Skip to main content
Log in

Analysis of axially temperature-dependent functionally graded carbon nanotube reinforced composite plates

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

This article presents a comprehensive analysis to investigate the static buckling stability and static deflection of axially single-walled (SW) functionally graded (FG) carbon nanotubes reinforced composite (CNTRC) plates with temperature-dependent material properties and graded by different functions, for the first time. The distribution of the carbon nanotubes is described by two functions, one for the x-direction CNTs distribution (CNTRC-x plate) and another for z-direction CNTs distribution (CNTRC-z plate). The graduation functions of CNTs are unidirectional (UD CNTRC), FG-X CNTRC, FG-O CNTRC, and FG-V CNTRC. The extended rule of mixture and the molecular dynamics simulations are exploited to evaluate the equivalent mechanical properties of FG-CNTRC plate. Equilibrium equations are formulated using principal of Hamilton and solved analytically using Galerkin method to cover various boundary conditions. New higher order shear deformation theory is proposed. The numerical results gained by the proposed solution are verified by comparing with those of published ones. Numerical results present influences of gradation function, inhomogeneity parameters, aspect ratio, thickness ratio, boundary conditions and temperature on the static buckling and deflection of FG-CNTRC plate using modified higher order shear theories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Eltaher MA, Khairy A, Sadoun AM, Omar FA (2014) Static and buckling analysis of functionally graded Timoshenko nanobeams. Appl Math Comput 229:283–295. https://doi.org/10.1016/j.amc.2013.12.072

    Article  MathSciNet  MATH  Google Scholar 

  2. Melaibari A, Abo-bakr RM, Mohamed SA, Eltaher MA (2020) Static stability of higher order functionally graded beam under variable axial load. Alex Eng J 95(3):1661–1675. https://doi.org/10.1016/j.aej.2020.04.012

    Article  Google Scholar 

  3. Garg A, Belarbi MO, Chalak HD, Chakrabarti A (2020) A review of the analysis of sandwich FGM structures. Compos Struct 258:113427. https://doi.org/10.1016/j.compstruct.2020.113427

    Article  Google Scholar 

  4. Wang M, Li ZM, Qiao P (2016) Semi-analytical solutions to buckling and free vibration analysis of carbon nanotube-reinforced composite thin plates. Compos Struct 144:33–43

    Article  Google Scholar 

  5. Daikh AA, Megueni A (2018) Thermal buckling analysis of functionally graded sandwich plates. J Therm Stress 41(2):139–159. https://doi.org/10.1080/01495739.2017.1393644

    Article  Google Scholar 

  6. Daikh AA, Drai A, Houari MSA, Eltaher MA (2020) Static analysis of multilayer nonlocal strain gradient nanobeam reinforced by carbon nanotubes. Steel Compos Struct 36(6):643–656. https://doi.org/10.12989/scs.2020.36.6.643

    Article  Google Scholar 

  7. Zhang Y, Zhao J, Jia Y, Mabrouki T, Gong Y, Wei N, Rabczuk T (2013) An analytical solution on interface debonding for large diameter carbon nanotube-reinforced composite with functionally graded variation interphase. Compos Struct 104:261–269. https://doi.org/10.1016/j.compstruct.2013.04.029

    Article  Google Scholar 

  8. Zhuang X, Guo H, Alajlan N, Zhu H, Rabczuk T (2021) Deep autoencoder based energy method for the bending, vibration, and buckling analysis of Kirchhoff plates with transfer learning. Eur J Mech A Solids 87:104225. https://doi.org/10.1016/j.euromechsol.2021.104225

    Article  MathSciNet  MATH  Google Scholar 

  9. Samaniego E, Anitescu C, Goswami S, Nguyen-Thanh VM, Guo H, Hamdia K, Zhuang X, Rabczuk T (2020) An energy approach to the solution of partial differential equations in computational mechanics via machine learning: concepts, implementation and applications. Comput Methods Appl Mech Eng 362:112790. https://doi.org/10.1016/j.cma.2019.112790

    Article  MathSciNet  MATH  Google Scholar 

  10. Guo H, Zhuang X, Rabczuk T (2019) A deep collocation method for the bending analysis of Kirchhoff plate. Comput Mater Contin 59(2):433–456. https://doi.org/10.32604/cmc.2019.06660

