Skip to main content
Log in

Nonlinear analysis of sandwich plate with FG porous core and RD-CNTCFRC face sheets under transverse patch loading

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Nonlinear bending analysis of a sandwich plate with randomly distributed carbon nanotube and carbon fiber-reinforced composite (RD-CNTCFRC) face sheets and functionally graded (FG) porous core subjected to transverse patch loading is performed in the present work. The mechanical properties of the hybrid matrix, which is formed after mixing of single-walled carbon nanotubes and polymer epoxy, are estimated using Eshelby–Mori–Tanaka techniques. Subsequently, the rule of mixture technique is employed to compute the mechanical properties of RD-CNTCFRC face sheets. The mechanical properties of a functionally graded porous core are determined considering both the open-cell and closed-cell metal foam. Utilizing the mechanical properties of RD-CNTCFRC face sheets and FG porous core, the effective properties of RD-CNTCFRC porous sandwich plate are estimated. The sandwich plate is modeled based on higher-order shear deformation theory in conjunction with von Kármán geometric nonlinearity, and subsequently minimization of potential energy is employed to obtain the partial differential equations (PDEs). PDEs are solved using Galerkin’s method and reduced to nonlinear algebraic equations (NAEs). Later, these NAEs are solved via Newton–Raphson method to analyze the nonlinear bending behavior of the RD-CNTCFRC porous sandwich plate using various parameters which can help in suitable design of sandwich plates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

\(E_{1}^{\phi }\) :

Longitudinal modulus of elasticity of carbon fiber

\(E_{2}^{\phi }\) and \(E_{3}^{\phi }\) :

Transverse Young’s moduli of carbon fiber

\(S_{12}^{\phi }\) and \(S_{13}^{\phi }\) :

Longitudinal shear moduli of carbon fiber

\(S_{23}^{\phi }\) :

Transverse shear modulus of carbon fiber

\(\nu_{12}^{\phi }\) and \(\nu_{13}^{\phi }\) :

Longitudinal Poisson’s ratios of carbon fiber

\(\nu_{23}^{\phi }\) :

Transverse Poisson’s ratio of carbon fiber

\(\rho_{\phi }\) :

Density of carbon fiber

\(m_{r}\) :

Mass of SWCNTs

\(m_{ep}\) :

Mass of epoxy

\(m_{\phi }\) :

Mass of carbon fiber

\(w_{\phi }\) = \(m_{\phi }\)/(\(m_{\phi }\) + \(m_{r}\) + \(m_{ep}\)):

Mass fraction of the carbon fiber

\(w_{r}\) = \(m_{r}\)/ (\(m_{r}\) + \(m_{ep} )\) :

Mass fraction of CNTs

\(w_{ep}\) = \(m_{ep}\)/ (\(m_{r}\) + \(m_{ep} )\) :

Mass fraction of epoxy

\(E_{1f }\) :

Longitudinal modulus of elasticity of RD-CNTCFRC lamina

\(E_{2f}\) and \(E_{3f}\) :

Transverse Young’s moduli of RD-CNTCFRC lamina

\(\nu_{12f}\) and \(\nu_{13f}\) :

Longitudinal Poisson’s ratios of RD-CNTCFRC lamina

\(\nu_{23f}\) :

Transverse Poisson’s ratio of RD-CNTCFRC lamina

\(S_{12f}\) and \(S_{13f}\) :

Longitudinal shear moduli of RD-CNTCFRC lamina

\(S_{23f}\) :

Transverse shear modulus of RD-CNTCFRC lamina

\(e_{0}\) :

Porosity coefficient

\(\nu_{c}\) :

Maximum Poisson’s ratio of porous core

References

  1. Argyris, J., Tenek, L.: Linear and geometrically nonlinear isotropic and multilayered composite natural mode method. Comput. Methods Appl. Mech. Eng. 113, 207–251 (1994)

    Article  MATH  Google Scholar 

  2. Lim, S.P., Lee, K.H., Chow, S.T., Senthilnathan, N.R.: Linear and nonlinear bending of shear-deformable plates. Comput. Struct. 30, 945–952 (1988)

    Article  MATH  Google Scholar 

  3. Bert, C.W., Jang, S.K., Striz, A.G.: Nonlinear bending analysis of orthotropic rectangular plates by the method of differential quadrature. Comput. Mech. 5, 217–226 (1989). https://doi.org/10.1007/BF01046487

    Article  MATH  Google Scholar 

  4. Subramanian, P.: A higher order theory for bending of isotropic plates. Comput. Struct. 49, 199–204 (1993). https://doi.org/10.1016/0045-7949(93)90138-4

    Article  MATH  Google Scholar 

  5. Iyengar, K.T.S.R., Naqvi, M.M.: Large deflections of rectangular plates. Int. J. Non. Linear. Mech. 1, 109–122 (1966). https://doi.org/10.1016/0020-7462(66)90024-2

    Article  MATH  Google Scholar 

  6. Watts, G., Singha, M.K., Pradyumna, S.: Nonlinear bending analysis of isotropic plates supported on Winkler foundation using element free Galerkin method. Int. J. Struct. Civ. Eng. Res. 4, 301–307 (2015). https://doi.org/10.18178/ijscer.4.4.301-307

    Article  Google Scholar 

  7. Shen, H.S.: Non-linear bending of shear deformable laminated plates under lateral pressure and thermal loading and resting on elastic foundations. J. Strain Anal. Eng. Des. 35, 93–108 (2000). https://doi.org/10.1243/0309324001514053

