - \left. {\left. {\frac{{\sqrt {r^{2} - l_{1njk}^{\prime 2} } }}{{r^{3} l^{\prime}_{1njk} \left( {l_{2njk}^{\prime 2} - l_{1njk}^{\prime 2} } \right)}}\left[ {8a^{2} l_{2njk}^{\prime 2} - 8a^{2} r^{2} + \left( {3r^{2} - 4a^{2} + 4z_{njk}^{\prime 2} } \right)l_{1njk}^{\prime 2} } \right]} \right\}} \right] \\ & \quad + \frac{{c^{\prime}_{66} P_{z} }}{a}B^{\prime}_{n0} \left[ {fe^{i\varphi } \frac{{l^{\prime}_{1n0} \sqrt {r^{2} - l_{1n0}^{\prime 2} } }}{{r\left( {l_{2n0}^{2} - l_{1n0}^{2} } \right)}} - \overline{f}e^{i3\varphi } \left\{ { - \frac{{8az^{\prime}_{n0} }}{{r^{3} }}} \right.} \right. \\ & \quad - \left. {\left. {\frac{{\sqrt {r^{2} - l_{1n0}^{\prime 2} } }}{{r^{3} l^{\prime}_{1n0} \left( {l_{2n0}^{\prime 2} - l_{1n0}^{\prime 2} } \right)}}\left[ {8a^{2} l_{2n0}^{\prime 2} - 8a^{2} r^{2} + \left( {3r^{2} - 4a^{2} + 4z_{n0}^{2} } \right)l_{1n0}^{\prime 2} } \right]} \right\}} \right], \\ \end{aligned} $$
$$\begin{aligned} \sigma ^{\prime}_{{zn}} &= \sum\limits_{{k = 1}}^{{2n}} {\sum\limits_{{j = 1}}^{2} {\frac{{P_{z} }}{{2a}}\left( {\bar{f}e^{{i\varphi }} + fe^{{ - i\varphi }} } \right)\omega ^{\prime}_{j} B^{\prime}_{{njk}} \frac{{l^{\prime}_{{1njk}} \sqrt {r^{2} - l_{{1njk}}^{{\prime 2}} } }}{{r\left( {l_{{2njk}}^{{\prime 2}} - l_{{1njk}}^{{\prime 2}} } \right)}}} } , \\ \tau ^{\prime}_{{zn}} &= \sum\limits_{{k = 1}}^{{2n}} {\sum\limits_{{j = 1}}^{2} {\frac{{P_{z} }}{{2a}}s^{\prime}_{j} \omega ^{\prime}_{j} B^{\prime}_{{njk}} \left[ {f\frac{{\sqrt {a^{2} - l_{{1njk}}^{{\prime 2}} } }}{{l_{{2njk}}^{{\prime 2}} - l_{{1njk}}^{{\prime 2}} }}} \right.} } \left. { + \bar{f}e^{{i2\varphi }} \left( {\frac{{\sqrt {a^{2} - l_{{1njk}}^{{\prime 2}} } }}{{l_{{2njk}}^{{\prime 2}} - l_{{1njk}}^{{\prime 2}} }} - \frac{{2a}}{{r^{2} }} + \frac{2}{{r^{2} }}\sqrt {a^{2} - l_{{1njk}}^{{\prime 2}} } } \right)} \right] \\ & \quad - \frac{{s^{\prime}_{0} c^{\prime}_{{44}} P_{z} }}{{2a}}B^{\prime}_{{n0}} \left[ {f\frac{{\sqrt {a^{2} - l_{{1n0}}^{{\prime 2}} } }}{{l_{{2n0}}^{{\prime 2}} - l_{{1n0}}^{{\prime 2}} }}} \right.\left. { - \bar{f}e^{{i2\varphi }} \left( {\frac{{\sqrt {a^{2} - l_{{1n0}}^{{\prime 2}} } }}{{l_{{2n0}}^{{\prime 2}} - l_{{1n0}}^{{\prime 2}} }} - \frac{{2a}}{{r^{2} }} + \frac{2}{{r^{2} }}\sqrt {a^{2} - l_{{1n0}}^{{\prime 2}} } } \right)} \right], \\ \end{aligned}$$
(B3.2)

