Skip to main content

The Interfacial Shear Strength of Carbon Nanotube Sheet Modified Carbon Fiber Composites

  • Conference paper
  • First Online:
Challenges in Mechanics of Time Dependent Materials, Volume 2

Abstract

Carbon fiber reinforced polymer composites have low density and high tensile strengths. However, their compressive strengths are much lower than their corresponding tensile strengths due to fiber micro-buckling and interface failure between fiber and matrix. To address this issue, we report a method for fabricating carbon nanotube (CNT) sheet scrolled carbon fibers or fiber tows to improve the interfacial shear strengths. A CNT sheet is drawn from a drawable carbon nanotube forest grown on a silicon substrate, it is used to wrap around individual carbon fibers. The CNT wrapped carbon fiber is subsequently impregnated into a polymer to form a composite. Scanning electron micrograph shows that the wettability of CNT wrapped carbon fiber composite increases drastically in comparison with the composite without CNT, indicating significantly increased bonding between carbon fiber and polymer due to the addition of aligned CNT at the interphase. Fiber push-out and push-in nanoindentation characterization indicates increased interfacial shear strengths, consistently at over 80% with the use of wrapped aligned CNT sheet. The results from scrolling CNT sheet around individual carbon fibers to enhance compressive strengths indicate the potential performance enhancement of composites when this approach is scaledĀ up.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tang, L.G., Kardos, J.L.: A review of methods for improving the interfacial adhesion between carbon fiber and polymer matrix. Polym. Compos. 18(1), 100ā€“113 (1997)

    ArticleĀ  Google ScholarĀ 

  2. Williams, J.C., Starke Jr., E.A.: Progress in structural materials for aerospace systems. Acta Mater. 51(19), 5775ā€“5799 (2003)

    ArticleĀ  Google ScholarĀ 

  3. Soutis, C.: Carbon fiber reinforced plastics in aircraft construction. Mater. Sci. Eng. A. 412(1ā€“2), 171ā€“176 (2005)

    ArticleĀ  Google ScholarĀ 

  4. Liao, K., Schultesiz, C.R., Hunston, D.L., Brinson, L.C.: Long-term durability of fiber-reinforced polymer-matrix composite materials for infrastructure applications: a review. J. Adv. Mater. 30(4), 3ā€“40 (1998)

    Google ScholarĀ 

  5. Talreja, R.: Matrix and fiberā€“matrix interface cracking in composite materials. In: Modeling Damage, Fatigue and Failure of Composite Materials, pp. 87ā€“96. Woodhead Publishing (2016)

    Google ScholarĀ 

  6. Lu, H., Baughman, R.H., Haque, M.H., Fang, S.D.: Method of fabricating carbon nanotube sheet scrolled fiber reinforced polymer composites and compositions and uses thereof. US Patent 9,758,628, 12 Sept 2017

    Google ScholarĀ 

  7. Swadener, J.G., Liechti, K.M., De Lozanne, A.L.: The intrinsic toughness and adhesion mechanisms of a glass/epoxy interface. J. Mech. Phys. Solids. 47(2), 223ā€“258 (1999)

    ArticleĀ  Google ScholarĀ 

  8. Vodenitcharova, T., Zhang, L.C.: Bending and local buckling of a nanocomposite beam reinforced by a single-walled carbon nanotube. Int. J. Solids Struct. 43(10), 3006ā€“3024 (2006)

    ArticleĀ  Google ScholarĀ 

  9. Pantano, A., Parks, D.M., Boyce, M.C.: Mechanics of deformation of single-and multi-wall carbon nanotubes. J. Mech. Phys. Solids. 52(4), 789ā€“821 (2004)

    ArticleĀ  Google ScholarĀ 

  10. Penumadu, D., Dutta, A., Pharr, G.M., Files, B.: Mechanical properties of blended single-wall carbon nanotube composites. J. Mater. Res. 18(8), 1849ā€“1853 (2003)

    ArticleĀ  Google ScholarĀ 

  11. Moniruzzaman, M., Winey, K.I.: Polymer nanocomposites containing carbon nanotubes. Macromolecules. 39(16), 5194ā€“5205 (2006)

    ArticleĀ  Google ScholarĀ 

  12. Godara, A., Gorbatikh, L., Kalinka, G., Warrier, A., Rochez, O., Mezzo, L., et al.: Interfacial shear strength of a glass fiber/epoxy bonding in composites modified with carbon nanotubes. Compos. Sci. Technol. 70(9), 1346ā€“1352 (2010)

