Skip to main content
Log in

Static analysis of functionally graded plate structures resting on variable elastic foundation under various boundary conditions

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Functionally graded materials are widely utilized in several industrial applications, and their accurate modeling is challenging for researchers, principally for FGM nanostructures. This study develops and presents a quasi-3D analytical plate theory to explore the bending behavior of a new model of FG plate structures (FGPSs), resting on modified four parameters Winkler/Pasternak elastic foundations, under various boundary conditions. For this context, different types of functionally graded nanoplates (FGNPs), including (i) the classical FG nanoplate, (ii) the FG sandwich nanoplate, (iii) the trigonometric FG nanoplate of type A, and (4) the trigonometric FG nanoplate of type B as well as their macro-counterparts are also examined. Cosine functions describe the material gradation and material properties through the thickness of the FGNPs. The modified continuum nonlocal strain gradient theory is utilized to include the material and geometrical nanosize length scales. The kinematic relations of the plate are achieved according to hybrid hyperbolic-parabolic functions to satisfy parabolic variation of shear along the thickness of FGNP and zero shears at the inferior and superior surfaces. The equilibrium equations are obtained using the virtual work principle and solved using the Galerkin method to cover various boundary conditions. The results for the macro-counterparts of FGNPs are obtained by taking the small-scale parameters zero in the special cases. The precision and consistency of the generated analytical model are confirmed by comparing the findings to results from the scientific literature. Moreover, a comprehensive parametric study is also performed to determine the sensitivity of the bending response of FGPSs to boundary conditions, EF parameters, nonlocal length-scale, strain gradient microstructure-scale, and geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig.14

Similar content being viewed by others

References

  1. Garg, A., Belarbi, M.O., Chalak, H.D., Chakrabarti, A.: A review of the analysis of sandwich FGM structures. Compos. Struct. 258, 113427 (2021)

    Article  Google Scholar 

  2. Natarajan, S., Manickam, G.: Bending and vibration of functionally graded material sandwich plates using an accurate theory. Finite Elem. Anal. Des. 57, 32–42 (2012)

    Article  Google Scholar 

  3. Reddy, J.: Analysis of functionally graded plates. Int. J. Numer. Methods Eng. 47, 663–684 (2000)

    Article  MATH  Google Scholar 

  4. Hirane, H., Belarbi, M.O., Houari, M.S.A., Tounsi, A.: On the layerwise finite element formulation for static and free vibration analysis of functionally graded sandwich plates. Eng. Comput. (2021). https://doi.org/10.1007/s00366-020-01250-1

    Article  Google Scholar 

  5. Garg, A., Chalak, H.D., Belarbi, M.O., Zenkour, A.M.: Hygro-thermo-mechanical based bending analysis of symmetric and unsymmetric power-law, exponential and sigmoidal FG sandwich beams. Mech. Adv. Mater. Struct. (2021). https://doi.org/10.1080/15376494.2021.1931993

    Article  Google Scholar 

  6. Daikh, A.A., Houari, M.S.A., Belarbi, M.O., Chakraverty, S., Eltaher, M.A.: Analysis of axially temperature-dependent functionally graded carbon nanotube reinforced composite plates. Eng. Comput. (2021). https://doi.org/10.1007/s00366-021-01413-8

    Article  Google Scholar 

  7. Belarbi, M.O., Garg, A., Houari, M.S.A., Hirane, H., Tounsi, A., Chalak, H.D.: A three-unknown refined shear beam element model for buckling analysis of functionally graded curved sandwich beams. Eng. Comput. (2021). https://doi.org/10.1007/s00366-021-01452-1

    Article  Google Scholar 

  8. Ersoy, H., Mercan, K., Civalek, Ö.: Frequencies of FGM shells and annular plates by the methods of discrete singular convolution and differential quadrature methods. Compos. Struct. 183, 7–20 (2018)

    Article  Google Scholar 

  9. Mercan, K., Demir, C., Civalek, Ö.: Vibration analysis of FG cylindrical shells with power-law index using discrete singular convolution technique. Curved Layer. Struct. 3(1), 82–90 (2016). https://doi.org/10.1515/cls-2016-0007

    Article  Google Scholar 

  10. Ramteke, P.M., Mahapatra, B.P., Panda, S.K., Sharma, N.: Static deflection simulation study of 2D Functionally graded porous structure. Mater. Today Proceed. 33, 5544–5547 (2020). https://doi.org/10.1016/j.matpr.2020.03.537

    Article  Google Scholar 

  11. Hissaria, P., Ramteke, P.M., Hirwani, C.K., et al.: Numerical investigation of eigenvalue characteristics (vibration and buckling) of damaged porous bidirectional FG panels. J. Vib. Eng. Technol. (2022). https://doi.org/10.1007/s42417-022-00677-8

    Article  Google Scholar 

  12. Ramteke, P.M., Sharma, N., Choudhary, J., et al.: Multidirectional grading influence on static/dynamic deflection and stress responses of porous FG panel structure: a micromechanical approach. Eng. Comput. (2021). https://doi.org/10.1007/s00366-021-01449-w

    Article  Google Scholar 

  13. Ramteke, P.M., Mehar, K., Sharma, N., Panda, S.: Numerical prediction of deflection and stress responses of functionally graded structure for grading patterns (power-law, sigmoid and exponential) and variable porosity (even/uneven). Scientia Iran. (2020). https://doi.org/10.24200/sci.2020.55581.4290

    Article  Google Scholar 

  14. Garg, A., Chalak, H.D., Zenkour, A.M., Belarbi, M.O., Houari, M.S.A.: A review of available theories and methodologies for the analysis of nano isotropic, nano functionally graded, and CNT reinforced nanocomposite structures. Arch. Comput. Methods Eng. (2021). https://doi.org/10.1007/s11831-021-09652-0

    Article  Google Scholar 

  15. Mehar, K., Mahapatra, R.T., Panda, S.K., Katariya, P.V.: Finite-element solution to nonlocal elasticity and scale effect on frequency behavior of shear deformable nanoplate structure. J. Eng. Mech. 144(9), 04018094 (2018). https://doi.org/10.1061/(ASCE)EM.1943-7889.0001519

    Article  Google Scholar 

  16. Jung, W.Y., Han, S.C.: Analysis of sigmoid functionally graded material (S-FGM) nanoscale plates using the nonlocal elasticity theory. Math. Problems Eng. 2013, 1–10 (2013). https://doi.org/10.1155/2013/476131

    Article  MathSciNet  MATH  Google Scholar 

  17. Sobhy, M.: A comprehensive study on FGM nanoplates embedded in an elastic medium”. Compos. Struct. 134, 966–980 (2015)

    Article  Google Scholar 

  18. Belkorissat, I., Houari, M.S.A., Tounsi, A., Adda Bedia, E.A., Mahmoud, S.: On vibration properties of functionally graded nanoplate using a new nonlocal refined four variable model. Steel Compos. Struct. 18(4), 1063–1081 (2015)

    Article  Google Scholar 

  19. Akgöz, B., Civalek, Ö.: A microstructure-dependent sinusoidal plate model based on the strain gradient elasticity theory. Acta Mech. 226, 2277–2294 (2015). https://doi.org/10.1007/s00707-015-1308-4

    Article  MathSciNet  MATH  Google Scholar 

  20. Arefi, M., Zenkour, A.M.: Nonlocal electro-thermo-mechanical analysis of a sandwich nanoplate containing a Kelvin-Voigt viscoelastic nanoplate and two piezoelectric layers. Acta Mech. 228(2), 475–493 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Fan, T.: An energy harvester with nanoporous piezoelectric double-beam structure. Acta Mech. 233, 1083–1098 (2022). https://doi.org/10.1007/s00707-022-03154-1

    Article  MathSciNet  MATH  Google Scholar 

  22. Sobhy, M., Radwan, A.F.: A new quasi 3D nonlocal plate theory for vibration and buckling of FGM nanoplates. Int. J. Appl. Mech. 9(1), 1750008 (2017)

    Article  Google Scholar 

  23. Barati, M.R.: A general nonlocal stress-strain gradient theory for forced vibration analysis of heterogeneous porous nanoplates. Eur. J. Mech. A. Solids 67, 215–230 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  24. Demir, C., Mercan, K., Numanoglu, H., Civalek, O.: Bending response of nanobeams resting on elastic foundation. J. Appl. Comput. Mech. 4(2), 105–114 (2018). https://doi.org/10.22055/jacm.2017.22594.1137

    Article  Google Scholar 

  25. Arefi, M., Mohammad-Rezaei Bidgoli, E., Dimitri, R., Tornabene, F.: Free vibrations of functionally graded polymer composite nanoplates reinforced with graphene nanoplatelets. Aerosp. Sci. Technol. 81, 108–117 (2018)

    Article  Google Scholar 

  26. Sahmani, S., Aghdam, M.M., Rabczuk, T.: A unified nonlocal strain gradient plate model for nonlinear axial instability of functionally graded porous micro/nano-plates reinforced with graphene platelets. Mater. Res. Express 5(4), 045048 (2018). https://doi.org/10.1088/2053-1591/aabdbb