and the undetermined coefficients \(B_{n0}\), \(\overline{B}_{n0}\), \(B^{\prime}_{n0}\) \(B_{njk}\), \(\overline{B}_{njk}\) and \(B^{\prime}_{njk}\) are determined by the following recursive formulas (B4.1)–(B4.3):

$$ \begin{aligned} & \overline{B}_{112} = \overline{B}_{121} = 0,\,\sum\limits_{j = 1}^{2} {\omega_{1} \overline{B}_{1jj} = 0} , \\ & c_{44} s_{0} \overline{B}_{10} + \sum\limits_{j = 1}^{2} {s_{j} \omega_{j} \overline{B}_{1jj} } = 0, \\ & c_{44} s_{0} \overline{B}_{10} - \sum {s_{j} \omega_{j} \overline{B}_{1jj} = - \frac{1}{\pi },} \\ \end{aligned} $$
(B4.1)
$$ \begin{aligned} & \overline{B}_{{\left( {n + 1} \right)0}} = B_{n0} , \\ & \overline{B}_{{\left( {n + 1} \right)21}} = \overline{B}_{{\left( {n + 1} \right)1\left( {2n + 2} \right)}} = 0, \\ & \omega_{1} \overline{B}_{{\left( {n + 1} \right)11}} + \omega_{2} \overline{B}_{{\left( {n + 1} \right)22}} = - \omega_{1} B_{n11} , \\ & \omega_{1} \overline{B}_{{\left( {n + 1} \right)1\left( {2n + 1} \right)}} + \omega_{2} \overline{B}_{{\left( {n + 1} \right)2\left( {2n + 2} \right)}} = - \omega_{2} B_{{n1\left( {2n} \right)}} , \\ & \omega_{1} \overline{B}_{{\left( {n + 1} \right)1\left( {m + 1} \right)}} + \omega_{2} \overline{B}_{{\left( {n + 1} \right)2\left( {m + 2} \right)}} = - \omega_{1} B_{{n1\left( {m + 1} \right)}} - \omega_{{2B_{n2m} }} , \\ & s_{1} \omega_{1} \overline{B}_{{\left( {n + 1} \right)11}} + s_{2} \omega_{2} \overline{B}_{{\left( {n + 1} \right)22}} = s_{1} \omega_{1} B_{n11} , \\ & s_{1} \omega_{1} \overline{B}_{{\left( {n + 1} \right)1\left( {2n + 1} \right)}} + s_{2} \omega_{2} \overline{B}_{{\left( {n + 1} \right)2\left( {2n + 2} \right)}} = s_{2} \omega_{2} B_{{n2\left( {2n} \right)}} , \\ & s_{1} \omega_{1} \overline{B}_{{\left( {n + 1} \right)1\left( {m + 1} \right)}} + s_{2} \omega_{2} \overline{B}_{{\left( {n + 1} \right)2\left( {m + 2} \right)}} = s_{1} \omega_{1} B_{{n1\left( {m + 1} \right)}} + s_{2} \omega_{2} B_{n2m} , \\ & \quad ( n = 1,2, \ldots ,\infty ;m = 1,2, \ldots ,2n - 1), \\ \end{aligned} $$
(B4.2)
$$ \begin{aligned} & B_{n0} - B^{\prime}_{n0} = - \overline{B}_{n0} , \\ & \sum\limits_{j = 1}^{2} {\left( {B_{njk} - B^{\prime}_{njk} } \right) = - \sum\limits_{j = 1}^{2} {\overline{B}_{njk} } } , \\ & \sum\limits_{j = 1}^{2} {\left( {s_{j} k_{j} B_{njk} + s^{\prime}_{j} k^{\prime}_{j} B^{\prime}_{njk} } \right) = \sum\limits_{j = 1}^{2} {s_{j} k_{j} \overline{B}_{njk} } } , \\ & \sum\limits_{j = 1}^{2} {\left( { - \omega_{j} B_{njk} + \omega^{\prime}_{j} B^{\prime}_{njk} } \right) = \sum\limits_{j = 1}^{2} {\omega_{j} \overline{B}_{njk} } } , \\ & c_{44} s_{0} B_{n0} + c^{\prime}_{44} s^{\prime}_{0} + B^{\prime}_{n0} = c_{44} s_{0} \overline{B}_{n0} , \\ & \sum\limits_{j = 1}^{2} {\left( {s_{j} \omega_{j} B_{njk} + s^{\prime}_{j} \omega^{\prime}_{j} B^{\prime}_{njk} } \right) = \sum\limits_{j = 1}^{2} {s_{j} \omega_{j} \overline{B}_{njk} } } , \\ & \quad ( n = 1,2, \ldots ,\infty ;k = 1,2, \ldots ,2n). \\ \end{aligned} $$
(B4.3)

