Skip to main content
Log in

Free vibration analysis of saturated porous circular micro-plates integrated with piezoelectric layers; differential transform method

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The current work investigates axisymmetric vibration of saturated porous circular micro-plates subjected to uniform in-plane force and coupled with piezoelectric sensor and actuator layers. Including the material length scale parameter, the modified coupled stress theory is chosen to capture the size-dependent behavior of the model. The micro-structure is embedded on an elastic substrate medium modeled by Winkler–Pasternak foundation. In addition, the fluid pressure in the pores is partitioned in the formulation via the linear poroelasticity theory of Biot. Based on first-order shear deformation theory, governing equations of motion and corresponding boundary conditions are obtained by employing Hamilton’s principle and solved by a semi-analytical approach called the differential transform method. To ensure the accuracy and reliability of the developed model, natural frequencies of the presented micro-plate are compared with available data in the literature. Finally, numerical examples are presented for studying the effect of some parameters including material length scale parameter, in-plane force, porosity, fluid pressure, electro-mechanical interaction, and the ratio of the elastic core thickness to piezoelectric layers thickness on vibrational responses of the proposed model for two cases of clamped and simply supported edges. The obtained results show that the proposed method is a reliable way of studying the free vibration response of the micro-structures. On the other hand, it is observed that porosity, fluid pressure, tensile in-plane force, size-effect, and open-circuit electrical condition increase the natural frequency of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data, models, and code generated or used during the study appear in the submitted article.

References

  1. Eringen, A.C.: Nonlocal polar elastic continua. Int. J. Eng. Sci. 10(1), 1–16 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  2. Gurtin, M.E., Murdoch, A.I.: Addenda to our paper A continuum theory of elastic material surfaces. ArRMA 59(4), 389–390 (1975)

    Article  MATH  Google Scholar 

  3. Yang, F., Chong, A.C.M., Lam, D.C.C., Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39(10), 2731–2743 (2002)

    Article  MATH  Google Scholar 

  4. Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J., Tong, P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51(8), 1477–1508 (2003)

    Article  MATH  Google Scholar 

  5. Banhart, J.: Manufacture, characterisation and application of cellular metals and metal foams. Prog. Mater. Sci. 46(6), 559–632 (2001)

    Article  Google Scholar 

  6. Lefebvre, L., Banhart, J., Dunand, D.C.: Porous metals and metallic foams: current status and recent developments. Adv. Eng. Mater. 10(9), 775–787 (2008)

    Article  Google Scholar 

  7. Tampieri, A., Celotti, G., Sprio, S., Delcogliano, A., Franzese, S.: Porosity-graded hydroxyapatite ceramics to replace natural bone. Biomaterials 22(11), 1365–1370 (2001)

    Article  Google Scholar 

  8. Biot, M.A.: Theory of buckling of a porous slab and its thermoelastic analogy. J. Appl. Mech. 31(2), 194 (1964)

    Article  MathSciNet  Google Scholar 

  9. Detournay, E., Cheng, A.H.-D.: Fundamentals of poroelasticity. In: Fairhurst, C. (ed.) Analysis and Design Methods, pp. 113–171. Elsevier, Amsterdam (1993)

    Chapter  Google Scholar 

  10. Crawley, E.F., De Luis, J.: Use of piezoelectric actuators as elements of intelligent structures. AIAA J. 25(10), 1373–1385 (1987)

    Article  Google Scholar 

  11. Spencer, W.J., Corbett, W.T., Dominguez, L.R., Shafer, B.D.: An electronically controlled piezoelectric insulin pump and valves. IEEE Trans. Sonics Ultrason. 25(3), 153–156 (1978)

    Article  Google Scholar 

  12. Chen, X., Fox, C.H.J., Mcwilliam, S.: Optimization of a cantilever microswitch with piezoelectric actuation. J. Intell. Mater. Syst. Struct. 15(11), 823–834 (2004)

    Article  Google Scholar 

  13. Chee, C.Y.K., Tong, L., Steven, G.P.: A review on the modelling of piezoelectric sensors and actuators incorporated in intelligent structures. J. Intell. Mater. Syst. Struct. 9(1), 3–19 (1998)

    Article  Google Scholar 

  14. Cao, L., Mantell, S., Polla, D.: Design and simulation of an implantable medical drug delivery system using microelectromechanical systems technology. Sens. Actuators A Phys. 94(1–2), 117–125 (2001)