    Article  Google Scholar 

  11. Dereli G, Süngü B (2007) Temperature dependence of the tensile properties of single-walled carbon nanotubes: O(N) tight-binding molecular-dynamics simulations. Phys Rev B 75(18):184104. https://doi.org/10.1103/PhysRevB.75.184104

    Article  Google Scholar 

  12. Kiani Y (2016) Thermal postbuckling of temperature-dependent sandwich beams with carbon nanotube-reinforced face sheets. J Therm Stress 39(9):1098–1110. https://doi.org/10.1080/01495739.2016.1192856

    Article  Google Scholar 

  13. Kolahchi R, Safari M, Esmailpour M (2016) Dynamic stability analysis of temperature-dependent functionally graded CNT-reinforced visco-plates resting on orthotropic elastomeric medium. Compos Struct 150:255–265. https://doi.org/10.1016/j.compstruct.2016.05.023

    Article  Google Scholar 

  14. Fattahi AM, Sahmani S (2017) Nonlocal temperature-dependent postbuckling behavior of FG-CNT reinforced nanoshells under hydrostatic pressure combined with heat conduction. Microsyst Technol 23(10):5121–5137. https://doi.org/10.1007/s00542-017-3377-x

    Article  Google Scholar 

  15. Daikh AA, Guerroudj M, El Adjrami M, Megueni A (2019) Thermal buckling of functionally graded sandwich beams. Adv Mater Res 1156:43–59

    Article  Google Scholar 

  16. Cohen Y, Reddy SK, Ben-Shimon Y, Ya’akobovitz A (2019) Height and morphology dependent heat dissipation of vertically aligned carbon nanotubes. Nanotechnology 30(50):505705. https://doi.org/10.1088/1361-6528/ab424e

    Article  Google Scholar 

  17. Ansari R, Torabi J, Hassani R (2019) Thermal buckling analysis of temperature-dependent FG-CNTRC quadrilateral plates. Comput Math Appl 77(5):1294–1311. https://doi.org/10.1016/j.camwa.2018.11.009

    Article  MathSciNet  MATH  Google Scholar 

  18. Daikh AA, Houari MSA, Tounsi A (2019) Buckling analysis of porous FGM sandwich nanoplates due to heat conduction via nonlocal strain gradient theory. Eng Res Express 1(1):015022. https://doi.org/10.1088/2631-8695/ab38f9

    Article  Google Scholar 

  19. Long VT, Van Tung H (2020) Thermal postbuckling behavior of CNT-reinforced composite sandwich plate models resting on elastic foundations with tangentially restrained edges and temperature-dependent properties. J Thermoplast Compos Mater 33(10):1396–1428. https://doi.org/10.1177/0892705719828789

    Article  Google Scholar 

  20. Wang JF, Cao SH, Zhang W (2020) Thermal vibration and buckling analysis of functionally graded carbon nanotube reinforced composite quadrilateral plate. Eur J Mech A/Solids 85:104105. https://doi.org/10.1016/j.euromechsol.2020.104105

    Article  MathSciNet  MATH  Google Scholar 

  21. Savvas D, Stefanou G, Papadopoulos V, Papadrakakis M (2016) Effect of waviness and orientation of carbon nanotubes on random apparent material properties and RVE size of CNT reinforced composites. Compos Struct 152:870–882. https://doi.org/10.1016/j.compstruct.2016.06.009

    Article  Google Scholar 

  22. García-Macías E, Rodríguez-Tembleque L, Castro-Triguero R, Sáez A (2017) Eshelby–Mori–Tanaka approach for post-buckling analysis of axially compressed functionally graded CNT/polymer composite cylindrical panels. Composites B 128:208–224. https://doi.org/10.1016/j.compositesb.2017.07.016

    Article  Google Scholar 

  23. Garcia-Macias E, Rodriguez-Tembleque L, Saez A (2018) Bending and free vibration analysis of functionally graded graphene vs. carbon nanotube reinforced composite plates. Compos Struct 186:123–138. https://doi.org/10.1016/j.compstruct.2017.11.076

    Article  Google Scholar 

  24. Ansari R, Torabi J, Hassani R (2019) A comprehensive study on the free vibration of arbitrary shaped thick functionally graded CNT-reinforced composite plates. Eng Struct 181:653–669. https://doi.org/10.1016/j.engstruct.2018.12.049

    Article  Google Scholar 

  25. Ansari R, Hasrati E, Torabi J (2019) Vibration analysis of pressurized sandwich FG-CNTRC cylindrical shells based on the higher-order shear deformation theory. Mater Res Express 6(4):045049. https://doi.org/10.1088/2053-1591/aafcb

