Skip to main content

Advertisement

Log in

Hardness and fracture toughness of thermoelectric La3−x Te4

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Lanthanum telluride (La3−x Te4) is a state-of-the-art n-type high temperature thermoelectric material that behaves as a weak and brittle ceramic. Vickers microindentation hardness testing was explored as a rapid analysis technique to characterize the mechanical properties of this material. An indentation size effect was observed with hardness values ranging from 439 ± 31 kgf/mm2 (0.01 kgf/10 s contact time) to 335 ± 6 kgf/mm2 (0.5 kgf/10 s contact time). The Vickers indentation fracture toughness, K VIF, based on measurements of crack lengths emanating from the corners of the Vickers indents was 0.70 ± 0.06 MPa m1/2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yang J, Caillat T (2006) MRS Bull J 31:224

    Article  CAS  Google Scholar 

  2. Fleurial J-P (2009) J Manag 61:79. doi:10.1007/s11837-009-0057-z

    CAS  Google Scholar 

  3. Snyder GJ, Toberer ES (2008) Nat Mater 7:105

    Article  PubMed  CAS  ADS  Google Scholar 

  4. ASTM (2010) ASTM Standard, ASTM C1421 - 10 standard test methods for determination of fracture toughness of advanced ceramics at ambient temperature. doi: 10.1520/C1421-10

  5. ASTM (2011) ASTM Standard, ASTM E1820 - 11 standard test method for measurement of fracture toughness. doi: 10.1520/E1820-11

  6. ASTM (2002) ASTM Standard, ASTM C1211 - 02 standard test method for flexural strength of advanced ceramics at elevated temperatures

  7. ASTM (2009) ASTM Standard, ASTM C 1499-09 standard test method for monotonic equibiaxial flexural strength of advanced ceramics at ambient temperature

  8. Gladden JR, Li G, Adebisi R et al (2010) Phys Rev B 82:1. doi:10.1103/PhysRevB.82.045209

    Google Scholar 

  9. Duan B, Zhai P, Wen P, Zhang S (2012) Scr Mater 67:372. doi:10.1016/j.scriptamat.2012.05.028

    Article  CAS  Google Scholar 

  10. Ueno K, Yamamoto A, Noguchi T et al (2004) J Alloy Compd 384:254

    Article  CAS  Google Scholar 

  11. Ueno K, Yamamoto A, Noguchi T et al (2005) Mech Prop 388:118. doi:10.1016/j.jallcom.2004.07.005

    CAS  Google Scholar 

  12. Ueno K, Yamamoto A, Noguchi T et al (2005) J Alloy Compd 392:295. doi:10.1016/j.jallcom.2004.08.078

    Article  CAS  Google Scholar 

  13. Ravi V, Firdosy S, Caillat T et al (2008) AIP Conf Proc 969:656. doi:10.1063/1.2845027

    Article  ADS  Google Scholar 

  14. Firdosy SA, Ravi VA, Li B et al (2013) In: 11th international energy conversion engineering conference. doi:10.2514/6.2013-3929