    Article  Google Scholar 

  15. Winkler, E.: Die Lehre von der Elasticitaet und Festigkeit: mit besonderer Rücksicht auf ihre Anwendung in der Technik für polytechnische Schulen. Bauakademien, Ingenieue, Maschinenbauer, Architecten, etc. H. Dominicus (1867)

  16. Pasternak, P.L.: On a New Method of Analysis of an Elastic Foundation by Means of Two Foundation Constants. Gos. Izd. Lip. po Strait i Arkh, Moscow (1954)

    Google Scholar 

  17. Nazemizadeh, M., Bakhtiari-Nejad, F., Assadi, A., Shahriari, B.: Nonlinear vibration of piezoelectric laminated nanobeams at higher modes based on nonlocal piezoelectric theory. Acta Mech. 231(10), 4259–4274 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jalaei, M.H., Thai, H.-T., Civalek, Ӧ: On viscoelastic transient response of magnetically imperfect functionally graded nanobeams. Int. J. Eng. Sci. 172, 103629 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  19. Civalek, Ӧ, Akbaş, ŞD., Akgöz, B., Dastjerdi, S.: Forced vibration analysis of composite beams reinforced by carbon nanotubes. Nanomaterials 11(3), 571 (2021)

    Article  Google Scholar 

  20. Sobhani, E., Arbabian, A., Civalek, Ӧ: The free vibration analysis of hybrid porous nanocomposite joined hemispherical–cylindrical–conical shells. Eng. Comput. (2021). https://doi.org/10.1007/s00366-021-01453-0

    Article  Google Scholar 

  21. Civalek, Ӧ, Baltacıoglu, A.K.: Free vibration analysis of laminated and FGM composite annular sector plates. Compos. B. Eng. 157, 182–194 (2019)

    Article  Google Scholar 

  22. Akgöz, B., Civalek, Ӧ: A microstructure-dependent sinusoidal plate model based on the strain gradient elasticity theory. Acta Mech. 226(7), 2277–2294 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kamali, F., Shahabian, F.: Free vibration of axially functionally graded tapered micro-beams considering uncertain properties. AUT J. Civ. Eng. 5(4), 543–556 (2021). https://doi.org/10.22060/AJCE.2022.18056.5657

    Article  Google Scholar 

  24. Zhou, S., Zhang, R., Zhou, S., Li, A.: Free vibration analysis of bilayered circular micro-plate including surface effects. Appl. Math. Model. 70, 54–66 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  25. Eshraghi, I., Serkan, D., Soltani, N.: Bending and free vibrations of functionally graded annular and circular micro-plates under thermal loading. Compos. Struct 137, 196–207 (2016)

    Article  Google Scholar 

  26. Korayem, M.H., Homayooni, A.: The size-dependent analysis of multilayer micro-cantilever plate with piezoelectric layer incorporated voltage effect based on a modified couple stress theory. Eur. J. Mech. A Solids 61, 59–72 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kamali, F., Shahabian, F.: Analytical solutions for surface stress effects on buckling and post-buckling behavior of thin symmetric porous nano-plates resting on elastic foundation. Arch. Appl. Mech. 91(6), 2853–2880 (2021)

    Article  Google Scholar 

  28. Shahdadi, A., Rahnama, H.: Free vibration of a functionally graded annular sector plate integrated with piezoelectric layers. Appl. Math. Model. 79, 341–361 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  29. Eftekhari, S., Hashemian, A.M., Toghraie, D.: Optimal vibration control of multi-layer micro-beams actuated by piezoelectric layer based on modified couple stress and surface stress elasticity theories. Phys. A: Stat. Mech. Appl. 546, 123998 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  30. Arshid, E., Khorshidvand, A.R.: Free vibration analysis of saturated porous FG circular plates integrated with piezoelectric actuators via differential quadrature method. Thin Walled Struct. 125, 220–233 (2018)

    Article  Google Scholar 

  31. Kazemi, A., Vatankhah, R., Farid, M.: Vibration analysis of size-dependent functionally graded micro-plates subjected to electrostatic and piezoelectric excitations. Eur. J. Mech. A Solids 76, 46–56 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  32. Shen, J., Wang, H., Zheng, S.: Size-dependent pull-in analysis of a composite laminated micro-beam actuated by electrostatic and piezoelectric forces: generalized differential quadrature method. Int. J. Mech. Sci. 135, 353–361 (2018)

    Article  Google Scholar 

  33. Rezaiee-Pajand, M., Kamali, F.: Exact solution for thermal-mechanical post-buckling of functionally graded micro-beams. CEAS Aeronaut. J. 12, 85–100 (2021)

