Skip to main content
Log in

Variational analysis of laminated nanoplates for various boundary conditions

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Based on Gurtin–Murdoch’s theory, a new mechanistic laminated nanoplate model composed of nanocomposites under various boundary conditions is proposed, where the top and bottom surfaces of the laminated nanoplate are regarded as two-dimensional films which have independent surface elastic parameters. The influence of surface Lamé constants and residual stress on static bending and vibration properties for the laminated nanoplate is studied. In order to get approximate solutions of bending deflections and first-order frequencies for the laminated nanoplate with complex boundary conditions, the variational method is employed in this paper. The effectiveness of the presented variational method is verified by comparison with available results. Numerical results indicate that the effective bending stiffness of the laminated nanoplate considering surface effects is obviously different from the classical result. Moreover, the influences of surface effects on bending deflections and first-order frequencies are related to the surface elastic parameters and boundary conditions. The presented method and results provide a theoretical benchmark for other numerical and experimental methods to study nano laminates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Adab, N., Arefi, M., Amabili, M.: A comprehensive vibration analysis of rotating truncated sandwich conical microshells including porous core and GPL-reinforced face-sheets. Compos. Struct. (2022). https://doi.org/10.1016/j.compstruct.2021.114761

    Article  Google Scholar 

  2. Guo, J., Gao, J., Xiao, C., Chen, L., Qian, L.: Mechanochemical reactions of GaN-Al2O3 interface at the nanoasperity contact: Roles of crystallographic polarity and ambient humidity. Friction. 10(7), 1005–1018 (2022). https://doi.org/10.1007/s40544-021-0501-9

    Article  Google Scholar 

  3. Shen, F., Zhang, D., Zhang, Q., Li, Z.J., Guo, H.Y., Gong, Y., Peng, Y.: Influence of temperature difference on performance of solid-liquid triboelectric nanogenerators. Nano Energy (2022). https://doi.org/10.1016/j.nanoen.2022.107431

    Article  Google Scholar 

  4. Xin, C.F., Li, Z.J., Zhang, Q., Peng, Y., Guo, H.Y., Xie, S.R.: Investigating the output performance of triboelectric nanogenerators with single/double-sided interlayer. Nano Energy (2022). https://doi.org/10.1016/j.nanoen.2022.107448

    Article  Google Scholar 

  5. Craighead, H.G.: Nanoelectromechanical systems. Science 290(5496), 1532–1535 (2000). https://doi.org/10.1126/science.290.5496.1532

    Article  Google Scholar 

  6. Lavrik, N.V., Sepaniak, M.J., Datskos, P.G.: Cantilever transducers as a platform for chemical and biological sensors. Rev. Sci. Instrum. 75(7), 2229–2253 (2004). https://doi.org/10.1063/1.1763252

    Article  Google Scholar 

  7. Cao, D.Y., Malakooti, S., Kulkarni, V.N., Ren, Y., Liu, Y.J., Nie, X., Qian, D., Griffith, D.T., Lu, H.B.: The effect of resin uptake on the flexural properties of compression molded sandwich composites. Wind Energy 25(1), 71–93 (2022). https://doi.org/10.1002/we.2661

    Article  Google Scholar 

  8. Wang, X., Xu, T., de Andrade, M.J., Rampalli, I., Cao, D., Haque, M., Roy, S., Baughman, R.H., Lu, H.: The interfacial shear strength of carbon nanotube sheet modified carbon fiber composites. Chall. Mech. Time Depend. Mater. 2, 25–32 (2021). https://doi.org/10.1007/978-3-030-59542-5_4

    Article  Google Scholar 

  9. Shaat, M., Mahmoud, F.F., Alshorbagy, A.E., Alieldin, S.S.: Bending analysis of ultra-thin functionally graded Mindlin plates incorporating surface energy effects. Int. J. Mech. Sci. 75, 223–232 (2013). https://doi.org/10.1016/j.ijmecsci.2013.07.001

    Article  Google Scholar 

  10. Liew, K.M., Wong, C.H., Tan, M.J.: Tensile and compressive properties of carbon nanotube bundles. Acta Mater. 54(1), 225–231 (2006). https://doi.org/10.1016/j.actamat.2005.09.002

    Article  Google Scholar 

  11. Hao, R.-B., Lu, Z.-Q., Ding, H., Chen, L.-Q.: A nonlinear vibration isolator supported on a flexible plate: analysis and experiment. Nonlinear Dyn. 108(2), 941–958 (2022). https://doi.org/10.1007/s11071-022-07243-7

    Article  Google Scholar 

  12. Cao, D., Malakooti, S., Kulkarni, V.N., Ren, Y., Lu, H.: Nanoindentation measurement of core–skin interphase viscoelastic properties in a sandwich glass composite. Mech. Time-Depend. Mater. 25(3), 353–363 (2021). https://doi.org/10.1007/s11043-020-09448-y