    Article  Google Scholar 

  26. Cheng Y, Cheng H, Zhang K, Jones KK, Gao J, Hu J, Liu WK (2019) A sequential homogenization of multi-coated micromechanical model for functionally graded interphase composites. Comput Mech 64(5):1321–1337. https://doi.org/10.1007/s00466-019-01712-4

    Article  MathSciNet  MATH  Google Scholar 

  27. Cheng Y, Zhang K, Liang B, Cheng H, Hou G, Xu G, Jin W (2019) Micromechanics of CNT grafted FRP based on hierarchical homogenization of transversely isotropic multi-coated model. Int J Mech Sci 161:105014. https://doi.org/10.1016/j.ijmecsci.2019.105014

    Article  Google Scholar 

  28. Ebrahimi F, Dabbagh A (2019) Vibration analysis of multi-scale hybrid nanocomposite plates based on a Halpin–Tsai homogenization model. Composites B 173:106955. https://doi.org/10.1016/j.compositesb.2019.106955

    Article  Google Scholar 

  29. Jeong S, Zhu F, Lim H, Kim Y, Yun GJ (2019) 3D stochastic computational homogenization model for carbon fiber reinforced CNT/epoxy composites with spatially random properties. Compos Struct 207:858–870. https://doi.org/10.1016/j.compstruct.2018.09.025

    Article  Google Scholar 

  30. Civalek O, Jalaei MH (2020) Shear buckling analysis of functionally graded (FG) carbon nanotube reinforced skew plates with different boundary conditions. Aerosp Sci Technol 99:105753. https://doi.org/10.1016/j.ast.2020.105753

    Article  Google Scholar 

  31. Talebizadehsardari P, Eyvazian A, Asmael M, Karami B, Shahsavari D, Mahani RB (2020) Static bending analysis of functionally graded polymer composite curved beams reinforced with carbon nanotubes. Thin Walled Struct 157:107139. https://doi.org/10.1016/j.tws.2020.107139

    Article  Google Scholar 

  32. Fantuzzi N, Bacciocchi M, Agnelli J, Benedetti D (2020) Three-phase homogenization procedure for woven fabric composites reinforced by carbon nanotubes in thermal environment. Compos Struct. https://doi.org/10.1016/j.compstruct.2020.112840

    Article  Google Scholar 

  33. Alshorbagy AE, Eltaher MA, Mahmoud FF (2011) Free vibration characteristics of a functionally graded beam by finite element method. Appl Math Model 35(1):412–425. https://doi.org/10.1016/j.apm.2010.07.006

    Article  MathSciNet  MATH  Google Scholar 

  34. Huang Y, Li XF (2010) A new approach for free vibration of axially functionally graded beams with non-uniform cross-section. J Sound Vib 329(11):2291–2303. https://doi.org/10.1016/j.jsv.2009.12.029

    Article  Google Scholar 

  35. Shahba A, Rajasekaran S (2012) Free vibration and stability of tapered Euler–Bernoulli beams made of axially functionally graded materials. Appl Math Model 36(7):3094–3111. https://doi.org/10.1016/j.apm.2011.09.073

    Article  MathSciNet  MATH  Google Scholar 

  36. Shahba A, Attarnejad R, Hajilar S (2013) A mechanical-based solution for axially functionally graded tapered Euler–Bernoulli beams. Mech Adv Mater Struct 20(8):696–707. https://doi.org/10.1080/15376494.2011.640971

    Article  Google Scholar 

  37. Akgöz B, Civalek Ö (2013) Free vibration analysis of axially functionally graded tapered Bernoulli–Euler microbeams based on the modified couple stress theory. Compos Struct 98:314–322. https://doi.org/10.1016/j.compstruct.2012.11.020

    Article  Google Scholar 

  38. Li X, Li L, Hu Y, Ding Z, Deng W (2017) Bending, buckling and vibration of axially functionally graded beams based on nonlocal strain gradient theory. Compos Struct 165:250–265. https://doi.org/10.1016/j.compstruct.2017.01.032

    Article  Google Scholar 

  39. Sahmani S, Aghdam MM (2017) Nonlinear instability of axially loaded functionally graded multilayer graphene platelet-reinforced nanoshells based on nonlocal strain gradient elasticity theory. Int J Mech Sci 131:95–106. https://doi.org/10.1016/j.ijmecsci.2017.06.052