    Article  Google Scholar 

  34. Ghadiri Rad, A., Shahabian, F.: Nonlocal geometrically nonlinear dynamic analysis of nano-beam using a meshless method. Steel Compos. Struct. 32(3), 293–304 (2019)

    Google Scholar 

  35. Arshid, E., Amir, S., Loghman, A.: Thermal buckling analysis of FG graphene nanoplatelets reinforced porous nanocomposite MCST-based annular/circular microplates. Aerosp. Sci. Technol. 111, 106561 (2021)

    Article  Google Scholar 

  36. Arshid, E., Amir, S., Loghman, A.: Static and dynamic analyses of FG-GNPs reinforced porous nanocomposite annular micro-plates based on MSGT. Int. J. Mech. Sci. 180, 105656 (2020)

    Article  Google Scholar 

  37. Arshid, E., Khorasani, M., Soleimani-Javid, Z., Amir, S., Tounsi, A.: Porosity-dependent vibration analysis of FG microplates embedded by polymeric nanocomposite patches considering hygrothermal effect via an innovative plate theory. Eng. Comput. (2021). https://doi.org/10.1007/s00366-021-01382-y

    Article  Google Scholar 

  38. Amir, S., Soleimani-Javid, Z., Arshid, E.: Size-dependent free vibration of sandwich micro beam with porous core subjected to thermal load based on SSDBT. Z. Angew. Math. Mech. 99(9), e201800334 (2019)

    Article  MathSciNet  Google Scholar 

  39. Arshid, E., Khorshidvand, A.R., Khorsandijou, S.M.: The effect of porosity on free vibration of SPFG circular plates resting on visco-Pasternak elastic foundation based on CPT, FSDT and TSDT. Struct. Eng. Mech. 70(1), 97–112 (2019)

    Google Scholar 

  40. Lal, R., Ahlawat, N.: Axisymmetric vibrations and buckling analysis of functionally graded circular plates via differential transform method. Eur. J. Mech. A Solids 52, 85–94 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  41. Arvin, H.: Free vibration analysis of micro rotating beams based on the strain gradient theory using the differential transform method: Timoshenko versus Euler–Bernoulli beam models. Eur. J. Mech. A Solids 65, 336–348 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  42. Arikoglu, A., Ozkol, I.: Vibration analysis of composite sandwich beams with viscoelastic core by using differential transform method. Compos. Struct. 92(12), 3031–3039 (2010)

    Article  Google Scholar 

  43. Nourifar, M., Keyhani, A., Aftabi Sani, A.: Free vibration analysis of rotating Euler–Bernoulli beam with exponentially varying cross-section by differential transform method. Int. J. Struct. Stab. Dyn. 18(2), 1850024 (2018)

    Article  MathSciNet  Google Scholar 

  44. Hozhabrossadati, S.M., Aftabi Sani, A.: Free vibration of MDOF systems with non-periodically time-varying mass. Int. J. Struct. Stab. Dyn. 18(6), 1850077 (2018)

    Article  MathSciNet  Google Scholar 

  45. Rezaiee-Pajand, M., Aftabi Sani, A., Hozhabrossadati, S.M.: Application of differential transform method to free vibration of gabled frames with rotational springs. Int. J. Struct. Stab. Dyn. 17(1), 1750012 (2017)

    Article  MathSciNet  Google Scholar 

  46. Amir, S., Arshid, E., Ghorbanpour Aran, M.R.: Size-dependent magneto-electro-elastic vibration analysis of FG saturated porous annular/circular micro sandwich plates embedded with nano-composite face sheets subjected to multi-physical pre loads. Smart Struct. Syst. 23(5), 429–447 (2020)

    Google Scholar 

  47. Mousavi, S.B., Amir, S., Jafari, A., Arshid, E.: Analytical solution for analyzing initial curvature effect on vibrational behavior of PM beams integrated with FGP layers based on trigonometric theories. Adv. Nano Res. 10(3), 235–251 (2021)

    Google Scholar 

  48. Amir, S., Arshid, E., Khoddami Maraghi, Z.: Vibration analysis of magnetorheological fluid circular sandwich plates with magnetostrictive facesheets exposed to monotonic magnetic field located on visco-Pasternak substrate. J. Vib. Control 26(17–18), 1523–1537 (2020)

    Article  MathSciNet  Google Scholar 

  49. Arshid, E., Kiani, A., Amir, S., Zarghami Dehghani, M.: Asymmetric free vibration analysis of first-order shear deformable functionally graded magneto-electro-thermo-elastic circular plates. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 233(16), 5659–5675 (2019)