1.3 Appendix C: General solution

In the Cartesian coordinates \((x,y,z)\), when the plane \(xOy\) is parallel to the isotropic plane, the constitutive equations of the three-dimensional transversely isotropic material are in the form of

$$ \begin{aligned} \sigma_{x} & = c_{11} \frac{\partial u}{{\partial x}} + c_{12} \frac{\partial v}{{\partial y}} + c_{13} \frac{\partial w}{{\partial z}},\,\tau_{yz} = c_{44} \left( {\frac{\partial v}{{\partial z}} + \frac{\partial w}{{\partial y}}} \right), \\ \sigma_{y} & = c_{12} \frac{\partial u}{{\partial x}} + c_{11} \frac{\partial v}{{\partial y}} + c_{13} \frac{\partial w}{{\partial z}},\,\tau_{zx} = c_{44} \left( {\frac{\partial u}{{\partial z}} + \frac{\partial w}{{\partial x}}} \right), \\ \sigma_{z} & = c_{13} \frac{\partial u}{{\partial x}} + c_{13} \frac{\partial v}{{\partial y}} + c_{33} \frac{\partial w}{{\partial z}},\,\tau_{xy} = \frac{1}{2}(c_{11} - c_{12} )\left( {\frac{\partial u}{{\partial y}} + \frac{\partial v}{{\partial x}}} \right). \\ \end{aligned} $$
(C1)

Disregarding of body forces, the mechanical equilibrium differential equations are

$$ \frac{{\partial \sigma_{x} }}{\partial x} + \frac{{\partial \tau_{xy} }}{\partial y} + \frac{{\partial \tau_{xz} }}{\partial z} = 0 ,\,\frac{{\partial \tau_{xy} }}{\partial x} + \frac{{\partial \sigma_{y} }}{\partial y} + \frac{{\partial \tau_{yz} }}{\partial z} = 0,\,\frac{{\partial \tau_{zx} }}{\partial x} + \frac{{\partial \tau_{yz} }}{\partial y} + \frac{{\partial \sigma_{z} }}{\partial z} = 0. $$
(C2)

In the cylinder coordinates \((r,\phi ,z)\), when the plane \(rO\phi\) is parallel to the isotropic plane, the constitutive equations of the three-dimensional transversely isotropic material are in the form of

$$ \begin{aligned} \sigma_{r} & = c_{11} \frac{{\partial u_{r} }}{\partial r} + c_{12} \left( {\frac{{u_{r} }}{r} + \frac{1}{r}\frac{{\partial u_{\varphi } }}{\partial \varphi }} \right) + c_{13} \frac{{\partial u_{z} }}{\partial z},\tau_{r\varphi } = c_{66} \left( {\frac{1}{r}\frac{{\partial u_{r} }}{\partial \varphi } + \frac{{\partial u_{\varphi } }}{\partial r} - \frac{{u_{\varphi } }}{r}} \right), \\ \sigma_{\varphi } & = c_{12} \frac{{\partial u_{r} }}{\partial r} + c_{11} \left( {\frac{{u_{r} }}{r} + \frac{1}{r}\frac{{\partial u_{\varphi } }}{\partial \varphi }} \right) + c_{13} \frac{{\partial u_{z} }}{\partial z},\tau_{\varphi z} = c_{44} \left( {\frac{{\partial u_{\varphi } }}{\partial z} + \frac{1}{r}\frac{{\partial u_{z} }}{\partial \varphi }} \right), \\ \sigma_{z} & = c_{13} \left( {\frac{{\partial u_{r} }}{\partial r} + \frac{{u_{r} }}{r} + \frac{1}{r}\frac{{\partial u_{\varphi } }}{\partial \varphi }} \right) + c_{33} \frac{{\partial u_{z} }}{\partial z},\tau_{zr} = c_{44} \left( {\frac{{\partial u_{z} }}{\partial r} + \frac{{\partial u_{r} }}{\partial z}} \right). \\ \end{aligned} $$
(C3)