    Article  Google Scholar 

  40. Sahmani S, Aghdam MM, Rabczuk T (2018) A unified nonlocal strain gradient plate model for nonlinear axial instability of functionally graded porous micro/nano-plates reinforced with graphene platelets. Mater Res Express 5(4):045048. https://doi.org/10.1088/2053-1591/aabdbb

    Article  Google Scholar 

  41. Ghayesh MH (2018) Nonlinear vibration analysis of axially functionally graded shear-deformable tapered beams. Appl Math Model 59:583–596. https://doi.org/10.1016/j.apm.2018.02.017

    Article  MathSciNet  MATH  Google Scholar 

  42. Sahmani S, Aghdam MM, Rabczuk T (2018) Nonlinear bending of functionally graded porous micro/nano-beams reinforced with graphene platelets based upon nonlocal strain gradient theory. Compos Struct 186:68–78. https://doi.org/10.1016/j.compstruct.2017.11.082

    Article  Google Scholar 

  43. Sahmani S, Fattahi AM, Ahmed NA (2019) Analytical mathematical solution for vibrational response of postbuckled laminated FG-GPLRC nonlocal strain gradient micro-/nanobeams. Eng Comput 35(4):1173–1189. https://doi.org/10.1007/s00366-018-0657-8

    Article  Google Scholar 

  44. Chen M, Jin G, Zhang Y, Niu F, Liu Z (2019) Three-dimensional vibration analysis of beams with axial functionally graded materials and variable thickness. Compos Struct 207:304–322. https://doi.org/10.1016/j.compstruct.2018.09.029

    Article  Google Scholar 

  45. Rezaiee-Pajand M, Mokhtari M, Hozhabrossadati S (2019) Application of Hencky bar-chain model to buckling analysis of elastically restrained Timoshenko axially functionally graded carbon nanotube reinforced composite beams. Mech Based Des Struct Mach 47(5):599–620. https://doi.org/10.1080/15397734.2019.1596129

    Article  Google Scholar 

  46. El-Ashmawy AM, Xu Y (2020) Longitudinal modeling and properties tailoring of functionally graded carbon nanotube reinforced composite beams: a novel approach. Appl Math Model 88:161–174. https://doi.org/10.1016/j.apm.2020.06.043

    Article  MathSciNet  MATH  Google Scholar 

  47. Abo-Bakr HM, Abo-Bakr RM, Mohamed SA, Eltaher MA (2020) Weight optimization of axially functionally graded microbeams under buckling and vibration behaviors. Mech Based Des Struct Mach. https://doi.org/10.1080/15397734.2020.1838298

    Article  Google Scholar 

  48. Mirzaei M, Kiani Y (2015) Thermal buckling of temperature dependent FG-CNT reinforced composite conical shells. Aerosp Sci Technol 47:42–53. https://doi.org/10.1016/j.ast.2015.09.011

    Article  MATH  Google Scholar 

  49. Arani AG, Jamali M, Mosayyebi M, Kolahchi R (2016) Wave propagation in FG-CNT-reinforced piezoelectric composite micro plates using viscoelastic quasi-3D sinusoidal shear deformation theory. Composites B 95:209–224. https://doi.org/10.1016/j.compositesb.2016.03.077

    Article  Google Scholar 

  50. Fantuzzi N, Tornabene F, Bacciocchi M, Dimitri R (2017) Free vibration analysis of arbitrarily shaped functionally graded carbon nanotube-reinforced plates. Composites B 115:384–408. https://doi.org/10.1016/j.compositesb.2016.09.021

    Article  Google Scholar 

  51. Fazzolari FA (2018) Thermoelastic vibration and stability of temperature-dependent carbon nanotube-reinforced composite plates. Compos Struct 196:199–214. https://doi.org/10.1016/j.compstruct.2018.04.026

    Article  Google Scholar 

  52. Beni NN (2019) Free vibration analysis of annular sector sandwich plates with FG-CNT reinforced composite face-sheets based on the Carrera’s Unified Formulation. Compos Struct 214:269–292. https://doi.org/10.1016/j.compstruct.2019.01.094

    Article  Google Scholar 

  53. Daikh AA, Zenkour AM (2019) Effect of porosity on the bending analysis of various functionally graded sandwich plates. Mater Res Express. https://doi.org/10.1088/2053-1591/ab0971