    Article  Google Scholar 

  27. Karami, B., Janghorban, M., Tounsi, A.: Wave propagation of functionally graded anisotropic nanoplates resting on Winkler-Pasternak foundation. Struct. Eng. Mech. 2019(70), 55–66 (2019)

    Google Scholar 

  28. Karami, B., Janghorban, M., Rabczuk, T.: Static analysis of functionally graded anisotropic nanoplates using nonlocal strain gradient theory. Compos. Struct. 227, 111249 (2019)

    Article  MATH  Google Scholar 

  29. Karami, B., Janghorban, M., Tounsi, A.: Galerkin’s approach for buckling analysis of functionally graded anisotropic nanoplates/different boundary conditions. Eng. Comput. 35(4), 1297–1316 (2019)

    Article  Google Scholar 

  30. Jalaei, M.H., Thai, H.T.: Dynamic stability of viscoelastic porous FG nanoplate under longitudinal magnetic field via a nonlocal strain gradient quasi-3D theory. Compos. B Eng. 175, 107164 (2019)

    Article  Google Scholar 

  31. Hoa, L.K., Vinh, P.V., Duc, N.D., Trung, N.T., Son, L.T., Thom, D.V.: Bending and free vibration analyses of functionally graded material nanoplates via a novel nonlocal single variable shear deformation plate theory. J. Mech. Eng. Sci. 235(18), 3641–3653 (2021)

    Article  Google Scholar 

  32. Daikh, A.A., Zenkour, A.M.: Bending of functionally graded sandwich nanoplates resting on Pasternak foundation under different boundary conditions. J. Appl. Comput. Mech. 6, 1245–1259 (2020)

    Google Scholar 

  33. Żur, K.K., Arefi, M., Kim, J., Reddy, J.N.: Free vibration and buckling analyses of magneto-electro-elastic FGM nanoplates based on nonlocal modified higher-order sinusoidal SDT. Compos. B Eng. 182, 107601 (2020)

    Article  Google Scholar 

  34. Kaddari, K., Kaci, A., Bousahla, A.A., Tounsi, A., Bourada, F., Tounsi, A., Adda Bedia, E.A., Mohammed, A.-O.: A study on the structural behaviour of functionally graded porous plates on elastic foundation using a new quasi-3D model: bending and free vibration analysis. Comput. Concr. 25, 37–57 (2020)

    Google Scholar 

  35. Esmaeilzadeh, M., Golmakani, N., Sadeghian, M.: A nonlocal strain gradient model for nonlinear dynamic behavior of bi-directional functionally graded porous nanoplates on elastic foundations. Mech. Based Des. Struct. Mach. (2020). https://doi.org/10.1080/15397734.2020.1845965

    Article  Google Scholar 

  36. Shen, J., Wang, P., Gan, W., Li, C.: Stability of vibrating functionally graded nanoplates with axial motion based on the nonlocal strain gradient theory. Int. J. Struct. Stab. Dyn. 20(08), 2050088 (2020)

    Article  MathSciNet  Google Scholar 

  37. Daikh, A.A., Houari, M.S.A., Eltaher, M.A.: A novel nonlocal strain gradient quasi-3D bending analysis of sigmoid functionally graded sandwich nanoplates. Compos. Struct. 262, 113347 (2021). https://doi.org/10.1016/j.compstruct.2020.113347

    Article  Google Scholar 

  38. Dastjerdi, S., Malikan, M., Dimitri, R., Tornabene, F.: Nonlocal elasticity analysis of moderately thick porous functionally graded plates in a hygro-thermal environment. Compos. Struct. 255, 112925 (2021). https://doi.org/10.1016/j.compstruct.2020.112925

    Article  Google Scholar 

  39. Wang, Q., Yao, A., Dindarloo, M.H.: New higher-order SDT for bending analysis of the two-dimensionally functionally graded nanoplates. J. Mech. Eng. Sci. 235(16), 3015–3028 (2021)

    Article  Google Scholar 

  40. Golmakani, M.E., Malikan, M., Pour, S.G., Eremeyev, V.A.: Bending analysis of functionally graded nanoplates based on a higher-order SDT using dynamic relaxation method. Continuum Mech. Thermodyn. (2021). https://doi.org/10.1007/s00161-021-00995-4

    Article  Google Scholar 

  41. Daikh, A.A., Drai, A., Houari, M.S.A., Eltaher, M.A.: Static analysis of multilayer nonlocal strain gradient nanobeam reinforced by carbon nanotubes. Steel Compos. Struct. 36(6), 643–656 (2020)

    Google Scholar 

  42. Zhang, L., Guo, J., Xing, Y.: Nonlocal analytical solution of functionally graded multilayered one-dimensional hexagonal piezoelectric quasicrystal nanoplates. Acta Mech. 230(5), 1781–1810 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  43. Daikh, A.A., Zenkour, A.M.: Effect of porosity on the bending analysis of various functionally graded sandwich plates. Mat. Res. Express. 6(6), 065703 (2019)

    Article  Google Scholar 

  44. Xiao, J., Wang, J.: Variational analysis of laminated nanoplates for various boundary conditions. Acta Mech. (2022). https://doi.org/10.1007/s00707-022-03352-x

    Article  MathSciNet  MATH  Google Scholar 

  45. Tran, V.K., Pham, Q.H., Nguyen-Thoi, T.: A finite element formulation using four-unknown incorporating nonlocal theory for bending and free vibration analysis of functionally graded nanoplates resting on elastic medium foundations. Eng. Comput. (2020). https://doi.org/10.1007/s00366-020-01107-7

    Article  Google Scholar 

  46. Thai, C.H., Ferreira, A., Phung-Van, P.: A nonlocal strain gradient isogeometric model for free vibration and bending analyses of functionally graded plates. J Compos. Struct. 251, 112634 (2020)

    Article  Google Scholar 

  47. Tran, V.-K., Tran, T.-T., Phung, M.-V., Pham, Q.-H., Nguyen-Thoi, T.: A finite element formulation and nonlocal theory for the static and free vibration analysis of the sandwich functionally graded nanoplates resting on elastic foundation. J. Nanomater. 2020, 8786373 (2020)

    Article  Google Scholar 

  48. Belarbi, M.O., Houari, M.S.A., Daikh, A.A., Garg, A., Merzouki, T., Chalak, H.D., Hirane, H.: Nonlocal finite element model for the bending and buckling analysis of functionally graded nanobeams using a novel SDT”. Compos. Struct. 264, 113712 (2021)

    Article  Google Scholar 

  49. Shahraki, H., Tajmir Riahi, H., Izadinia, M., Talaeitaba, S.B.: Buckling and vibration analysis of FG-CNT-reinforced composite rectangular thick nanoplates resting on Kerr foundation based on nonlocal strain gradient theory. J. Vib. Control 26, 277–305 (2020)

    Article  MathSciNet  Google Scholar 

  50. Emadi, M., Nejad, M.Z., Ziaee, S., Hadi, A.: Buckling analysis of arbitrary two-directional functionally graded nanoplate based on nonlocal elasticity theory using generalized differential quadrature method. Steel Compos. Struct. 39(5), 565–581 (2021)

    Google Scholar 

  51. Wu, C.P., Hu, H.X.: A review of dynamic analyses of single- and multi-layered graphene sheets/nanoplates using various nonlocal continuum mechanics-based plate theories. Acta Mech. 232, 4497–4531 (2021). https://doi.org/10.1007/s00707-021-03068-4

    Article  MathSciNet  MATH  Google Scholar 

  52. Nejadi, M.M., Mohammadimehr, M.: Analysis of a functionally graded nanocomposite sandwich beam considering porosity distribution on variable elastic foundation using DQM: buckling and vibration behaviors. Comput. Concr. 25(3), 215–224 (2020)

    Google Scholar 

  53. Daikh, A.A., Guerroudj, M., Elajrami, M., Megueni, A.: Thermal buckling of functionally graded sandwich beams. Adv. Mater. Res. 1156, 43–59 (2019)

    Article  Google Scholar 

  54. Bekhadda, A., Cheikh, A., Bensaid, I., Hadjoui, A., Daikh, A.A.: A novel first-order refined shear-deformation beam theory for vibration and buckling analysis of continuously graded beams. Adv. Aircraft Spacecraft Sci. 6(3), 189–206 (2019)

    Google Scholar 

  55. Daikh, A.A., Bensaid, I., Zenkour, A.M.: Temperature dependent thermomechanical bending response of functionally graded sandwich plates. Eng. Res. Express 2, 015006 (2020)

    Article  Google Scholar 

  56. Daikh, A.A.: Thermal buckling analysis of functionally graded sandwich cylindrical shells. Adv. Aircraft Spacecraft Sci. 7(4), 335–351 (2020)

    Google Scholar 

  57. Sahoo, B., Mehar, K., Sahoo, B., Sharma, N., Panda, S.K.: Thermal frequency analysis of FG sandwich structure under variable temperature loading. Struct. Eng. Mech. An Int. J. 77(1), 57–74 (2021)