  15. Palmqvist S (1957) Jernkontorets Ann 141:300

    Google Scholar 

  16. Palmqvist S (1962) Arch Eisenhuettenwes 33:629

    Google Scholar 

  17. Palmqvist S (1963) Jernkontorets Ann 147:107

    Google Scholar 

  18. Lawn B, Wilshaw R (1975) J Mater Sci 10:1049. doi:10.1007/BF00823224

    Article  ADS  Google Scholar 

  19. Lawn BR, Swain MV (1975) J Mater Sci 10:113. doi:10.1007/BF00541038

    Article  CAS  ADS  Google Scholar 

  20. Lawn BR, Fuller ER (1975) J Mater Sci 10:2016. doi:10.1007/BF00557479

    Article  CAS  ADS  Google Scholar 

  21. Evans AG (1979) In: Proceedings of the 11th National Symposium on fracture mechanics: Part II. ASTM, pp 112–135

  22. Lankford J (1982) J Mater Sci Lett 1:493

    Article  CAS  Google Scholar 

  23. Spiegler R, Schmauder S, Sigl LS (1990) J Hard Mater 1:147

    CAS  Google Scholar 

  24. Shetty DK, Wright IG, Mincer PN, Clauer AH (1985) J Mater Sci 20:1873. doi:10.1007/BF00555296

    Article  CAS  ADS  Google Scholar 

  25. Niihara K (1983) J Mater Sci Lett 2:221

    Article  CAS  Google Scholar 

  26. Gilman JJ (2009) Chemistry and physics of mechanical hardness. Wiley-Interscience, Hoboken

    Book  Google Scholar 

  27. Evans AG, Charles EA (1976) J Am Ceram Soc 59:371. doi:10.1111/j.1151-2916.1976.tb10991.x

    Article  CAS  Google Scholar 

  28. Zhao L-D, Zhang B-P, Li J-F et al (2008) J Alloy Compd 455:259. doi:10.1016/j.jallcom.2007.01.015

    Article  CAS  Google Scholar 

  29. Ren F, Ni JE, Case ED, et al. (2007) MRS Proceedings. doi: 10.1557/PROC-1044-U04-04

  30. May A, Fleurial J, Snyder G (2008) Phys Rev B 78:1. doi:10.1103/PhysRevB.78.125205

    Google Scholar 

  31. ASTM (2010) ASTM Standard, ASTM E122-10 standard test methods for determining average grain size

  32. Ponton C, Rawlings R (1989) Mater Sci Technol 5:961

    Article  CAS  Google Scholar 

  33. Cox WL, Steinfink H, Bradley WF (1965) Inorg Chem 5:318

    Article  Google Scholar 

  34. ASTM (2008) ASTM Standard, ASTM C1327 - 08 standard test method for vickers indentation hardness of advanced ceramics. doi: 10.1520/C1327-08

  35. Ren F, Case ED, Timm EJ, Schock HJ (2008) J Alloy Compd 455:340. doi:10.1016/j.jallcom.2007.01.086

    Article  CAS  Google Scholar 

  36. Crocker AJ, Wilson M (1978) J Mater Sci 13:833. doi:10.1007/BF00570520

    Article  CAS  ADS  Google Scholar 

  37. Rogl G, Rogl P (2011) Sci Adv Mater 3:517. doi:10.1166/sam.2011.1181

    Article  CAS  Google Scholar 

  38. Kallel AC, Roux G, Martin CL (2013) Mater Sci Eng A 564:65

    Article  CAS  Google Scholar 

  39. Pharr GM, Herbert EG, Gao Y (2010) Annu Rev Mater Res 40:271. doi:10.1146/annurev-matsci-070909-104456

    Article  CAS  ADS  Google Scholar 

  40. Farges G, Degout D (1989) Thin Sol Films 181:365. doi:10.1016/0040-6090(89)90505-1

    Article  ADS  Google Scholar 

  41. Sangwal K (2009) Cryst Res Technol 44:1019. doi:10.1002/crat.200900385

    Article  CAS  Google Scholar 

  42. Gong J, Wu J, Guan Z (1999) J Eur Ceram Soc 19:2625

    Article  CAS  Google Scholar 

  43. Shu JY, Fleck NA (1998) Int J Sol Struct 35:1363. doi:10.1016/S0020-7683(97)00112-1

    Article  MATH  Google Scholar 

  44. Gerberich WW, Tymiak NI, Grunlan JC et al (2002) J Appl Mech 69:433. doi:10.1115/1.1469004

    Article  CAS  MATH  Google Scholar 

  45. Gouldstone A, Chollacoop N, Dao M et al (2007) Acta Mater 55:4015. doi:10.1016/j.actamat.2006.08.044

    Article  CAS  Google Scholar 

  46. Lawn BR, Marshall DB (1979) J Am Ceram Soc 62:347

    Article  CAS  Google Scholar 

  47. Quinn GD (2007) Fractography of ceramics and glasses. National Institute of Standards and Technology, Washington, DC

    Google Scholar 

  48. Quinn GD, Bradt RC (2007) J Am Ceram Soc 680:673. doi:10.1111/j.1551-2916.2006.01482.x

    Article  Google Scholar 

  49. Ponton C, Rawlings R (1989) Mater Sci Technol 5:865

    Article  Google Scholar 

  50. Wiederhorn SM (1969) J Am Ceram Soc 1968:99

    Article  Google Scholar 

  51. Ni JE, Case ED, Khabir KN et al (2010) Mater Sci Eng B 170:58. doi:10.1016/j.mseb.2010.02.026

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mr. Kevin Smith for experimental assistance and Dr. Sabah K. Bux for helpful discussions. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. This work was supported by the NASA Science Mission Directorate’s Radioisotope Power Systems Technology Advancement Program, the NSF IGERT: Materials Creation Training Program (MCTP) – DGE-0654431, and the California NanoSystems Institute. Copyright 2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vilupanur A. Ravi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, J.M., Firdosy, S.A., Kaner, R.B. et al. Hardness and fracture toughness of thermoelectric La3−x Te4 . J Mater Sci 49, 1150–1156 (2014). https://doi.org/10.1007/s10853-013-7794-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7794-7

Keywords

Navigation