    ArticleĀ  Google ScholarĀ 

  13. Yumitoril, S., Araoz, Y., Tanakaz, T., Naito, K., Tanaka, K., Katayama, T.: Increasing the interfacial strength in carbon fiber/polypropylene composites by growing CNTs on the fibers. Comput. Methods Exp. Meas. XVI. 55, 275 (2013)

    ArticleĀ  Google ScholarĀ 

  14. Sager, R.J., Klein, P.J., Lagoudas, D.C., Zhang, Q., Liu, J., Dai, L., Baur, J.W.: Effect of carbon nanotubes on the interfacial shear strength of T650 carbon fiber in an epoxy matrix. Compos. Sci. Technol. 69(7ā€“8), 898ā€“904 (2009)

    ArticleĀ  Google ScholarĀ 

  15. Frankland, S.J.V., Caglar, A., Brenner, D.W., Griebel, M.: Molecular simulation of the influence of chemical cross-links on the shear strength of carbon nanotubeāˆ’ polymer interfaces. J. Phys. Chem. B. 106(12), 3046ā€“3048 (2002)

    ArticleĀ  Google ScholarĀ 

  16. Lv, P., Feng, Y.Y., Zhang, P., Chen, H.M., Zhao, N., Feng, W.: Increasing the interfacial strength in carbon fiber/epoxy composites by controlling the orientation and length of carbon nanotubes grown on the fibers. Carbon. 49(14), 4665ā€“4673 (2011)

    ArticleĀ  Google ScholarĀ 

  17. Bekyarova, E., Thostenson, E.T., Yu, A., Kim, H., Gao, J., Tang, J., et al.: Multiscale carbon nanotubeāˆ’ carbon fiber reinforcement for advanced epoxy composites. Langmuir. 23(7), 3970ā€“3974 (2007)

    ArticleĀ  Google ScholarĀ 

  18. Bekyarova, E., Thostenson, E.T., Yu, A., Itkis, M.E., Fakhrutdinov, D., Chou, T.W., Haddon, R.C.: Functionalized single-walled carbon nanotubes for carbon fiberāˆ’ epoxy composites. J. Phys. Chem. C. 111(48), 17865ā€“17871 (2007)

    ArticleĀ  Google ScholarĀ 

  19. Fan, Z., Santare, M.H., Advani, S.G.: Interlaminar shear strength of glass fiber reinforced epoxy composites enhanced with multi-walled carbon nanotubes. Compos. A: Appl. Sci. Manuf. 39(3), 540ā€“554 (2008)

    ArticleĀ  Google ScholarĀ 

  20. Kim, B.W., Nairn, J.A.: Observations of fiber fracture and interfacial debonding phenomena using the fragmentation test in single fiber composites. J. Compos. Mater. 36(15), 1825ā€“1858 (2002)

    ArticleĀ  Google ScholarĀ 

  21. Thostenson, E.T., Li, W.Z., Wang, D.Z., Ren, Z.F., Chou, T.W.: Carbon nanotube/carbon fiber hybrid multiscale composites. J. Appl. Phys. 91(9), 6034ā€“6037 (2002)

    ArticleĀ  Google ScholarĀ 

  22. Chandra, N., Ghonem, H.: Interfacial mechanics of push-out tests: theory and experiments. Compos. A: Appl. Sci. Manuf. 32(3ā€“4), 575ā€“584 (2001)

    ArticleĀ  Google ScholarĀ 

  23. Miller, B., Muri, P., Rebenfeld, L.: A microbond method for determination of the shear strength of a fiber/resin interface. Compos. Sci. Technol. 28(1), 17ā€“32 (1987)

    ArticleĀ  Google ScholarĀ 

  24. Nishikawa, M., Okabe, T., Hemmi, K., Takeda, N.: Micromechanical modeling of the microbond test to quantify the interfacial properties of fiber-reinforced composites. Int. J. Solids Struct. 45(14ā€“15), 4098ā€“4113 (2008)

    ArticleĀ  Google ScholarĀ 

  25. Xu, T., Luo, H., Xu, Z., Hu, Z., Minary-Jolandan, M., Roy, S., Lu, H.: Evaluation of the effect of thermal oxidation and moisture on the interfacial shear strength of unidirectional IM7/BMI composite by Fiber push-in nanoindentation. Exp. Mech. 58(1), 111ā€“123 (2018)