    Google Scholar 

  58. Sahoo, B., Sahoo, B., Sharma, N., Mehar, K., Panda, S.K.: Numerical buckling temperature prediction of graded sandwich panel using higher order shear deformation theory under variable temperature loading, Smart Structures and Systems. Int. J. 26(5), 641–656 (2020)

    Google Scholar 

  59. Daikh, A.A., Houari, M.S.A., Tounsi, A.: Buckling analysis of porous FGM sandwich nanoplates due to heat conduction via nonlocal strain gradient theory. Eng. Res. Express 1, 015022 (2019)

    Article  Google Scholar 

  60. Lim, C.W., Zhang, G., Reddy, J.N.: A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. J. Mech. Phys. Solids 78, 298–313 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  61. Daikh, A.A., Bachiri, A., Houari, M.S.A., Tounsi, A.: Size-dependent free vibration and buckling of multilayered carbon nanotubes reinforced composite nanoplates in thermal environment. Mech. Based Des. Struct. Mach. (2020). https://doi.org/10.1080/15397734.2020.1752232

    Article  Google Scholar 

  62. Daikh, A.A., Houari, M.S.A., Belarbi, M.O., Mohamed, S.A., Eltaher, M.A.: Static and dynamic stability responses of multilayer functionally graded carbon nanotubes reinforced composite nanoplates via quasi 3D nonlocal strain gradient theory. Def. Technol. (2022). https://doi.org/10.1016/j.dt.2021.09.011

    Article  Google Scholar 

  63. Eringen, A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54(9), 4703–4710 (1983). https://doi.org/10.1063/1.332803

    Article  Google Scholar 

  64. Daikh, A.A., Zenkour, A.M.: Bending of functionally graded sandwich nanoplates under various boundary conditions. J. Appl. Comput. Mech. (2020). https://doi.org/10.22055/JACM.2020.33136.2166

    Article  Google Scholar 

  65. Thai, H.T., Nguyen, T.K., Vo, T.P., Lee, J.: Analysis of functionally graded sandwich plates using a new first-order shear deformation theory. Eur. J. Mech. -A/Solids 45, 211–225 (2014). https://doi.org/10.1016/j.euromechsol.2013.12.008

    Article  MathSciNet  MATH  Google Scholar 

  66. Basha, M., Daikh, A.A., Melaibari, A., Wagih, A., Othman, R., Almitani, K.H., Hamed, M.A., Abdelrahman, A., Eltaher, M.A.: Nonlocal strain gradient theory for buckling and bending of FG-GRNC laminated sandwich plates. Steel Compos. Struct. 43(5), 639–660 (2022). https://doi.org/10.12989/scs.2022.43.5.639

    Article  Google Scholar 

  67. Neves, A.M.A., Ferreira, A.J.M., Carrera, E., Cinefra, M., Jorge, R.M.N., Soares, C.M.M.: Static analysis of functionally graded sandwich plates according to a hyperbolic theory considering Zig-Zag and warping effects. Adv. Eng. Softw. 52, 30–43 (2012)

    Article  Google Scholar 

  68. Zenkour, A.M.: Bending analysis of functionally graded sandwich plates using a simple four-unknown shear and normal deformations theory. J. Sandwich. Struct. Mater. 15(6), 629–656 (2013)

    Article  Google Scholar 

  69. Bessaim, A., Houari, M.S., Tounsi, A., Mahmoud, S.R., Bedia, E.A.A.: A new higher-order shear and normal deformation theory for the static and free vibration analysis of sandwich plates with functionally graded isotropic face sheets. J. Sandwich Struct. Mater. 15(6), 671–703 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Avcar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