Disregarding of body forces, mechanical equilibrium differential equations are

$$ \begin{aligned} & \frac{{\partial \sigma_{r} }}{\partial r} + \frac{1}{r}\frac{{\partial \tau_{r\varphi } }}{\partial \varphi } + \frac{{\partial \tau_{rz} }}{\partial z} + \frac{{\sigma_{r} - \sigma_{\varphi } }}{r} = 0, \\ & \frac{{\partial \tau_{r\varphi } }}{\partial r} + \frac{1}{r}\frac{{\partial \sigma_{\varphi } }}{\partial \varphi } + \frac{{\partial \tau_{\varphi z} }}{\partial z} + \frac{{2\tau_{r\varphi } }}{r} = 0, \\ & \frac{{\partial \tau_{rz} }}{\partial r} + \frac{1}{r}\frac{{\partial \tau_{\varphi z} }}{\partial \varphi } + \frac{{\partial \sigma_{z} }}{\partial z} + \frac{{\tau_{rz} }}{r} = 0, \\ \end{aligned} $$
(C4)

where \(u_{m}\) and \(\sigma_{m}\)\((\tau_{mn} )\) \((m,n = r,\varphi ,z)\) represent components of the mechanical displacement and normal stress, respectively; \(c_{ij}\) \((i,j = 1,2, \ldots ,6)\) are the elastic modulus. For transversely isotropic materials, \(c_{66} = (c_{11} - c_{12} )/2\).

Substituting Eqs. (C1) and (C3) into Eqs. (C2) and (C4), we have the following combined general solution

$$ \begin{aligned} U & = u + iv = e^{i\varphi } (u_{r} + iu_{\varphi } ),\,\sigma_{1} = \sigma_{x} + \sigma_{y} = \sigma_{r} + \sigma_{\varphi } , \\ \sigma_{2} & = \sigma_{x} - \sigma_{y} + 2i\tau_{xy} = e^{2i\varphi } (\sigma_{r} - \sigma_{\varphi } + 2i\tau_{r\varphi } ),\,\tau_{z} = \tau_{xz} + i\tau_{yz} = e^{i\varphi } (\tau_{rz} + i\tau_{\varphi z} ). \\ \end{aligned} $$
(C5)

Rewrite the general solution in a compact form of

$$ \begin{aligned} U & = \Delta \left( {i\psi_{0} + \sum\limits_{j = 1}^{2} {\psi_{j} } } \right),\,w = \sum\limits_{j = 1}^{2} {s_{j} k_{j} \frac{{\partial \psi_{j} }}{{\partial z_{j} }}} , \\ \sigma_{1} & = 2\sum\limits_{j = 1}^{2} {\left( {m_{j} - c_{66} } \right)\frac{{\partial^{2} \psi_{j} }}{{\partial z_{j}^{2} }}} = - 2\sum\limits_{j = 1}^{2} {\left( {m_{j} - c_{66} } \right)\,\Lambda \psi_{j} } ,\,\sigma_{2} = 2c_{66} \Delta^{2} \left( {i\psi_{0} + \sum\limits_{j = 1}^{2} {\psi_{j} } } \right), \\ \sigma_{z} & = \sum\limits_{j = 1}^{2} {\omega_{j} \frac{{\partial^{2} \psi_{j} }}{{\partial z_{j}^{2} }}} = - \sum\limits_{j = 1}^{2} {\omega_{j} \Lambda \psi_{j} } ,\,\tau_{z} = \Delta \left( {s_{0} c_{44} i\frac{{\partial \psi_{0} }}{{\partial z_{0} }} + \sum\limits_{j = 1}^{2} {s_{j} \omega_{j} \frac{{\partial \psi_{j} }}{{\partial z_{j} }}} } \right), \\ \end{aligned} $$
(C6)