    Article  Google Scholar 

  54. Daikh AA, Zenkour AM (2019) Free vibration and buckling of porous power-law and sigmoid functionally graded sandwich plates using a simple higher-order shear deformation theory. Mater Res Express 6:115707. https://doi.org/10.1088/2053-1591/ab48a9

    Article  Google Scholar 

  55. Mohamed N, Mohamed SA, Eltaher MA (2020) Buckling and post-buckling behaviors of higher order carbon nanotubes using energy-equivalent model. Eng Comput. https://doi.org/10.1007/s00366-020-00976-2

    Article  Google Scholar 

  56. Hamed MA, Abo-Bakr RM, Mohamed SA, Eltaher MA (2020) Influence of axial load function and optimization on static stability of sandwich functionally graded beams with porous core. Eng Comput 36:1929–1946. https://doi.org/10.1007/s00366-020-01023-w

    Article  Google Scholar 

  57. Melaibari A, Khoshaim AB, Mohamed SA, Eltaher MA (2020) Static stability and of symmetric and sigmoid functionally graded beam under variable axial load. Steel Compos Struct 35(5):671–685. https://doi.org/10.12989/scs.2020.35.5.671

    Article  Google Scholar 

  58. Eltaher MA, Mohamed SA, Melaibari A (2020) Static stability of a unified composite beams under varying axial loads. Thin Walled Struct 147:106488. https://doi.org/10.1016/j.tws.2019.106488

    Article  Google Scholar 

  59. Eltaher MA, Mohamed SA (2020) Buckling and stability analysis of sandwich beams subjected to varying axial loads. Steel Compos Struct 34(2):241–260. https://doi.org/10.12989/scs.2020.34.2.241

    Article  Google Scholar 

  60. Ebrahimi F, Farazmandnia N, Kokaba MR et al (2019) Vibration analysis of porous magneto-electro-elastically actuated carbon nanotube-reinforced composite sandwich plate based on a refined plate theory. Eng Comput. https://doi.org/10.1007/s00366-019-00864-4

    Article  Google Scholar 

  61. Mahesh V, Harursampath D (2020) Nonlinear vibration of functionally graded magneto-electro-elastic higher order plates reinforced by CNTs using FEM. Eng Comput. https://doi.org/10.1007/s00366-020-01098-5

    Article  Google Scholar 

  62. Dat ND, Thanh NV, MinhAnh V, Duc ND (2020) Vibration and nonlinear dynamic analysis of sandwich FG-CNTRC plate with porous core layer. Mech Adv Mater Struct. https://doi.org/10.1080/15376494.2020.1822476

    Article  Google Scholar 

  63. Tran HQ, Tran MT, Nguyen-Tri P (2020) A new four-variable refined plate theory for static analysis of smart laminated functionally graded carbon nanotube reinforced composite plates. Mech Mater 142:103294. https://doi.org/10.1016/j.mechmat.2019.103294

    Article  Google Scholar 

  64. Han Y, Elliott J (2007) Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites. Comput Mater Sci 39:315–323. https://doi.org/10.1016/j.commatsci.2006.06.011

    Article  Google Scholar 

  65. Daikh AA, Bensaid I, Bachiri A, Houari MSA, Tounsi A, Merzouki T (2020) On static bending of multilayered carbon nanotube-reinforced composite plates. Comput Concr 26(2):137–150. https://doi.org/10.12989/cac.2020.26.2.137

    Article  Google Scholar 

  66. Vodenitcharova T, Zhang LC (2003) Effective wall thickness of a single-walled carbon nanotube. Phys Rev B 68:165401. https://doi.org/10.1103/PhysRevB.68.165401

    Article  Google Scholar 

  67. Touloukian YS (1967) Thermophysical properties of high temperature solid materials. MacMillan, New York

    Google Scholar 

  68. Daikh AA (2019) Temperature dependent vibration analysis of functionally graded sandwich plates resting on Winkler/Pasternak/Kerr foundation. Mater Res Express 6:065702. https://doi.org/10.1088/2053-1591/ab48a

    Article  Google Scholar 

  69. Daikh AA, Drai A, Bensaid I, Houari MSA, Tounsi A (2020) On vibration of functionally graded sandwich nanoplates in the thermal environment. J Sandw Struct Mater. https://doi.org/10.1177/1099636220909790

    Article  Google Scholar 

  70. Daikh AA, Bensaid I, Zenkour AM (2020) Temperature dependent thermomechanical bending response of functionally graded sandwich plates. Eng Res Express 2:015006. https://doi.org/10.1088/2631-8695/ab638c