$$\begin{gathered} K_{{11}} = A_{{11}} \mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{3} X_{m} }}{{\partial x^{3} }}Y_{n} \frac{{\partial X_{m} }}{{\partial x}}Y_{n} {\text{d}}x{\text{d}}y + A_{{66}} \mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial X_{m} }}{{\partial x}}\frac{{\partial ^{2} Y_{n} }}{{\partial y^{2} }}\frac{{\partial X_{m} }}{{\partial x}}Y_{n} {\text{d}}x{\text{d}}y \hfill \\ \quad \quad \quad - \user2{\lambda }\left[ {\left( {A_{{11}} + A_{{66}} } \right)\mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{3} X_{m} }}{{\partial x^{3} }}\frac{{\partial ^{2} Y_{n} }}{{\partial y^{2} }}\frac{{\partial X_{m} }}{{\partial x}}Y_{n} {\text{d}}x{\text{d}}y} \right. \hfill \\ \quad \quad \quad \left. { + A_{{11}} \mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{5} X_{m} }}{{\partial x^{5} }}Y_{n} \frac{{\partial X_{m} }}{{\partial x}}Y_{n} {\text{d}}x{\text{d}}y + A_{{66}} \mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial X_{m} }}{{\partial x}}\frac{{\partial ^{4} Y_{n} }}{{\partial y^{4} }}\frac{{\partial X_{m} }}{{\partial x}}Y_{n} {\text{d}}x{\text{d}}y} \right], \hfill \\ \end{gathered}$$
$$\begin{gathered} K_{{12}} = \left( {A_{{12}} + A_{{66}} } \right)\left( {\mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial X_{m} }}{{\partial x}}\frac{{\partial ^{2} Y_{n} }}{{\partial y^{2} }}\frac{{\partial X_{m} }}{{\partial x}}Y_{n} {\text{d}}x{\text{d}}y} \right. \hfill \\ \quad \quad \quad \left. { - \user2{\lambda }\left[ {\mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{3} X_{m} }}{{\partial x^{3} }}\frac{{\partial ^{2} Y_{n} }}{{\partial y^{2} }}\frac{{\partial X_{m} }}{{\partial x}}Y_{n} {\text{d}}x{\text{d}}y + \mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial X_{m} }}{{\partial x}}\frac{{\partial ^{4} Y_{n} }}{{\partial y^{4} }}\frac{{\partial X_{m} }}{{\partial x}}Y_{n} {\text{d}}x{\text{d}}y} \right]} \right), \hfill \\ \end{gathered}$$
$$\begin{gathered} K_{{13}} = - B_{{11}} \mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{3} X_{m} }}{{\partial x^{3} }}Y_{n} \frac{{\partial X_{m} }}{{\partial x}}Y_{n} {\text{d}}x{\text{d}}y - \left( {B_{{12}} + 2B_{{66}} } \right)\mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial X_{m} }}{{\partial x}}\frac{{\partial ^{2} Y_{n} }}{{\partial y^{2} }}\frac{{\partial X_{m} }}{{\partial x}}Y_{n} {\text{d}}x{\text{d}}y \hfill \\\quad\quad\quad - \lambda \left[ { - \left( {B_{{12}} + 2B_{{66}} + B_{{11}} } \right)\mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{3} X_{m} }}{{\partial x^{3} }}\frac{{\partial ^{2} Y_{n} }}{{\partial y^{2} }}\frac{{\partial X_{m} }}{{\partial x}}Y_{n} {\text{d}}x{\text{d}}y} \right.\left. { - B_{{11}} \mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{5} X_{m} }}{{\partial x^{5} }}Y_{n} \frac{{\partial X_{m} }}{{\partial x}}Y_{n} {\text{d}}x{\text{d}}y} \right], \hfill \\ \end{gathered}$$
$$\begin{gathered} K_{{14}} = B_{{11}}^{s} \mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{3} X_{m} }}{{\partial x^{3} }}Y_{n} \frac{{\partial X_{m} }}{{\partial x}}Y_{n} {\text{d}}x{\text{d}}y + B_{{66}}^{s} \mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial X_{m} }}{{\partial x}}\frac{{\partial ^{2} Y_{n} }}{{\partial y^{2} }}\frac{{\partial X_{m} }}{{\partial x}}Y_{n} {\text{d}}x{\text{d}}y \hfill \\ \quad \quad \quad - \user2{\lambda }\left[ {\left( {B_{{11}}^{s} + B_{{66}}^{s} } \right)\mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{3} X_{m} }}{{\partial x^{3} }}\frac{{\partial ^{2} Y_{n} }}{{\partial y^{2} }}\frac{{\partial X_{m} }}{{\partial x}}Y_{n} {\text{d}}x{\text{d}}y} \right. \hfill \\ \quad \quad \quad \left. { + B_{{11}}^{s} \mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{5} X_{m} }}{{\partial x^{5} }}Y_{n} \frac{{\partial X_{m} }}{{\partial x}}Y_{n} {\text{d}}x{\text{d}}y + B_{{66}}^{s} \mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial X_{m} }}{{\partial x}}\frac{{\partial ^{4} Y_{n} }}{{\partial y^{4} }}\frac{{\partial X_{m} }}{{\partial x}}Y_{n} {\text{d}}x{\text{d}}y} \right], \hfill \\ \end{gathered}$$
$$\begin{gathered} K_{{15}} = \left( {B_{{12}}^{s} + B_{{66}}^{s} } \right)\left( {\mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial X_{m} }}{{\partial x}}\frac{{\partial ^{2} Y_{n} }}{{\partial y^{2} }}\frac{{\partial X_{m} }}{{\partial x}}Y_{n} {\text{d}}x{\text{d}}y} \right. \hfill \\ \quad \quad \quad \left. { - \user2{\lambda }\left[ {\mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{3} X_{m} }}{{\partial x^{3} }}\frac{{\partial ^{2} Y_{n} }}{{\partial y^{2} }}\frac{{\partial X_{m} }}{{\partial x}}Y_{n} {\text{d}}x{\text{d}}y + \mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial X_{m} }}{{\partial x}}\frac{{\partial ^{4} Y_{n} }}{{\partial y^{4} }}\frac{{\partial X_{m} }}{{\partial x}}Y_{n} {\text{d}}x{\text{d}}y} \right]} \right), \hfill \\ \end{gathered}$$
$$\begin{gathered} K_{{16}} = G_{{13}}^{s} \left( {\mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial X_{m} }}{{\partial x}}Y_{n} \frac{{\partial X_{m} }}{{\partial x}}Y_{n} {\text{d}}x{\text{d}}y} \right. \hfill \\ \quad \quad \quad \left. { - \user2{\lambda }\left[ {\mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{3} X_{m} }}{{\partial x^{3} }}Y_{n} \frac{{\partial X_{m} }}{{\partial x}}Y_{n} {\text{d}}x{\text{d}}y + \mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial X_{m} }}{{\partial x}}\frac{{\partial ^{2} Y_{n} }}{{\partial y^{2} }}\frac{{\partial X_{m} }}{{\partial x}}Y_{n} {\text{d}}x{\text{d}}y} \right]} \right), \hfill \\ \end{gathered}$$
$$\begin{gathered} K_{{21}} = \left( {A_{{12}} + A_{{66}} } \right)\left( {\mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{2} X_{m} }}{{\partial x^{1} }}\frac{{\partial Y_{n} }}{{\partial y}}X_{m} \frac{{\partial Y_{n} }}{{\partial y}}{\text{d}}x{\text{d}}y} \right. \hfill \\ \quad \quad \quad \left. { - \user2{\lambda }\left[ {\mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{4} X_{m} }}{{\partial x^{4} }}\frac{{\partial Y_{n} }}{{\partial y}}X_{m} \frac{{\partial Y_{n} }}{{\partial y}}{\text{d}}x{\text{d}}y + \mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{2} X_{m} }}{{\partial x^{2} }}\frac{{\partial ^{3} Y_{n} }}{{\partial y^{3} }}X_{m} \frac{{\partial Y_{n} }}{{\partial y}}{\text{d}}x{\text{d}}y} \right]} \right), \hfill \\ \end{gathered}$$
$$\begin{gathered} K_{{22}} = A_{{11}} \mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} X_{m} \frac{{\partial ^{3} Y_{n} }}{{\partial y^{3} }}X_{m} \frac{{\partial Y_{n} }}{{\partial y}}{\text{d}}x{\text{d}}y + A_{{66}} \mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{2} X_{m} }}{{\partial x^{2} }}\frac{{\partial Y_{n} }}{{\partial y}}X_{m} \frac{{\partial Y_{n} }}{{\partial y}}{\text{d}}x{\text{d}}y \hfill \\ \quad \quad \quad - \user2{\lambda }\left[ {\left( {A_{{11}} + A_{{66}} } \right)\mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{2} X_{m} }}{{\partial x^{2} }}\frac{{\partial ^{3} Y_{n} }}{{\partial y^{3} }}X_{m} \frac{{\partial Y_{n} }}{{\partial y}}{\text{d}}x{\text{d}}y} \right. \hfill \\ \quad \quad \quad \left. { + A_{{11}} \mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} X_{m} \frac{{\partial ^{5} Y_{n} }}{{\partial y^{5} }}X_{m} \frac{{\partial Y_{n} }}{{\partial y}}{\text{d}}x{\text{d}}y + A_{{66}} \mathop {\mathop \int \limits^{a} }\limits_{0} \frac{{\partial ^{4} X_{m} }}{{\partial x^{4} }}\frac{{\partial Y_{n} }}{{\partial y}}X_{m} \frac{{\partial Y_{n} }}{{\partial y}}{\text{d}}x{\text{d}}y} \right], \hfill \\ \end{gathered}$$