where

$$ \begin{aligned} k_{j} & = \frac{{c_{11} - c_{44} s_{j}^{2} }}{{(c_{13} + c_{44} )s_{j}^{2} }},\,\omega_{j} = c_{33} s_{j}^{2} k_{j} - c_{13} , \\ m_{j} & = 2c_{66} - \omega_{1j} s_{j}^{2} ,\,\Delta = \partial /\partial x + i\partial /\partial y, \\ \Delta^{2} & = \partial^{2} /\partial x^{2} - \partial^{2} /\partial y^{2} + 2i\partial^{2} /\partial x\partial y. \\ \end{aligned} $$
(C7)

For an axisymmetric problem, the general solutions of Eqs. (C4) and (C3) are

$$ \begin{aligned} u_{r} & = \sum\limits_{j = 1}^{2} {\frac{{\partial \psi_{j} }}{\partial r}} ,\,u_{z} = \sum\limits_{j = 1}^{2} {s_{j} k_{j} \frac{{\partial \psi_{j} }}{{\partial z_{j} }}} ,\,u_{\varphi } = 0, \\ \sigma_{r} & = - 2c_{66} \sum\limits_{j = 1}^{2} {\frac{1}{r}\frac{{\partial \psi_{j} }}{\partial r}} - \sum\limits_{j = 1}^{2} {s_{j}^{2} \omega_{j} \frac{{\partial^{2} \psi_{j} }}{{\partial z_{j}^{2} }}} , \\ \sigma_{\phi } & = 2c_{66} \sum\limits_{j = 1}^{2} {\frac{1}{r}\frac{{\partial \psi_{j} }}{\partial r}} - \sum\limits_{j = 1}^{2} {(s_{j}^{2} \omega_{j} - 2c_{66} )\frac{{\partial^{2} \psi_{j} }}{{\partial z_{j}^{2} }}} , \\ \sigma_{z} & = \sum\limits_{j = 1}^{2} {\omega_{j} \frac{{\partial^{2} \psi_{j} }}{{\partial z_{j}^{2} }}} ,\,\tau_{zr} = \sum\limits_{j = 1}^{2} {s_{j} \omega_{j} \frac{{\partial^{2} \psi_{j} }}{{\partial r\partial z_{j} }}} ,\,\tau_{r\phi } = \tau_{\phi z} = 0, \\ \end{aligned} $$
(C8)

when \(s_{1} \ne s_{2}\), \(\psi_{j}\) satisfies the harmonic equation

$$ \left( {\Lambda + \frac{{\partial^{2} }}{{\partial z_{j}^{2} }}} \right)\psi_{j} = 0\quad \left( {j = 0,1,2} \right), $$
(C9)

and

$$ \begin{aligned} \Lambda & = \partial^{2} /\partial x^{2} + \partial^{2} /\partial y^{2} = \partial^{2} /\partial r^{2} + \partial /(r\partial r) + \partial^{2} /(r^{2} \partial \phi^{2} ), \\ z_{j} & = s_{j} z\quad (j = 0,1,2), \\ s_{0} & = \sqrt {c_{66} /c_{44} } , \\ \end{aligned} $$
(C10)

where the eigenvalues \(s_{j} \,\left( {j = 1,2} \right)\) satisfying \({\text{Re}} (s_{j} ) > 0\) should be satisfied with the following equation:

$$ as^{4} - bs^{2} + c = 0, $$
(C11)

with

$$ a = c_{33} c_{44} ,\,b = c_{11} c_{33} + c_{44}^{2} - \left( {c_{13} + c_{44} } \right)^{2} ,\,c = c_{11} c_{44} . $$
(C12)

It should be noted that the general solution in Eq. (C8) is only used when \(s_{1} \ne s_{2}\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, SQ., Tang, PJ., Hou, PF. et al. A method of coating analysis based on cylindrical indenter loading on coated structure. Acta Mech 234, 2223–2267 (2023). https://doi.org/10.1007/s00707-022-03434-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-022-03434-w

Navigation