    Article  Google Scholar 

  50. Amir, S., Arshid, E., Khoddami Maraghi, Z.: Free vibration analysis of magneto-rheological smart annular three-layered plates subjected to magnetic field in viscoelastic medium. Smart Struct. Syst. 25(5), 581–592 (2020)

    Google Scholar 

  51. Liew, K.M., Hand, J.B., Xiao, Z.M.: Vibration analysis of circular Mindlin plates using the differential quadrature method. J. Sound Vib. 205(5), 617–630 (1997)

    Article  Google Scholar 

  52. Liu, X., Wang, Q., Queck, S.T.: Analytical solution for free vibration of piezoelectric coupled moderately thick circular plates. Int. J. Solids Struct. 39, 2129–2151 (2002)

    Article  MATH  Google Scholar 

  53. Soleimani-Javid, Z., Arshid, E., Khorasani, M., Amir, S., Tounsi, A.: Size-dependent flexoelectricity-based vibration characteristics of honeycomb sandwich plates with various boundary conditions. Adv. Nano Res. 10(5), 449–460 (2021)

    Google Scholar 

  54. Arshid, E., Arshid, H., Amir, S., Mousavi, S.B.: Free vibration and buckling analyses of FG porous sandwich curved microbeams in thermal environment under magnetic field based on modified couple stress theory. Arch. Civ. Mech. 21(1), 1–23 (2021)

    Google Scholar 

  55. Arshid, E., Amir, S.: Size-dependent vibration analysis of fluid-infiltrated porous curved microbeams integrated with reinforced functionally graded graphene platelets face sheets considering thickness stretching effect. Proc. Inst. Mech. Eng. L. 235(5), 1077–1099 (2021)

    Google Scholar 

  56. Nourifar, M., Aftabi Sani, A., Keyhani, A.: Efficient multi-step differential transform method: Theory and its application to nonlinear oscillators. Commun. Nonlinear Sci. Numer. Simul. 53, 154–183 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  57. Detournay, E., Cheng, A.: Fundamentals of Poroelasticity. Pergamon Press, Oxford (1993)

    Book  Google Scholar 

  58. Yang, J.: An Introduction to the Theory of Piezoelectricity, vol. 9, pp. 31–58. Springer, New York (2005)

    Book  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farzad Shahabian.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

$$\begin{aligned} \left\{ {\begin{array}{*{20}c} {\sigma_{rr}^{P} } \\ {\sigma_{\theta \theta }^{P} } \\ {\sigma_{rz}^{P} } \\ \end{array} } \right\} & = \left[ {\begin{array}{*{20}c} {C_{11} } & {C_{12} } & 0 \\ {C_{12} } & {C_{11} } & 0 \\ 0 & 0 & {C_{55} } \\ \end{array} } \right]\left\{ {\begin{array}{*{20}c} {\varepsilon_{rr} } \\ {\varepsilon_{\theta \theta } } \\ {\varepsilon_{rz} } \\ \end{array} } \right\} - \left[ {\begin{array}{*{20}c} 0 & 0 & {e_{31} } \\ 0 & 0 & {e_{31} } \\ {e_{15} } & 0 & 0 \\ \end{array} } \right]\left\{ {\begin{array}{*{20}c} {E_{r} } \\ {E_{\theta } } \\ {E_{z} } \\, \end{array} } \right\}, \\ \left\{ {\begin{array}{*{20}c} {D_{r} } \\ {D_{\theta } } \\ {D_{z} } \\ \end{array} } \right\} & = \left[ {\begin{array}{*{20}c} 0 & 0 & {e_{15} } \\ 0 & 0 & 0 \\ {e_{31} } & {e_{31} } & 0 \\ \end{array} } \right]\left\{ {\begin{array}{*{20}c} {\varepsilon_{rr} } \\ {\varepsilon_{\theta \theta } } \\ {\varepsilon_{rz} } \\ \end{array} } \right\} + \left[ {\begin{array}{*{20}c} { \in_{11} } & 0 & 0 \\ 0 & { \in_{11} } & 0 \\ 0 & 0 & { \in_{33} } \\ \end{array} } \right]\left\{ {\begin{array}{*{20}c} {E_{r} } \\ {E_{\theta } } \\ {E_{z} } \\ \end{array} } \right\}. \\ \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamali, F., Shahabian, F. & Aftabi-Sani, A. Free vibration analysis of saturated porous circular micro-plates integrated with piezoelectric layers; differential transform method. Acta Mech 234, 649–669 (2023). https://doi.org/10.1007/s00707-022-03407-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-022-03407-z

Navigation