$$\begin{gathered} K_{{23}} = - B_{{11}} \mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} X_{m} \frac{{\partial ^{3} Y_{n} }}{{\partial y^{3} }}X_{m} \frac{{\partial Y_{n} }}{{\partial x}}{\text{d}}x{\text{d}}y - \left( {B_{{12}} + 2B_{{66}} } \right)\mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{2} X_{m} }}{{\partial x^{2} }}\frac{{\partial Y_{n} }}{{\partial x}}X_{m} \frac{{\partial Y_{n} }}{{\partial x}}{\text{d}}x{\text{d}}y \hfill \\ \quad \quad \quad - \lambda \left( { - \left( {B_{{11}} + B_{{12}} + 2B_{{66}} } \right)\mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{2} X_{m} }}{{\partial x^{2} }}\frac{{\partial ^{3} Y_{n} }}{{\partial y^{3} }}X_{m} \frac{{\partial Y_{n} }}{{\partial x}}{\text{d}}x{\text{d}}y} \right. - \left( {B_{{12}} + 2B_{{66}} } \right)\mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{4} X_{m} }}{{\partial x^{4} }}\frac{{\partial Y_{n} }}{{\partial x}}X_{m} \frac{{\partial Y_{n} }}{{\partial x}}{\text{d}}x{\text{d}}y\left. { - B_{{11}} \mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} X_{m} \frac{{\partial ^{5} Y_{n} }}{{\partial y^{5} }}X_{m} \frac{{\partial Y_{n} }}{{\partial x}}{\text{d}}x{\text{d}}y} \right), \hfill \\ \end{gathered}$$
$$\begin{gathered} K_{{24}} = \left( {B_{{12}}^{s} + B_{{66}}^{s} } \right)\left( {\mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{2} X_{m} }}{{\partial x^{2} }}\frac{{\partial Y_{n} }}{{\partial y}}X_{m} \frac{{\partial Y_{n} }}{{\partial y}}{\text{d}}x{\text{d}}y} \right. \hfill \\ \quad \quad \quad \left. { - \lambda \left[ {\mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{4} X_{m} }}{{\partial x^{4} }}\frac{{\partial Y_{n} }}{{\partial y}}X_{m} \frac{{\partial Y_{n} }}{{\partial y}}{\text{d}}x{\text{d}}y + \mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{2} X_{m} }}{{\partial x^{2} }}\frac{{\partial ^{3} Y_{n} }}{{\partial y^{3} }}X_{m} \frac{{\partial Y_{n} }}{{\partial y}}{\text{d}}x{\text{d}}y} \right]} \right), \hfill \\ \end{gathered}$$
$$\begin{gathered} K_{{25}} = B_{{11}}^{s} \mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} X_{m} \frac{{\partial ^{3} Y_{n} }}{{\partial y^{3} }}X_{m} \frac{{\partial Y_{n} }}{{\partial y}}{\text{d}}x{\text{d}}y + B_{{66}}^{s} \mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{2} X_{m} }}{{\partial x^{2} }}\frac{{\partial Y_{n} }}{{\partial y}}X_{m} \frac{{\partial Y_{n} }}{{\partial y}}{\text{d}}x{\text{d}}y \hfill \\ \quad \quad \quad - \lambda \left[ {\left( {B_{{11}}^{s} + B_{{66}}^{s} } \right)\mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{2} X_{m} }}{{\partial x^{2} }}\frac{{\partial ^{3} Y_{n} }}{{\partial y^{3} }}X_{m} \frac{{\partial Y_{n} }}{{\partial y}}{\text{d}}x{\text{d}}y} \right. \hfill \\ \quad \quad \quad \left. { + B_{{66}}^{s} \mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{4} X_{m} }}{{\partial x^{4} }}\frac{{\partial Y_{n} }}{{\partial y}}X_{m} \frac{{\partial Y_{n} }}{{\partial y}}{\text{d}}x{\text{d}}y + B_{{11}}^{s} \mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} X_{m} \frac{{\partial ^{5} Y_{n} }}{{\partial y^{5} }}X_{m} \frac{{\partial Y_{n} }}{{\partial y}}{\text{d}}x{\text{d}}y} \right], \hfill \\ \end{gathered}$$
$$\begin{gathered} K_{{26}} = G_{{13}}^{s} \left( {\mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} X_{m} \frac{{\partial Y_{n} }}{{\partial y}}X_{m} \frac{{\partial Y_{n} }}{{\partial y}}{\text{d}}x{\text{d}}y} \right. \hfill \\ \quad \quad \quad \left. { - \user2{\lambda }\left[ {\mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{2} X_{m} }}{{\partial x^{2} }}\frac{{\partial Y_{n} }}{{\partial y}}X_{m} \frac{{\partial Y_{n} }}{{\partial y}}{\text{d}}x{\text{d}}y + \mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} X_{m} \frac{{\partial ^{3} Y_{n} }}{{\partial y^{3} }}X_{m} \frac{{\partial Y_{n} }}{{\partial y}}{\text{d}}x{\text{d}}y} \right]} \right), \hfill \\ \end{gathered}$$
$$\begin{gathered} K_{{13}} = B_{{11}} \mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{4} X_{n} }}{{\partial x^{4} }}Y_{n} X_{m} Y_{n} {\text{d}}x{\text{d}}y + \left( {B_{{12}} + 2B_{{66}} } \right)\mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{2} X_{m} }}{{\partial x^{2} }}\frac{{\partial ^{2} Y_{n} }}{{\partial y^{2} }}X_{m} Y_{n} {\text{d}}x{\text{d}}y \hfill \\ \quad \quad \quad - \lambda \left[ {B_{{11}} \mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{6} X_{n} }}{{\partial x^{6} }}Y_{n} X_{m} Y_{n} {\text{d}}x{\text{d}}y} \right. + \left( {B_{{11}} + B_{{12}} + 2B_{{66}} } \right)\mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{4} X_{m} }}{{\partial x^{4} }}\frac{{\partial ^{2} Y_{n} }}{{\partial y^{2} }}X_{m} Y_{n} {\text{d}}x{\text{d}}y \left. { + \left( {B_{{12}} + 2B_{{66}} } \right)\mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{2} X_{m} }}{{\partial x^{2} }}\frac{{\partial ^{4} Y_{n} }}{{\partial y^{4} }}X_{m} Y_{n} {\text{d}}x{\text{d}}y} \right], \hfill \\ \end{gathered}$$
$$\begin{gathered} K_{{23}} = B_{{11}} \mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} X_{m} \frac{{\partial ^{4} Y_{n} }}{{\partial y^{4} }}X_{m} Y_{n} {\text{d}}x{\text{d}}y + \left( {B_{{12}} + 2B_{{66}} } \right)\mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{2} X_{m} }}{{\partial x^{2} }}\frac{{\partial ^{2} Y_{n} }}{{\partial y^{2} }}X_{m} Y_{n} {\text{d}}x{\text{d}}y \hfill \\ \quad \quad \quad - \lambda \left[ {\left( {B_{{11}} + B_{{12}} + 2B_{{66}} } \right)\mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{2} X_{m} }}{{\partial x^{2} }}\frac{{\partial ^{4} Y_{n} }}{{\partial y^{4} }}X_{m} Y_{n} {\text{d}}x{\text{d}}y} \right. \hfill \\ \quad \quad \quad \left. { + \left( {B_{{12}} + 2B_{{66}} } \right)\mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{4} X_{m} }}{{\partial x^{4} }}\frac{{\partial ^{2} Y_{n} }}{{\partial y^{2} }}X_{m} Y_{n} {\text{d}}x{\text{d}}y + B_{{11}} \mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} X_{m} \frac{{\partial ^{6} Y_{n} }}{{\partial y^{6} }}X_{m} Y_{n} {\text{d}}x{\text{d}}y} \right], \hfill \\ \end{gathered}$$
$$\begin{gathered} K_{{33}} = - D_{{11}} \left( {\mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} X_{m} \frac{{\partial ^{4} Y_{n} }}{{\partial y^{4} }}X_{m} Y_{n} {\text{d}}x{\text{d}}y + \mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{4} X_{m} }}{{\partial x^{4} }}Y_{n} X_{m} Y_{n} {\text{d}}x{\text{d}}y} \right) \hfill \\ \quad \quad \quad - 2\left( {D_{{12}} + 2D_{{66}} } \right)\mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{2} X_{m} }}{{\partial x^{2} }}\frac{{\partial ^{2} Y_{n} }}{{\partial y^{2} }}X_{m} Y_{n} {\text{d}}x{\text{d}}y \hfill \\ \quad \quad \quad - \lambda \left[ { - D_{{11}} \left( {\mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{2} X_{m} }}{{\partial x^{2} }}\frac{{\partial ^{4} Y_{n} }}{{\partial y^{4} }}X_{m} Y_{n} {\text{d}}x{\text{d}}y + \mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{6} X_{m} }}{{\partial x^{6} }}Y_{n} X_{m} Y_{n} {\text{d}}x{\text{d}}y} \right)} \right. \hfill \\ \quad \quad \quad - 2\left( {D_{{12}} + 2D_{{66}} } \right)\mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{4} X_{m} }}{{\partial x^{4} }}\frac{{\partial ^{2} Y_{n} }}{{\partial y^{2} }}X_{m} Y_{n} {\text{d}}x{\text{d}}y \hfill \\ \quad \quad \quad - D_{{11}} \left( {\mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} X_{m} \frac{{\partial ^{6} Y_{n} }}{{\partial y^{6} }}X_{m} Y_{n} {\text{d}}x{\text{d}}y + \mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{4} X_{m} }}{{\partial x^{4} }}\frac{{\partial ^{2} Y_{n} }}{{\partial y^{2} }}X_{m} Y_{n} {\text{d}}x{\text{d}}y} \right) \hfill \\ \quad \quad \quad \left. { - 2\left( {D_{{12}} + 2D_{{66}} } \right)\mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{2} X_{m} }}{{\partial x^{2} }}\frac{{\partial ^{4} Y_{n} }}{{\partial y^{4} }}X_{m} Y_{n} {\text{d}}x{\text{d}}y} \right] \hfill \\ \quad \quad \quad - k_{w} \left( {\mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} X_{m} Y_{n} X_{m} Y_{n} {\text{d}}x{\text{d}}y} \right. \left. { - \mu \left[ {\mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{2} X_{m} }}{{\partial x^{2} }}Y_{n} X_{m} Y_{n} {\text{d}}x{\text{d}}y + \mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} X_{m} \frac{{\partial ^{2} Y_{n} }}{{\partial y^{2} }}X_{m} Y_{n} {\text{d}}x{\text{d}}y} \right]} \right) \hfill \\ \quad \quad \quad + k_{{S1}} \left( {\mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{2} X_{m} }}{{\partial x^{2} }}Y_{n} X_{m} Y_{n} {\text{d}}x{\text{d}}y} \right. \left. { - \mu \left[ {\mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{4} X_{m} }}{{\partial x^{4} }}Y_{n} X_{m} Y_{n} {\text{d}}x{\text{d}}y + \mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{2} X_{m} }}{{\partial x^{2} }}\frac{{\partial ^{2} Y_{n} }}{{\partial y^{2} }}X_{m} Y_{n} {\text{d}}x{\text{d}}y} \right]} \right) \hfill \\ \quad \quad \quad + k_{{S2}} \left( {\mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} X_{m} \frac{{\partial ^{2} Y_{n} }}{{\partial y^{2} }}X_{m} Y_{n} {\text{d}}x{\text{d}}y} \right. \left. { - \mu \left[ {\mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{2} X_{m} }}{{\partial x^{2} }}\frac{{\partial ^{2} Y_{n} }}{{\partial y^{2} }}X_{m} Y_{n} {\text{d}}x{\text{d}}y + \mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} X_{m} \frac{{\partial ^{4} Y_{n} }}{{\partial y^{4} }}X_{m} Y_{n} {\text{d}}x{\text{d}}y} \right]} \right), \hfill \\ \end{gathered}$$