    ArticleĀ  Google ScholarĀ 

  26. Xu, Z., Chen, L., Huang, Y., Li, J., Wu, X., Li, X., Jiao, Y.: Wettability of carbon fibers modified by acrylic acid and interface properties of carbon fiber/epoxy. Eur. Polym. J. 44(2), 494ā€“503 (2008)

    ArticleĀ  Google ScholarĀ 

  27. Wang, C., Li, Y., Tong, L., Song, Q., Li, K., Li, J., et al.: The role of grafting force and surface wettability in interfacial enhancement of carbon nanotube/carbon fiber hierarchical composites. Carbon. 69, 239ā€“246 (2014)

    ArticleĀ  Google ScholarĀ 

  28. Song, W., Gu, A., Liang, G., Yuan, L.: Effect of the surface roughness on interfacial properties of carbon fibers reinforced epoxy resin composites. Appl. Surf. Sci. 257(9), 4069ā€“4074 (2011)

    ArticleĀ  Google ScholarĀ 

  29. Aliev, A.E., Oh, J., Kozlov, M.E., Kuznetsov, A.A., Fang, S., Fonseca, A.F., et al.: Giant-stroke, superelastic carbon nanotube aerogel muscles. Science. 323(5921), 1575ā€“1578 (2009)

    ArticleĀ  Google ScholarĀ 

  30. Xu, T.: Characterization and Modeling of Mechanical Behavior of Polymers and Composites at Small Scales by Nanoindentation. The University of Texas at Dallas (2017)

    Google ScholarĀ 

  31. Minnicino, M.A., Santare, M.H.: Modeling the progressive damage of the microdroplet test using contact surfaces with cohesive behavior. Compos. Sci. Technol. 72(16), 2024ā€“2031 (2012)

    ArticleĀ  Google ScholarĀ 

  32. Zidi, M., Carpentier, L., Chateauminois, A., Sidoroff, F.: Quantitative analysis of the micro-indentation behaviour of fibre-reinforced composites: development and validation of an analytical model. Compos. Sci. Technol. 60(3), 429ā€“437 (2000)

    ArticleĀ  Google ScholarĀ 

  33. RodrĆ­guez, M., Molina-AldareguĆ­a, J.M., GonzĆ”lez, C., LLorca, J.: A methodology to measure the interface shear strength by means of the fiber push-in test. Compos. Sci. Technol. 72(15), 1924ā€“1932 (2012)

    ArticleĀ  Google ScholarĀ 

  34. Molina-AldareguĆ­a, J.M., RodrĆ­guez, M., GonzĆ”lez, C., LLorca, J.: An experimental and numerical study of the influence of local effects on the application of the fibre push-in test. Philos. Mag. 91(7ā€“9), 1293ā€“1307 (2011)

    ArticleĀ  Google ScholarĀ 

  35. Medina, C., Molina-AldareguĆ­a, J.M., GonzĆ”lez, C., Melendrez, M.F., Flores, P., LLorca, J.: Comparison of push-in and push-out tests for measuring interfacial shear strength in nano-reinforced composite materials. J. Compos. Mater. 50(12), 1651ā€“1659 (2016)

    ArticleĀ  Google ScholarĀ 

  36. Mandell, J.F., Chen, J.H., McGarry, F.J.: A microdebonding test for in situ assessment of fibre/matrix bond strength in composite materials. Int. J. Adhes. Adhes. 1(1), 40ā€“44 (1980)

    ArticleĀ  Google ScholarĀ 

  37. Marshall, D.B., Oliver, W.C.: Measurement of interfacial mechanical properties in fiber-reinforced ceramic composites. J. Am. Ceram. Soc. 70(8), 542ā€“548 (1987)

    ArticleĀ  Google ScholarĀ 

  38. Kokkada, P., Roy, S., Unnikrishnan, V., Lu, H.: A Multiscale Model to Study the Enhancement in the Compressive Strength of Multi-walled CNT Sheet Overwrapped Carbon Fiber Composites, accepted for publication in Composite Structures (2019)

    Google ScholarĀ 

Download references

Acknowledgements

The authors would like to acknowledge the support of this research by the Low Density Materials Program at AFOSR, Grant No. FA9550-14-1-0227 and NSF CMMI-1636306, CMMI-1661246, and CMMI-1726435.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongyang Cao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, X. et al. (2021). The Interfacial Shear Strength of Carbon Nanotube Sheet Modified Carbon Fiber Composites. In: Silberstein, M., Amirkhizi, A. (eds) Challenges in Mechanics of Time Dependent Materials, Volume 2. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-030-59542-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59542-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59541-8

  • Online ISBN: 978-3-030-59542-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics