Skip to main content

Advertisement

Log in

Thermoelectric conversion efficiency of a two-dimensional thermoelectric plate of finite-size with a center crack

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

As a potential functional material in the energy field, the evaluation and improvement of thermoelectric conversion efficiency of thermoelectric materials have attracted widespread attention. Based on two kinds of thermoelectric coupling theories with and without considering the Thomson effect, the effect of a center crack on the thermoelectric conversion efficiency is studied for a finite two-dimensional thermoelectric plate by using the singular integral equation. The numerical solution of this thermoelectric coupling problem is obtained by using the Lobatto–Chebyshev direct numerical quadrature method. Then the electric field, temperature field, and thermoelectric conversion efficiency are also obtained numerically. In the numerical discussion, the effects of the structure size, the partially insulated coefficient, and temperature conditions on the thermoelectric conversion efficiency are also analyzed in detail. The comparison confirms that the thermoelectric conversion efficiency predicted by the thermoelectric coupling theory with the Thomson effect is different from that without the Thomson effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Snyder, G.J., Toberer, E.S.: Complex thermoelectric materials. Nat. Mater. 7(2), 105–114 (2008)

    Article  Google Scholar 

  2. Jacob, A., Rami, H.A.: A fully coupled thermal–electrical–mechanical micromodel for multi-phase periodic thermoelectrical composite materials and devices. Int. J. Solids. Struct. 80, 84–95 (2016)

    Article  Google Scholar 

  3. Surasit, T., Anh, T.D., Watcharapong, T., Yuttana, M.: Experimental investigation of the thermoelectric cooling with vacuum wall system. Energy Rep. 6(S9), 1244–1248 (2020)

    Google Scholar 

  4. Yu, J., Zhu, Q.S., Kong, L., Wang, H.Q., Zhu, H.J.: Modeling of an integrated thermoelectric generation-cooling system for thermoelectric cooler waste heat recovery. Energies 13(18), 4691–4691 (2020)

    Article  Google Scholar 

  5. Ding, T., Liu, J.R., Shi, K.Y., Hu, S.F., Yang, H.C.: Theoretical study on geothermal power generation using thermoelectric technology: a potential way to develop geothermal energy. Int. J. Green Energy 18(3), 297–307 (2021)

    Article  Google Scholar 

  6. Case, D.E.: Thermal fatigue and waste heat recovery via thermoelectrics. J. Electron. Mater. 41(6), 1811–1819 (2012)

    Article  Google Scholar 

  7. Schmidt, R.D., Case, E.D., Giles, J., Ni, J.E., Hogan, T.P.: Room-temperature mechanical properties and slow crack growth behavior of Mg2Si thermoelectric materials. J. Electron. Mater. 41(6), 1210–1216 (2012)

    Article  Google Scholar 

  8. Lamuta, C., Cupolillo, A., Politano, A., Aliev, Z.S., Babanly, M.B., Chulkov, E.V., Pagnotta, L.: Indentation fracture toughness of single-crystal Bi2Te3 topological insulators. Nano Res. 9(4), 1032–1042 (2016)

    Article  Google Scholar 

  9. Ma, J.M., Firdosy, S.A., Kaner, R.B., Fleurial, J.P., Ravi, V.A.: Hardness and fracture toughness of thermoelectric La3−xTe4. J. Mater. Sci. 49(3), 1150–1156 (2014)

    Article  Google Scholar 

  10. Zhang, A.B., Wang, B.L.: Explicit solutions of an elliptic hole or a crack problem in thermoelectric materials. ENG. FRACT. MECH. 151, 11–21 (2016)

    Article  Google Scholar 

  11. Zhang, A.B., Wang, B.L., Wang, J., Du, J.K.: Two-dimensional problem of thermoelectric materials with an elliptic hole or a rigid inclusion. Int. J. Therm. Sci. 117, 184–195 (2017)

    Article  Google Scholar 

  12. Yu, C.B., Yang, H.B., Song, K., Gao, C.F.: Stress concentration around an arbitrarily-shaped hole in nonlinear fully coupled thermoelectric materials. J. Mech. Mater. Struct. 14(2), 259–276 (2019)

    Article  MathSciNet  Google Scholar 

  13. Wang, P., Wang, B.L.: Thermoelectric fields and associated thermal stresses for an inclined elliptic hole in thermoelectric materials. Int. J. Eng. Sci. 119, 93–108 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jiang, D.D., Luo, Q.H., Liu, W., Zhou, Y.T.: Thermoelectric field disturbed by two unequal cracks adjacent to a hole in thermoelectric materials. Eng. Fract. Mech. 235, 107163 (2020)

    Article  Google Scholar 

  15. Chen, P.J., Peng, J., Chen, Z.T., Peng, G.J.: On the interfacial behavior of a piezoelectric actuator bonded to a homogeneous half plane with an arbitrarily varying graded coating. Eng. Fract. Mech. 220, 106645 (2019)

    Article  Google Scholar 

  16. Guo, W., Chen, P.J., Yu, L.Y., Peng, G.J., Zhao, Y.C., Gao, F.: Numerical analysis of the strength and interfacial behaviour of adhesively bonded joints with varying bondline thicknesses. Int. J. Adhes. Adhes. 98, 102553 (2020)

    Article  Google Scholar 

  17. Chen, P.J., Chen, S.H., Liu, H., Peng, J., Gao, F.: The interface behavior of multiple piezoelectric films attaching to a finite-thickness gradient substrate. J. Appl. Mech.-Trans. ASME 87, 011003 (2020)

    Article  Google Scholar 

  18. Zhang, A.B., Wang, B.L.: Crack tip field in thermoelectric media. Theor. Appl. Fract. Mech. 66, 33–36 (2013)

    Article  Google Scholar 

  19. Zhang, A.B., Wang, B.L.: Temperature and electric potential fields of an interface crack in a layered thermoelectric or metal/thermoelectric material. Int. J. Therm. Sci. 104, 396–403 (2016)

    Article  Google Scholar 

  20. Song, H.P., Gao, C.F., Li, J.: Two-dimensional problem of a crack in thermoelectric materials. J. Therm. Stresses 38(3), 325–337 (2015)

    Article  Google Scholar 

  21. Ding, S.H., Zhou, Y.T.: Heat conduction in multilayered thermoelectric materials with multiple cracks. Acta Mech. Sin. PRC 31(4), 512–522 (2018)

    Article  Google Scholar 

  22. Wang, P., Wang, B.L., Wang, K.F.: Dynamic response of cracked thermoelectric materials. Int. J. Mech. Sci. 160, 298–306 (2019)

    Article  Google Scholar 

  23. Song, K., Song, H.P., Schiavone, P., Gao, C.F.: Thermal stress around an elliptic hole weakened by electric current in an infinite thermoelectric plate. J. Mech. Mater. Struct. 14(1), 179–191 (2019)

    Article  MathSciNet  Google Scholar 

  24. Song, K., Song, H.P., Schiavone, P., Gao, C.F.: The influence of an arbitrarily shaped hole on the effective properties of a thermoelectric material. Acta Mech. 230(10), 3693–3702 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  25. Song, K., Yin, D.S., Schiavone, P.: Thermal-electric-elastic analyses of a thermoelectric material containing two circular holes. Int. J. Solids Struct. 213, 111–120 (2021)

    Article  Google Scholar 

  26. Song, H.P., Song, K.: Electric and thermal conductions across a crack in a thermoelectric material. J. Theor. Appl. Mech-Pol. 46(1), 83–98 (2016)

    Article  Google Scholar 

  27. Wang, Y.Z.: Effective material properties of thermoelectric composites with elliptical fibers. Appl. Phys. A Mater. 119(3), 1081–1085 (2015)

    Article  Google Scholar 

  28. Wang, P., Wang, K.F., Wang, B.L., Cui, Y.J.: Effective thermoelectric conversion properties of thermoelectric composites containing a crack/hole. Compos. Struct. 191, 180–189 (2018)

    Article  Google Scholar 

  29. Zhang, A.B., Wang, B.L., Wang, J., Du, J.K., Xie, C., Jin, Y.A.: Thermodynamics analysis of thermoelectric materials: influence of cracking on efficiency of thermoelectric conversion. Appl. Therm. Eng. 127, 1442–1450 (2017)

    Article  Google Scholar 

  30. Zhang, A.B., Wang, B.L., Wang, J., Du, J.K., Xie, C.: Effect of cracking on the thermoelectric conversion efficiency of thermoelectric materials. J. Appl. Phys. 121, 045105 (2017)

    Article  Google Scholar 

  31. Shi, P.P.: Interaction between the doubly periodic interfacial cracks in a layered periodic composite: Simulation by the method of singular integral equation. Theor. Appl. Fract. Mech. 78, 25–39 (2015)

    Article  Google Scholar 

  32. Li, X.F.: Closed-form solution for a mode-III interface crack between two bonded dissimilar elastic layers. Int. J. Fract. 109(2), 3–8 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

The work is supported by the National Natural Science Foundation of China [Grant Nos. 11802225, 12272195] and the Natural Science Basic Research Plan in the Shaanxi Province of China [Program No. 2019JQ-261].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pengpeng Shi or Xing Li.

Ethics declarations

Conflict of interest

The authors declare that there is no Conflict of Interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Solving the crack problem without the Thomson effect

Appendix A: Solving the crack problem without the Thomson effect

Since the electric field analysis is completely consistent, only the temperature field analysis is given here. The solutions [30] to the temperature governing equation (4b) can be obtained by the Fourier transform

$$\begin{aligned} T^{ \pm } \left( {x,y} \right) & = \frac{{T_{10} - T_{20} }}{h}y + \frac{{T_{10} h_{2} + T_{20} h_{1} }}{h} + \sum\limits_{n = 1}^{\infty } {\sum\limits_{m = 1}^{2} {\sin \left( {\delta^{ \pm } s_{n}^{ \pm } y} \right)} } \exp \left( {s_{n}^{ \pm } x\lambda_{m} } \right)E_{mn}^{ \pm } \\ & \quad + \frac{2}{\pi }\int_{0}^{\infty } {\sum\limits_{m = 1}^{2} {\cos \left( {sx} \right)} } \exp \left( {\delta^{ \pm } sy\gamma_{m} } \right)F_{m}^{ \pm } {\text{d}}s, \\ \end{aligned}$$
(56)

where \(s_{{_{n} }}^{ + } = \frac{n\pi }{{h_{1} }},s_{{_{n} }}^{ - } = \frac{n\pi }{{h_{2} }},\gamma_{1} = \lambda_{1} = - 1,\gamma_{2} = \lambda_{2} = 1,\delta^{ \pm } = \left\{ {\begin{array}{*{20}c} 1 & {y > 0} \\ { - 1} & {y < 0} \\ \end{array} } \right.\), \(E_{mn}^{ \pm }\) and \(F_{m}^{ \pm }\) are the unknown constants.

The energy flux can be expressed as

$$\begin{gathered} j_{uy}^{ \pm } \left( {x,y} \right) = j_{u0}^{\prime } - \sum\limits_{n = 1}^{\infty } {\sum\limits_{m = 1}^{2} {s_{n}^{ \pm } \delta^{ \pm } \cos \left( {\delta^{ \pm } s_{n}^{ \pm } y} \right)} } \exp \left( {s_{n}^{ \pm } x\lambda_{m} } \right)\left[ {\beta \sigma A_{mn}^{ \pm } + \kappa E_{mn}^{ \pm } } \right] \\\quad- \frac{2}{\pi }\sum\limits_{m = 1}^{2} {\gamma_{m} } \delta^{ \pm } \int_{0}^{\infty } {s\cos \left( {sx} \right)} exp\left( {\delta^{ \pm } sy\gamma_{m} } \right)\left[ {\beta \sigma B_{m}^{ \pm } + \kappa F_{m}^{ \pm } } \right]{\text{d}}s, \\ \end{gathered}$$
(57)
$$\begin{gathered} j_{ux}^{ \pm } \left( {x,y} \right) = - \sum\limits_{n = 1}^{\infty } {\sum\limits_{m = 1}^{2} {s_{{_{n} }}^{ \pm } \lambda_{m} \sin \left( {\delta^{ \pm } s_{n}^{ \pm } y} \right)} } \exp \left( {s_{n}^{ \pm } x\lambda_{m} } \right)\left[ {\beta \sigma A_{mn}^{ \pm } + \kappa E_{mn}^{ \pm } } \right] \\ \quad +\frac{2}{\pi }\sum\limits_{m = 1}^{2} {\int_{0}^{\infty } {ssin\left( {sx} \right)} exp\left( {\delta^{ \pm } sy\gamma_{m} } \right)\left[ {\beta \sigma B_{m}^{ \pm } + \kappa F_{m}^{ \pm } } \right]{\text{d}}s}, \\ \end{gathered}$$
(58)

where \(j_{u0}^{\prime } = - \beta \sigma \frac{{F_{10} - F_{20} }}{h} - \kappa \frac{{T_{10} - T_{20} }}{h}\).

Similar to the case of thermoelectric coupling theory with considering the Thomson effect, \(k_{0} (x)\) is introduced:

$$k_{0} \left( x \right) = \left\{ {\begin{array}{*{20}c} {\frac{\partial }{\partial x}\left[ {T\left( {x, + 0} \right) - T\left( {x, - 0} \right)} \right]} & \quad {\left| x \right| \le a}, \\ 0 & \,\,\,\,{\left| x \right| > a}. \\ \end{array} } \right.$$
(59)

By using the boundary conditions (8d), (9b) and (10b), the singular integral equation expressed by the unknown function \(k_{0} (x)\) can be obtained as

$$\frac{{j_{u0}^{\prime } - \beta j_{e0} }}{\kappa } = \frac{1}{\pi }\int_{ - a}^{a} {k_{0} } \left( r \right)\left[ {\frac{1}{{2\left( {r - x} \right)}} + M_{0} \left( {r,x} \right)} \right]{\text{d}}r.$$
(60)

The expression of \(M_{0} (r,x)\) in Eq. (60) is consistent with the expression in Eq. (20). The solvability condition for Eq. (60) is

$$\frac{1}{\pi }\int_{ - 1}^{1} {k_{0} \left( r \right){\text{d}}r} = 0.$$
(61)

Once \(k_{0} (x)\) is determined by Eqs. (60) and (61), the entire temperature field in the case of thermoelectric coupling theory without considering the Thomson effect can be solved.

Equations (60) and (61) can be standardized by \(r = as\) and \(x = at\) [31]. The equations can be rewritten as

$$\left\{ \begin{gathered} \frac{{2(j_{u0}^{\prime } - \beta j_{e0} )}}{\kappa } = \frac{1}{\pi }\int_{ - 1}^{1} {K\left( s \right)\left[ {\frac{1}{{a\left( {s - t} \right)}} + \chi \left( {as,at} \right)} \right]{\text{d}}s} \hfill \\ \frac{1}{\pi }\int_{ - 1}^{1} {K\left( s \right){\text{d}}s} = 0 \hfill \\ \end{gathered} \right.$$
(62)

where \(K(s) = k_{0} (as)\), \(\chi (s,t) = 2M_{0} (as,at)\), \(K\left( s \right) = \frac{{2(j_{u0}^{\prime } - \beta j_{e0} )}}{a\kappa }\frac{\vartheta \left( s \right)}{{\sqrt {1 - s^{2} } }}\).

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, P., Qin, W., Li, X. et al. Thermoelectric conversion efficiency of a two-dimensional thermoelectric plate of finite-size with a center crack. Acta Mech 233, 4785–4803 (2022). https://doi.org/10.1007/s00707-022-03348-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-022-03348-7

Navigation