$$\begin{gathered} K_{{34}} = D_{{11}}^{s} \mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{4} X_{m} }}{{\partial x^{4} }}Y_{n} X_{m} Y_{n} {\text{d}}x{\text{d}}y + \left( {D_{{12}}^{s} + 2D_{{66}}^{s} } \right)\mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{2} X_{m} }}{{\partial x^{2} }}\frac{{\partial ^{2} Y_{n} }}{{\partial y^{2} }}X_{m} Y_{n} {\text{d}}x{\text{d}}y \hfill \\ \quad \quad \quad - \lambda \left[ {D_{{11}}^{s} \mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{6} X_{m} }}{{\partial x^{6} }}Y_{n} X_{m} Y_{n} {\text{d}}x{\text{d}}y} \right. + \left( {D_{{11}}^{s} + D_{{12}}^{s} + 2D_{{66}}^{s} } \right)\mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{4} X_{m} }}{{\partial x^{4} }}\frac{{\partial ^{2} Y_{n} }}{{\partial y^{2} }}X_{m} Y_{n} {\text{d}}x{\text{d}}y \left. { + \left( {D_{{12}}^{s} + 2D_{{66}}^{s} } \right)\mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{2} X_{m} }}{{\partial x^{2} }}\frac{{\partial ^{4} Y_{n} }}{{\partial y^{4} }}X_{m} Y_{n} {\text{d}}x{\text{d}}y} \right], \hfill \\ \end{gathered}$$
$$\begin{gathered} K_{{35}} = D_{{11}}^{s} \mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} X_{m} \frac{{\partial ^{4} Y_{n} }}{{\partial y^{4} }}X_{m} Y_{n} {\text{d}}x{\text{d}}y + \left( {D_{{12}}^{s} + 2D_{{66}}^{s} } \right)\mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{2} X_{m} }}{{\partial x^{2} }}\frac{{\partial ^{2} Y_{n} }}{{\partial y^{2} }}X_{m} Y_{n} {\text{d}}x{\text{d}}y \hfill \\ \quad \quad \quad - \lambda \left[ {\left( {D_{{12}}^{s} + 2D_{{66}}^{s} } \right)\mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{4} X_{m} }}{{\partial x^{4} }}\frac{{\partial ^{2} Y_{n} }}{{\partial y^{2} }}X_{m} Y_{n} {\text{d}}x{\text{d}}y} \right. \hfill \\ \quad \quad \quad + D_{{11}}^{s} \mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} X_{m} \frac{{\partial ^{6} Y_{n} }}{{\partial y^{6} }}X_{m} Y_{n} {\text{d}}x{\text{d}}y \hfill \\ \quad \quad \quad \left. { + \left( {D_{{11}}^{s} + D_{{12}}^{s} + 2D_{{66}}^{s} } \right)\mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{2} X_{m} }}{{\partial x^{2} }}\frac{{\partial ^{4} Y_{n} }}{{\partial y^{4} }}X_{m} Y_{n} {\text{d}}x{\text{d}}y} \right], \hfill \\ \end{gathered}$$
$$\begin{gathered} K_{{36}} = H_{{13}}^{s} \left( {\mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{2} X_{m} }}{{\partial x^{2} }}Y_{n} X_{m} Y_{n} dxdy + \mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} X_{m} \frac{{\partial ^{2} Y_{n} }}{{\partial y^{2} }}X_{m} Y_{n} dxdy} \right. \hfill \\ \quad \quad \quad - \lambda \left[ {\mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{4} X_{m} }}{{\partial x^{4} }}Y_{n} X_{m} Y_{n} dxdy + 2\mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{2} X_{m} }}{{\partial x^{2} }}\frac{{\partial ^{2} Y_{n} }}{{\partial y^{2} }}X_{m} Y_{n} dxdy} \right. + \left. {\mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} X_{m} \frac{{\partial ^{4} Y_{n} }}{{\partial y^{4} }}X_{m} Y_{n} dxdy} \right) \hfill \\ \quad \quad \quad - \Phi ^{\prime } \left( z \right)k_{w} \left( {\mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} X_{m} Y_{n} X_{m} Y_{n} dxdy} \right. \left. { - \mu \left[ {\mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{2} X_{m} }}{{\partial x^{2} }}Y_{n} X_{m} Y_{n} dxdy + \mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} X_{m} \frac{{\partial ^{2} Y_{n} }}{{\partial y^{2} }}X_{m} Y_{n} dxdy} \right]} \right) \hfill \\ \quad \quad \quad - k_{w} \left( {\mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} X_{m} Y_{n} X_{m} Y_{n} dxdy} \right. \left. { - \mu \left[ {\mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{2} X_{m} }}{{\partial x^{2} }}Y_{n} X_{m} Y_{n} dxdy + \mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} X_{m} \frac{{\partial ^{2} Y_{n} }}{{\partial y^{2} }}X_{m} Y_{n} dxdy} \right]} \right) \hfill \\ \quad \quad \quad - \Phi ^{\prime } \left( z \right)k_{{S1}} \left( {\mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{2} X_{m} }}{{\partial x^{2} }}Y_{n} X_{m} Y_{n} dxdy} \right. - \mu \left. {\left[ {\mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{4} X_{m} }}{{\partial x^{4} }}Y_{n} X_{m} Y_{n} dxdy + \mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{2} X_{m} }}{{\partial x^{2} }}\frac{{\partial ^{2} Y_{n} }}{{\partial y^{2} }}X_{m} Y_{n} dxdy} \right]} \right) \hfill \\ \quad \quad \quad - \Phi ^{\prime } \left( z \right)k_{{S2}} \left( {\mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} X_{m} \frac{{\partial ^{2} Y_{n} }}{{\partial y^{2} }}X_{m} Y_{n} dxdy} \right. \left. { - \mu \left[ {\mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{2} X_{m} }}{{\partial x^{2} }}\frac{{\partial ^{2} Y_{n} }}{{\partial y^{2} }}X_{m} Y_{n} dxdy + \mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} X_{m} \frac{{\partial ^{4} Y_{n} }}{{\partial y^{4} }}X_{m} Y_{n} dxdy} \right]} \right). \hfill \\ \end{gathered}$$
$$\begin{gathered} C_{{41}} = B_{{11}}^{s} \mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{3} X_{m} }}{{\partial x^{3} }}Y_{n} \frac{{\partial X_{m} }}{{\partial x}}Y_{n} {\text{d}}x{\text{d}}y + B_{{66}}^{s} \mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial X_{m} }}{{\partial x}}\frac{{\partial ^{2} Y_{n} }}{{\partial y^{2} }}\frac{{\partial X_{m} }}{{\partial x}}Y_{n} {\text{d}}x{\text{d}}y \hfill \\ \quad \quad \quad - \lambda \left[ {B_{{11}}^{s} \mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{5} X_{m} }}{{\partial x^{5} }}Y_{n} \frac{{\partial X_{m} }}{{\partial x}}Y_{n} {\text{d}}x{\text{d}}y} \right. + \left( {B_{{11}}^{s} + B_{{66}}^{s} } \right)\mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{3} X_{m} }}{{\partial x^{3} }}\frac{{\partial ^{2} Y_{n} }}{{\partial y^{2} }}\frac{{\partial X_{m} }}{{\partial x}}Y_{n} {\text{d}}x{\text{d}}y \hfill \\ \quad \quad \quad \left. { + B_{{66}}^{s} \mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial X_{m} }}{{\partial x}}\frac{{\partial ^{4} Y_{n} }}{{\partial y^{4} }}\frac{{\partial X_{m} }}{{\partial x}}Y_{n} {\text{d}}x{\text{d}}y} \right], \hfill \\ \end{gathered}$$
$$\begin{gathered} C_{{42}} = \left( {B_{{12}}^{s} + B_{{66}}^{s} } \right)\left( {\mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial X_{m} }}{{\partial x}}\frac{{\partial ^{2} Y_{n} }}{{\partial y^{2} }}\frac{{\partial X_{m} }}{{\partial x}}Y_{n} {\text{d}}x{\text{d}}y} \right. \hfill \\ \quad \quad \quad \left. { - \lambda \left[ {\mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{3} X_{m} }}{{\partial x^{3} }}\frac{{\partial ^{2} Y_{n} }}{{\partial y^{2} }}\frac{{\partial X_{m} }}{{\partial x}}Y_{n} {\text{d}}x{\text{d}}y + \mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial X_{m} }}{{\partial x}}\frac{{\partial ^{4} Y_{n} }}{{\partial y^{4} }}\frac{{\partial X_{m} }}{{\partial x}}Y_{n} {\text{d}}x{\text{d}}y} \right]} \right), \hfill \\ \end{gathered}$$