    Article  Google Scholar 

  13. Gurtin, M.E., Ian Murdoch, A.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57(4), 291–323 (1975). https://doi.org/10.1007/BF00261375

    Article  MathSciNet  MATH  Google Scholar 

  14. Gurtin, M.E., Murdoch, A.I.: Addenda to our paper A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 59(4), 389–390 (1975). https://doi.org/10.1007/BF00250426

    Article  MATH  Google Scholar 

  15. Gurtin, M.E., Ian Murdoch, A.: Surface stress in solids. Int. J. Solids Struct. 14(6), 431–440 (1978). https://doi.org/10.1016/0020-7683(78)90008-2

    Article  MATH  Google Scholar 

  16. Murdoch, A.I.: Some fundamental aspects of surface modelling. J. Elast. 80(1), 33 (2005). https://doi.org/10.1007/s10659-005-9024-2

    Article  MathSciNet  MATH  Google Scholar 

  17. Sun, C.T., Zhang, H.: Size-dependent elastic moduli of platelike nanomaterials. J. Appl. Phys. 93(2), 1212–1218 (2003). https://doi.org/10.1063/1.1530365

    Article  Google Scholar 

  18. Duan, H.L., Wang, J., Huang, Z.P., Karihaloo, B.L.: Size-dependent effective elastic constants of solids containing nano-inhomogeneities with interface stress. J. Mech. Phys. Solids. 53(7), 1574–1596 (2005). https://doi.org/10.1016/j.jmps.2005.02.009

    Article  MathSciNet  MATH  Google Scholar 

  19. Feng, X.-Q., Xia, R., Li, X., Li, B.: Surface effects on the elastic modulus of nanoporous materials. Appl. Phys. Lett. 94(1), 011916 (2009). https://doi.org/10.1063/1.3067999

    Article  Google Scholar 

  20. Yang, Y., Zou, J., Lee, K.Y., Li, X.-F.: Bending of circular nanoplates with consideration of surface effects. Meccanica 53(4), 985–999 (2018). https://doi.org/10.1007/s11012-017-0760-8

    Article  MathSciNet  MATH  Google Scholar 

  21. Yang, Y., Lee, K.Y., Li, X.F.: Surface effects on delamination of a thin film bonded to an elastic substrate. Int. J. Fract. 210(1), 81–94 (2018). https://doi.org/10.1007/s10704-018-0262-2

    Article  Google Scholar 

  22. Wang, W., Li, P., Jin, F.: An analytical model of a broadband magnetic energy nanoharvester array with consideration of flexoelectricity and surface effect. J. Phys. D-Appl. Phys. (2018). https://doi.org/10.1088/1361-6463%2Faab292

    Article  Google Scholar 

  23. Liu, S., Yu, T., Lich, L.V., Yin, S., Bui, T.Q.: Size and surface effects on mechanical behavior of thin nanoplates incorporating microstructures using isogeometric analysis. Comput. Struct. 212, 173–187 (2019). https://doi.org/10.1016/j.compstruc.2018.10.009

    Article  Google Scholar 

  24. Arefi, M., Amabili, M.: A comprehensive electro-magneto-elastic buckling and bending analyses of three-layered doubly curved nanoshell, based on nonlocal three-dimensional theory. Compos. Struct. 257, 113100 (2021). https://doi.org/10.1016/j.compstruct.2020.113100

    Article  Google Scholar 

  25. Lu, L., Guo, X., Zhao, J.: A unified size-dependent plate model based on nonlocal strain gradient theory including surface effects. Appl. Math. Model. 68, 583–602 (2019). https://doi.org/10.1016/j.apm.2018.11.023

    Article  MathSciNet  MATH  Google Scholar 

  26. Fan, F., Lei, B., Sahmani, S., Safaei, B.: On the surface elastic-based shear buckling characteristics of functionally graded composite skew nanoplates. Thin-Walled Struct. 154, 106841 (2020). https://doi.org/10.1016/j.tws.2020.106841

    Article  Google Scholar 

  27. Tong, L.H., Lin, F., Xiang, Y., Shen, H.S., Lim, C.W.: Buckling analysis of nanoplates based on a generic third-order plate theory with shear-dependent non-isotropic surface stresses. Compos. Struct. 265, 113708 (2021). https://doi.org/10.1016/j.compstruct.2021.113708

    Article  Google Scholar 

  28. Abdollahi, F., Ghassemi, A.: Surface and nonlocal effects on coupled in-plane shear buckling and vibration of single-layered graphene sheets resting on elastic media and thermal environments using DQM. J. Mech. 34(6), 847–862 (2018). https://doi.org/10.1017/jmech.2018.14

    Article  Google Scholar 

  29. Gholami, R., Ansari, R.: Imperfection sensitivity of post-buckling behavior and vibration response in pre- and post-buckled regions of nanoscale plates considering surface effects. Int. J. Appl. Mech. 10(03), 1850027 (2018). https://doi.org/10.1142/s1758825118500278