    Article  Google Scholar 

  71. Daikh AA, Bachiri A, Houari MSA, Tounsi A (2020) Size dependent free vibration and buckling of multi-layered carbon nanotubes reinforced composite nanoplates in thermal environment. Mech Based Des Struct Mach. https://doi.org/10.1080/15397734.2020.1752232

    Article  Google Scholar 

  72. Hirane H, Belarbi MO, Houari MSA et al (2021) On the layerwise finite element formulation for static and free vibration analysis of functionally graded sandwich plates. Eng Comput. https://doi.org/10.1007/s00366-020-01250-1

    Article  Google Scholar 

  73. Belarbi MO, Khechai A, Bessaim A et al (2021) Finite element bending analysis of symmetric and non-symmetric functionally graded sandwich beams using a novel parabolic shear deformation theory. Proc Inst Mech Eng Part L: J Mater: Des Appl. https://doi.org/10.1177/14644207211005096

    Article  Google Scholar 

  74. Belarbi MO, Houari MSA, Daikh AA, Garg A, Merzouki T, Chalak HD, Hirane H (2021) Nonlocal finite element model for the bending and buckling analysis of functionally graded nanobeams using a novel shear deformation theory. Compos Struct 264:113712. https://doi.org/10.1016/j.compstruct.2021.113712

    Article  Google Scholar 

  75. Nguyen-Thoi T, Rabczuk T, Ho-Huu V, Le-Anh L, Dang-Trung H, Vo-Duy T (2017) An extended cell-based smoothed three-node Mindlin plate element (XCS-MIN3) for free vibration analysis of cracked FGM plates. Int J Comput Methods 14(02):1750011. https://doi.org/10.1142/S0219876217500116

    Article  MathSciNet  MATH  Google Scholar 

  76. Phung-Van P, Thai CH, Ferreira AJM, Rabczuk T (2020) Isogeometric nonlinear transient analysis of porous FGM plates subjected to hygro-thermo-mechanical loads. Thin Walled Struct 148:106497. https://doi.org/10.1016/j.tws.2019.106497

    Article  Google Scholar 

  77. Ebrahimi F, Dabbagh A (2019) Vibration analysis of graphene oxide powder-/carbon fiber-reinforced multi-scale porous nanocomposite beams: a finite-element study. Eur Phys J Plus 134:225. https://doi.org/10.1140/epjp/i2019-12594-1

    Article  Google Scholar 

  78. Ebrahimi F, Barati MR, Civalek Ö (2020) Application of Chebyshev–Ritz method for static stability and vibration analysis of nonlocal microstructure-dependent nanostructures. Eng Comput 36:953–964. https://doi.org/10.1007/s00366-019-00742-z

    Article  Google Scholar 

  79. Daikh AA, Houari MSA, Eltaher MA (2020) A novel nonlocal strain gradient Quasi-3D bending analysis of sigmoid functionally graded sandwich nanoplates. Compos Struct. https://doi.org/10.1016/j.compstruct.2020.113347

    Article  Google Scholar 

  80. Daikh AA, Zenkour AM (2020) Bending of functionally graded sandwich nanoplates resting on Pasternak foundation under different boundary conditions. J Appl Comput Mech 6:1245–1259. https://doi.org/10.22055/JACM.2020.33136.2166

    Article  Google Scholar 

  81. Thai HT, Nguyen TK, Vo TP, Lee J (2014) Analysis of functionally graded sandwich plates using a new first-order shear deformation theory. Eur J Mech A/Solids 45:211–225. https://doi.org/10.1016/j.euromechsol.2013.12.008

    Article  MathSciNet  MATH  Google Scholar 

  82. Wattanasakulpong N, Chaikittiratana R (2015) Exact solutions for static and dynamic analyses of carbon nanotube-reinforced composite plates with Pasternak elastic foundation. Appl Math Model 39(18):5459–5472. https://doi.org/10.1016/j.apm.2014.12.058

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Amine Daikh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daikh, A.A., Houari, M.S.A., Belarbi, M.O. et al. Analysis of axially temperature-dependent functionally graded carbon nanotube reinforced composite plates. Engineering with Computers 38 (Suppl 3), 2533–2554 (2022). https://doi.org/10.1007/s00366-021-01413-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-021-01413-8

Keywords

Navigation