$$\begin{gathered} K_{{43}} = - D_{{11}}^{s} \mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{3} X_{m} }}{{\partial x^{3} }}Y_{n} \frac{{\partial X_{m} }}{{\partial x}}Y_{n} {\text{d}}x{\text{d}}y - \left( {D_{{12}}^{s} + 2D_{{66}}^{s} } \right)\mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial X_{m} }}{{\partial x}}\frac{{\partial ^{2} Y_{n} }}{{\partial y^{2} }}\frac{{\partial X_{m} }}{{\partial x}}Y_{n} {\text{d}}x{\text{d}}y \hfill \\ \quad \quad \quad - \lambda \left[ { - \left( {D_{{11}}^{s} + D_{{12}}^{s} + 2D_{{66}}^{s} } \right)\mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{3} X_{m} }}{{\partial x^{3} }}\frac{{\partial ^{2} Y_{n} }}{{\partial y^{2} }}\frac{{\partial X_{m} }}{{\partial x}}Y_{n} {\text{d}}x{\text{d}}y} \right. - D_{{11}}^{s} \mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{5} X_{m} }}{{\partial x^{5} }}Y_{n} \frac{{\partial X_{m} }}{{\partial x}}Y_{n} {\text{d}}x{\text{d}}y \hfill \\ \quad \quad \quad \left. { - \left( {D_{{12}}^{s} + 2D_{{66}}^{s} } \right)\mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial X_{m} }}{{\partial x}}\frac{{\partial ^{4} Y_{n} }}{{\partial y^{4} }}\frac{{\partial X_{m} }}{{\partial x}}Y_{n} {\text{d}}x{\text{d}}y} \right], \hfill \\ \end{gathered}$$
$$\begin{gathered} C_{{44}} = F_{{11}}^{s} \mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{3} X_{m} }}{{\partial x^{3} }}Y_{n} \frac{{\partial X_{m} }}{{\partial x}}Y_{n} {\text{d}}x{\text{d}}y + F_{{66}}^{s} \mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial X_{m} }}{{\partial x}}\frac{{\partial ^{2} Y_{n} }}{{\partial y^{2} }}\frac{{\partial X_{m} }}{{\partial x}}Y_{n} {\text{d}}x{\text{d}}y \hfill \\ \quad \quad \quad - A_{{44}}^{s} \mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial X_{m} }}{{\partial x}}Y_{n} \frac{{\partial X_{m} }}{{\partial x}}Y_{n} {\text{d}}x{\text{d}}y - \lambda \left[ {F_{{11}}^{s} \mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{5} X_{m} }}{{\partial x^{5} }}Y_{n} \frac{{\partial X_{m} }}{{\partial x}}Y_{n} {\text{d}}x{\text{d}}y} \right. \hfill \\ \quad \quad \quad + \left( {F_{{66}}^{s} + F_{{11}}^{s} } \right)\mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{3} X_{m} }}{{\partial x^{3} }}\frac{{\partial ^{2} Y_{n} }}{{\partial y^{2} }}\frac{{\partial X_{m} }}{{\partial x}}Y_{n} {\text{d}}x{\text{d}}y - A_{{44}}^{s} \mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{3} X_{m} }}{{\partial x^{3} }}Y_{n} \frac{{\partial X_{m} }}{{\partial x}}Y_{n} {\text{d}}x{\text{d}}y \hfill \\ \quad \quad \quad \left. { + F_{{66}}^{s} \mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial X_{m} }}{{\partial x}}\frac{{\partial ^{4} Y_{n} }}{{\partial y^{4} }}\frac{{\partial X_{m} }}{{\partial x}}Y_{n} {\text{d}}x{\text{d}}y - A_{{44}}^{s} \mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial X_{m} }}{{\partial x}}\frac{{\partial ^{2} Y_{n} }}{{\partial y^{2} }}\frac{{\partial X_{m} }}{{\partial x}}Y_{n} {\text{d}}x{\text{d}}y} \right], \hfill \\ \end{gathered}$$
$$\begin{gathered} K_{{45}} = \left( {F_{{12}}^{s} + F_{{66}}^{s} } \right)\left( {\mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial X_{m} }}{{\partial x}}\frac{{\partial ^{2} Y_{n} }}{{\partial y^{2} }}\frac{{\partial X_{m} }}{{\partial x}}Y_{n} {\text{d}}x{\text{d}}y} \right. \hfill \\ \quad \quad \quad \left. { - \lambda \left[ {\mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{3} X_{m} }}{{\partial x^{3} }}\frac{{\partial ^{2} Y_{n} }}{{\partial y^{2} }}\frac{{\partial X_{m} }}{{\partial x}}Y_{n} {\text{d}}x{\text{d}}y + \mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial X_{m} }}{{\partial x}}\frac{{\partial ^{4} Y_{n} }}{{\partial y^{4} }}\frac{{\partial X_{m} }}{{\partial x}}Y_{n} {\text{d}}x{\text{d}}y} \right]} \right), \hfill \\ \end{gathered}$$
$$\begin{gathered} K_{{46}} = \left( {J_{{13}}^{s} - A_{{44}}^{s} } \right)\left( {\mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial X_{m} }}{{\partial x}}Y_{n} \frac{{\partial X_{m} }}{{\partial x}}Y_{n} {\text{d}}x{\text{d}}y} \right. \hfill \\ \left. {\quad \quad \quad - \lambda \left[ {\mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{3} X_{m} }}{{\partial x^{3} }}Y_{n} \frac{{\partial X_{m} }}{{\partial x}}Y_{n} {\text{d}}x{\text{d}}y + \mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial X_{m} }}{{\partial x}}\frac{{\partial ^{2} Y_{n} }}{{\partial y^{2} }}\frac{{\partial X_{m} }}{{\partial x}}Y_{n} {\text{d}}x{\text{d}}y} \right]} \right), \hfill \\ \end{gathered}$$
$$\begin{gathered} K_{{15}} = \left( {B_{{12}}^{s} + B_{{66}}^{s} } \right)\mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{2} X_{m} }}{{\partial x^{2} }}\frac{{\partial Y_{n} }}{{\partial y}}X_{m} \frac{{\partial Y_{n} }}{{\partial y}}{\text{d}}x{\text{d}}y \hfill \\ \quad \quad \quad - \lambda \left[ {\mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{4} X_{m} }}{{\partial x^{4} }}\frac{{\partial Y_{n} }}{{\partial y}}X_{m} \frac{{\partial Y_{n} }}{{\partial y}}{\text{d}}x{\text{d}}y + \mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{2} X_{m} }}{{\partial x^{2} }}\frac{{\partial ^{3} Y_{n} }}{{\partial y^{3} }}X_{m} \frac{{\partial Y_{n} }}{{\partial y}}{\text{d}}x{\text{d}}y} \right], \hfill \\ \end{gathered}$$
$$\begin{gathered} K_{{52}} = B_{{11}}^{s} \mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} X_{m} \frac{{\partial ^{3} Y_{n} }}{{\partial y^{3} }}X_{m} \frac{{\partial Y_{n} }}{{\partial y}}{\text{d}}x{\text{d}}y + B_{{66}}^{s} \mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{2} X_{m} }}{{\partial x^{2} }}\frac{{\partial Y_{n} }}{{\partial y}}X_{m} \frac{{\partial Y_{n} }}{{\partial y}}{\text{d}}x{\text{d}}y \hfill \\ \quad \quad \quad - \lambda \left( {\left( {B_{{11}}^{s} + B_{{66}}^{s} } \right)\mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{2} X_{m} }}{{\partial x^{2} }}\frac{{\partial ^{3} Y_{n} }}{{\partial y^{3} }}X_{m} \frac{{\partial Y_{n} }}{{\partial y}}{\text{d}}x{\text{d}}y} \right. \hfill \\ \quad \quad \quad \left. { + B_{{66}}^{s} \mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{4} X_{m} }}{{\partial x^{4} }}\frac{{\partial Y_{n} }}{{\partial y}}X_{m} \frac{{\partial Y_{n} }}{{\partial y}}{\text{d}}x{\text{d}}y + B_{{11}}^{s} \mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} X_{m} \frac{{\partial ^{5} Y_{n} }}{{\partial y^{5} }}X_{m} \frac{{\partial Y_{n} }}{{\partial y}}{\text{d}}x{\text{d}}y} \right), \hfill \\ \end{gathered}$$
$$\begin{gathered} K_{{53}} = - D_{{11}}^{s} \mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} X_{m} \frac{{\partial ^{3} Y_{n} }}{{\partial y^{3} }}X_{m} \frac{{\partial Y_{n} }}{{\partial y}}{\text{d}}x{\text{d}}y - \left( {D_{{12}}^{s} + 2D_{{66}}^{s} } \right)\mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{2} X_{m} }}{{\partial x^{2} }}\frac{{\partial Y_{n} }}{{\partial y}}X_{m} \frac{{\partial Y_{n} }}{{\partial y}}{\text{d}}x{\text{d}}y \hfill \\ \quad \quad \quad - \lambda \left[ { - \left( {D_{{12}}^{s} + 2D_{{66}}^{s} } \right)\mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{4} X_{m} }}{{\partial x^{4} }}\frac{{\partial Y_{n} }}{{\partial y}}X_{m} \frac{{\partial Y_{n} }}{{\partial y}}{\text{d}}x{\text{d}}y} \right. - D_{{11}}^{s} \mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} X_{m} \frac{{\partial ^{5} Y_{n} }}{{\partial y^{5} }}X_{m} \frac{{\partial Y_{n} }}{{\partial y}}{\text{d}}x{\text{d}}y \hfill \\ \quad\quad\quad\left. { - \left( {D_{{11}}^{s} + D_{{12}}^{s} + 2D_{{66}}^{s} } \right)\mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{2} X_{m} }}{{\partial x^{2} }}\frac{{\partial ^{3} Y_{n} }}{{\partial y^{3} }}X_{m} \frac{{\partial Y_{n} }}{{\partial y}}{\text{d}}x{\text{d}}y} \right], \hfill \\ \end{gathered}$$
$$\begin{gathered} K_{{54}} = \left( {F_{{12}}^{s} + F_{{66}}^{s} } \right)\left( {\mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{2} X_{m} }}{{\partial x^{2} }}\frac{{\partial Y_{n} }}{{\partial y}}X_{m} \frac{{\partial Y_{n} }}{{\partial y}}{\text{d}}x{\text{d}}y} \right. \hfill \\ \quad \quad \quad \left. { - \lambda \left[ {\mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{4} X_{m} }}{{\partial x^{4} }}\frac{{\partial Y_{n} }}{{\partial y}}X_{m} \frac{{\partial Y_{n} }}{{\partial y}}{\text{d}}x{\text{d}}y + \mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{2} X_{m} }}{{\partial x^{2} }}\frac{{\partial ^{3} Y_{n} }}{{\partial y^{3} }}X_{m} \frac{{\partial Y_{n} }}{{\partial y}}{\text{d}}x{\text{d}}y} \right]} \right), \hfill \\ \end{gathered}$$
$$\begin{gathered} K_{{55}} = F_{{11}}^{s} \mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} X_{m} \frac{{\partial ^{3} Y_{n} }}{{\partial y^{3} }}X_{m} \frac{{\partial Y_{n} }}{{\partial y}}{\text{d}}x{\text{d}}y + F_{{66}}^{s} \mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{2} X_{m} }}{{\partial x^{2} }}\frac{{\partial Y_{n} }}{{\partial y}}X_{m} \frac{{\partial Y_{n} }}{{\partial y}}{\text{d}}x{\text{d}}y \hfill \\ \quad \quad \quad - A_{{44}}^{s} \mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} X_{m} \frac{{\partial Y_{n} }}{{\partial y}}X_{m} \frac{{\partial Y_{n} }}{{\partial y}}{\text{d}}x{\text{d}}y - \lambda \left( {\left( {F_{{11}}^{s} + F_{{66}}^{s} } \right)\mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{2} X_{m} }}{{\partial x^{2} }}\frac{{\partial ^{3} Y_{n} }}{{\partial y^{3} }}X_{m} \frac{{\partial Y_{n} }}{{\partial y}}{\text{d}}x{\text{d}}y} \right. \hfill \\ \quad \quad \quad + F_{{66}}^{s} \mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{4} X_{m} }}{{\partial x^{4} }}\frac{{\partial Y_{n} }}{{\partial y}}X_{m} \frac{{\partial Y_{n} }}{{\partial y}}{\text{d}}x{\text{d}}y - A_{{44}}^{s} \mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{2} X_{m} }}{{\partial x^{2} }}\frac{{\partial Y_{n} }}{{\partial y}}X_{m} \frac{{\partial Y_{n} }}{{\partial y}}{\text{d}}x{\text{d}}y \hfill \\ \quad \quad \quad \left. { + F_{{11}}^{s} \mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} X_{m} \frac{{\partial ^{5} Y_{n} }}{{\partial y^{5} }}X_{m} \frac{{\partial Y_{n} }}{{\partial y}}{\text{d}}x{\text{d}}y - A_{{44}}^{s} \mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} X_{m} \frac{{\partial ^{3} Y_{n} }}{{\partial y^{3} }}X_{m} \frac{{\partial Y_{n} }}{{\partial y}}{\text{d}}x{\text{d}}y} \right), \hfill \\ \end{gathered}$$
$$\begin{gathered} K_{{56}} = \left( {J_{{13}}^{s} - A_{{44}}^{s} } \right)\left( {\mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} X_{m} \frac{{\partial Y_{n} }}{{\partial y}}X_{m} \frac{{\partial Y_{n} }}{{\partial y}}{\text{d}}x{\text{d}}y} \right. \hfill \\ \quad \quad \quad \left. { - \lambda \left[ {\mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{2} X_{m} }}{{\partial x^{2} }}\frac{{\partial Y_{n} }}{{\partial y}}X_{m} \frac{{\partial Y_{n} }}{{\partial y}}{\text{d}}x{\text{d}}y + \mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} X_{m} \frac{{\partial ^{3} Y_{n} }}{{\partial y^{3} }}X_{m} \frac{{\partial Y_{n} }}{{\partial y}}{\text{d}}x{\text{d}}y} \right]} \right), \hfill \\ \end{gathered}$$
$$K_{{61}} = - G_{{13}}^{s} \left( {\mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{2} X_{m} }}{{\partial x^{2} }}Y_{n} X_{m} Y_{n} {\text{d}}x{\text{d}}y} \right.\left. { - \user2{\lambda }\left[ {\mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{4} X_{m} }}{{\partial x^{4} }}Y_{n} X_{m} Y_{n} {\text{d}}x{\text{d}}y + \mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{2} X_{m} }}{{\partial x^{2} }}\frac{{\partial ^{2} Y_{n} }}{{\partial y^{2} }}X_{m} Y_{n} {\text{d}}x{\text{d}}y} \right]} \right),$$
$$K_{{62}} = - G_{{13}}^{s} \left( {\mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} X_{m} \frac{{\partial ^{2} Y_{n} }}{{\partial y^{2} }}X_{m} Y_{n} {\text{d}}x{\text{d}}y} \right)\left. { - \user2{\lambda }\left[ {\mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{2} X_{m} }}{{\partial x^{2} }}\frac{{\partial ^{2} Y_{n} }}{{\partial y^{2} }}X_{m} Y_{n} {\text{d}}x{\text{d}}y + \mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} X_{m} \frac{{\partial ^{4} Y_{n} }}{{\partial y^{4} }}X_{m} Y_{n} {\text{d}}x{\text{d}}y} \right]} \right),$$
$$\begin{gathered} K_{{63}} = \left( {H_{{13}}^{s} \mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{2} X_{m} }}{{\partial x^{2} }}Y_{n} X_{m} Y_{n} {\text{d}}x{\text{d}}y + \mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} X_{m} \frac{{\partial ^{2} Y_{n} }}{{\partial y^{2} }}X_{m} Y_{n} {\text{d}}x{\text{d}}y} \right. \hfill \\ \quad \quad \quad - \lambda \left[ {\mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{4} X_{m} }}{{\partial x^{4} }}Y_{n} X_{m} Y_{n} {\text{d}}x{\text{d}}y + 2\mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{2} X_{m} }}{{\partial x^{2} }}\frac{{\partial ^{2} Y_{n} }}{{\partial y^{2} }}X_{m} Y_{n} {\text{d}}x{\text{d}}y} \right.\left. {\left. { + \mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} X_{m} \frac{{\partial ^{4} Y_{n} }}{{\partial y^{4} }}X_{m} Y_{n} {\text{d}}x{\text{d}}y} \right]} \right), \hfill \\ \end{gathered}$$
$$K_{{64}} = \left( {A_{{44}}^{s} - J_{{13}}^{s} } \right)\left( {\mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{2} X_{m} }}{{\partial x^{2} }}Y_{n} X_{m} Y_{n} {\text{d}}x{\text{d}}y - \lambda \left[ {\mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{4} X_{m} }}{{\partial x^{4} }}Y_{n} X_{m} Y_{n} {\text{d}}x{\text{d}}y + \mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{2} X_{m} }}{{\partial x^{2} }}\frac{{\partial ^{2} Y_{n} }}{{\partial y^{2} }}X_{m} Y_{n} {\text{d}}x{\text{d}}y} \right]} \right),$$
$$\begin{gathered} K_{{65}} = \left( {A_{{44}}^{s} - J_{{13}}^{s} } \right)\left( {\mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} X_{m} \frac{{\partial ^{2} Y_{n} }}{{\partial y^{2} }}X_{m} Y_{n} {\text{d}}x{\text{d}}y} \right. \hfill \\ \left. {\quad \quad \quad - \lambda \left[ {\mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{2} X_{m} }}{{\partial x^{2} }}\frac{{\partial ^{2} Y_{n} }}{{\partial y^{2} }}X_{m} Y_{n} {\text{d}}x{\text{d}}y + \mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} X_{m} \frac{{\partial ^{4} Y_{n} }}{{\partial y^{4} }}X_{m} Y_{n} {\text{d}}x{\text{d}}y} \right]} \right), \hfill \\ \end{gathered}$$
$$\begin{gathered} K_{{66}} = A_{{44}}^{s} \left( {\mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{2} X_{m} }}{{\partial x^{2} }}Y_{n} X_{m} Y_{n} {\text{d}}x{\text{d}}y + \mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} X_{m} \frac{{\partial ^{2} Y_{n} }}{{\partial y^{2} }}X_{m} Y_{n} {\text{d}}x{\text{d}}y} \right) \hfill \\ \quad \quad \quad - K_{{33}}^{s} \mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} X_{m} Y_{n} X_{m} Y_{n} {\text{d}}x{\text{d}}y - \lambda \left[ {A_{{44}}^{s} \left( {\mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{4} X_{m} }}{{\partial x^{2} }}Y_{n} X_{m} Y_{n} {\text{d}}x{\text{d}}y + \mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{2} X_{m} }}{{\partial x^{2} }}\frac{{\partial ^{2} Y_{n} }}{{\partial y^{2} }}X_{m} Y_{n} {\text{d}}x{\text{d}}y} \right)} \right. \hfill \\ \quad \quad \quad - K_{{33}}^{s} \mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{2} X_{m} }}{{\partial x^{2} }}Y_{n} X_{m} Y_{n} {\text{d}}x{\text{d}}y + A_{{44}}^{s} \left( {\mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} \frac{{\partial ^{2} X_{m} }}{{\partial x^{2} }}\frac{{\partial ^{2} Y_{n} }}{{\partial y^{2} }}X_{m} Y_{n} {\text{d}}x{\text{d}}y + \mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} X_{m} \frac{{\partial ^{4} Y_{n} }}{{\partial y^{4} }}X_{m} Y_{n} {\text{d}}x{\text{d}}y} \right)\left. { - K_{{33}}^{s} \mathop {\mathop \int \limits^{a} }\limits_{0} \mathop {\mathop \int \limits^{b} }\limits_{0} X_{m} \frac{{\partial ^{2} Y_{n} }}{{\partial y^{2} }}X_{m} Y_{n} {\text{d}}x{\text{d}}y} \right]. \hfill \\ \end{gathered}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daikh, AA., Belarbi, MO., Ahmed, D. et al. Static analysis of functionally graded plate structures resting on variable elastic foundation under various boundary conditions. Acta Mech 234, 775–806 (2023). https://doi.org/10.1007/s00707-022-03405-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-022-03405-1

Navigation