    Article  Google Scholar 

  30. Lu, L., Guo, X., Zhao, J.: On the mechanics of Kirchhoff and Mindlin plates incorporating surface energy. Int. J. Eng. Sci. 124, 24–40 (2018). https://doi.org/10.1016/j.ijengsci.2017.11.020

    Article  MathSciNet  MATH  Google Scholar 

  31. Wang, K.F., Wang, B.L., Xu, M.H., Yu, A.B.: Influences of surface and interface energies on the nonlinear vibration of laminated nanoscale plates. Compos. Struct. 183, 423–433 (2018). https://doi.org/10.1016/j.compstruct.2017.04.054

    Article  Google Scholar 

  32. Arpanahi, R.A., Hosseini-Hashemi, S., Rahmanian, S., Hashemi, S.H., Ahmadi-Savadkoohi, A.: Nonlocal surface energy effect on free vibration behavior of nanoplates submerged in incompressible fluid. Thin-Walled Struct. 143, 106212 (2019). https://doi.org/10.1016/j.tws.2019.106212

    Article  MATH  Google Scholar 

  33. Karimi, M., Rafieian, S.: A comprehensive investigation into the impact of nonlocal strain gradient and modified couple stress models on the rates of surface energy layers of BiTiO3–CoFe2O4 nanoplates: a vibration analysis. Mater. Res. Express. (2019). https://doi.org/10.1088/2053-1591/ab151b

    Article  Google Scholar 

  34. Wang, J., Xiao, J.: Analytical solutions of bending analysis and vibration of rectangular nano laminates with surface effects. Appl. Math. Model. 110, 663–673 (2022). https://doi.org/10.1016/j.apm.2022.06.012

    Article  MathSciNet  Google Scholar 

  35. Xu, M., Wang, B.L., Yu, A.: Effect of surface and interface energies on the nonlinear bending behaviour of nanoscale laminated thin plates. Mech. Compos. Mater. 52(5), 673–686 (2016). https://doi.org/10.1007/s11029-016-9616-x

    Article  Google Scholar 

  36. Fallah, A., Khorshidi, K.: The effect of nonlinear temperature distribution on the vibrational behavior of a size-dependent FG laminated rectangular plates undergoing prescribed overall motion. Polym. Compos. 40(2), 766–778 (2019). https://doi.org/10.1002/pc.24735

    Article  Google Scholar 

  37. Lu, P., He, L.H., Lee, H.P., Lu, C.: Thin plate theory including surface effects. Int. J. Solids Struct. 43(16), 4631–4647 (2006). https://doi.org/10.1016/j.ijsolstr.2005.07.036

    Article  MATH  Google Scholar 

  38. Arefi, M., Najafitabar, F.: Buckling and free vibration analyses of a sandwich beam made of a soft core with FG-GNPs reinforced composite face-sheets using Ritz Method. Thin-Walled Struct. 158, 107200 (2021). https://doi.org/10.1016/j.tws.2020.107200

    Article  Google Scholar 

  39. Behera, L., Chakraverty, S.: Effect of scaling effect parameters on the vibration characteristics of nanoplates. J. Vib. Control. 22(10), 2389–2399 (2016). https://doi.org/10.1177/1077546314547376

    Article  MathSciNet  Google Scholar 

  40. Miller, R.E., Shenoy, V.B.: Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11(3), 139–147 (2000). https://doi.org/10.1088/0957-4484/11/3/301

    Article  Google Scholar 

  41. Shenoy, V.B.: Atomistic calculations of elastic properties of metallic FCC crystal surfaces. PhRvB. 71(9), 094104 (2005). https://doi.org/10.1103/PhysRevB.71.094104

    Article  Google Scholar 

  42. Sapsathiarn, Y., Rajapakse, R.K.N.D.: Static and dynamic analyses of nanoscale rectangular plates incorporating surface energy. Acta Mech. 228(8), 2849–2863 (2017). https://doi.org/10.1007/s00707-015-1521-1

    Article  MathSciNet  MATH  Google Scholar 

  43. Zhang, X., Chen, K.S., Ghodssi, R., Ayón, A.A., Spearing, S.M.: Residual stress and fracture in thick tetraethylorthosilicate (TEOS) and silane-based PECVD oxide films. Sens. Actuator A-Phys. 91(3), 373–380 (2001). https://doi.org/10.1016/S0924-4247(01)00610-0

    Article  Google Scholar 

  44. Pauleau, Y.: Generation and evolution of residual stresses in physical vapour-deposited thin films. Vacuum 61(2), 175–181 (2001). https://doi.org/10.1016/S0042-207X(00)00475-9

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Hebei Province (A2022203025) and the Science and Technology Project of Hebei Education Department (ZD2021104).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junhua Xiao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, J., Wang, J. Variational analysis of laminated nanoplates for various boundary conditions. Acta Mech 233, 4711–4728 (2022). https://doi.org/10.1007/s00707-022-03352-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-022-03352-x

Navigation