    Article  Google Scholar 

  8. Li, J.J., Cheng, C.J.: Differential quadrature method for bending of orthotropic plates with finite deformation and transverse shear effects. Appl. Math. Mech. (English Ed.) 25, 878–886 (2004). https://doi.org/10.1007/bf02438794

    Article  MATH  Google Scholar 

  9. Alamatian, J., Golmakani, M.E.: Large deflection analysis of the moderately thick general theta ply laminated plates on nonlinear elastic foundation with various boundary conditions. Mech. Res. Commun. 51, 78–85 (2013). https://doi.org/10.1016/j.mechrescom.2013.05.003

    Article  Google Scholar 

  10. Malekzadeh, P., Setoodeh, A.R.: Large deformation analysis of moderately thick laminated plates on nonlinear elastic foundations by DQM. Compos. Struct. 80, 569–579 (2007). https://doi.org/10.1016/j.compstruct.2006.07.004

    Article  Google Scholar 

  11. Malekzadeh, P., Farid, M.: A DQ large deformation analysis of composite plates on nonlinear elastic foundations. Compos. Struct. 79, 251–260 (2007). https://doi.org/10.1016/j.compstruct.2006.01.004

    Article  Google Scholar 

  12. Shen, H.-S.: Hygrothermal effects on the nonlinear bending of shear deformable laminated plates. J. Eng. Mech. 128, 493–496 (2002)

    Google Scholar 

  13. Shen, H.S.: Nonlinear bending analysis of unsymmetric cross-ply laminated plates with piezoelectric actuators in thermal environments. Compos. Struct. 63, 167–177 (2004). https://doi.org/10.1016/S0263-8223(03)00145-4

    Article  Google Scholar 

  14. Urthaler, Y., Reddy, J.N.: A mixed finite element for the nonlinear bending analysis of laminated composite plates based on FSDT. Mech. Adv. Mater. Struct. 15, 335–354 (2008). https://doi.org/10.1080/15376490802045671

    Article  Google Scholar 

  15. Ansari, R., Hassani, R., Faraji Oskouie, M., Rouhi, H.: Nonlinear bending analysis of hyperelastic Mindlin plates: a numerical approach. Acta Mech. 232, 741–760 (2021). https://doi.org/10.1007/s00707-020-02756-x

    Article  MathSciNet  MATH  Google Scholar 

  16. Fu, Y.M., Chia, C.Y.: Nonlinear bending and vibration of symmetrically laminated orthotropic elliptical plate with simply supported edge. Acta Mech. 74, 155–170 (1988). https://doi.org/10.1007/BF01194348

    Article  MATH  Google Scholar 

  17. Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)

    Article  Google Scholar 

  18. García-Macías, E., Rodríguez-Tembleque, L., Castro-Triguero, R., Sáez, A.: Eshelby-Mori-Tanaka approach for post-buckling analysis of axially compressed functionally graded CNT/polymer composite cylindrical panels. Compos. Part B Eng. 128, 208–224 (2017). https://doi.org/10.1016/j.compositesb.2017.07.016

    Article  Google Scholar 

  19. Gojny, F.H., Wichmann, M.H.G., Köpke, U., Fiedler, B., Schulte, K.: Carbon nanotube-reinforced epoxy-composites: enhanced stiffness and fracture toughness at low nanotube content. Compos. Sci. Technol. 64, 2363–2371 (2004). https://doi.org/10.1016/j.compscitech.2004.04.002

    Article  Google Scholar 

  20. Shi, D.L., Feng, X.Q., Huang, Y.Y., Hwang, K.C., Gao, H.: The effect of nanotube waviness and agglomeration on the elastic property of carbon nanotube-reinforced composites. J. Eng. Mater. Technol. Trans. ASME. 126, 250–257 (2004). https://doi.org/10.1115/1.1751182

    Article  Google Scholar 

  21. Tornabene, F., Michele, B., Fantuzzi, N., Reddy, J.N.: Multiscale approach for three-phase CNT/polymer/fiber laminated nanocomposite structures. Polym. Compos. 1–25 (2017)

  22. Liew, K.M., Lei, Z.X., Zhang, L.W.: Mechanical analysis of functionally graded carbon nanotube reinforced composites: a review. Compos. Struct. 120, 90–97 (2015). https://doi.org/10.1016/j.compstruct.2014.09.041

    Article  Google Scholar 

  23. Zhang, L.W., Song, Z.G., Liew, K.M.: Nonlinear bending analysis of FG-CNT reinforced composite thick plates resting on Pasternak foundations using the element-free IMLS-Ritz method. Compos. Struct. 128, 165–175 (2015). https://doi.org/10.1016/j.compstruct.2015.03.011

    Article  Google Scholar 

  24. Lei, Z.X., Liew, K.M., Yu, J.L.: Large deflection analysis of functionally graded carbon nanotube-reinforced composite plates by the element-free kp-Ritz method. Comput. Methods Appl. Mech. Eng. 256, 189–199 (2013). https://doi.org/10.1016/j.cma.2012.12.007

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhang, L.W.: Geometrically nonlinear large deformation of CNT-reinforced composite plates with internal column supports. J. Model. Mech. Mater. (2016). https://doi.org/10.1515/jmmm-2016-0154

    Article  Google Scholar 

  26. Heydari, M.M., Hafizi Bidgoli, A., Golshani, H.R., Beygipoor, G., Davoodi, A.: Nonlinear bending analysis of functionally graded CNT-reinforced composite Mindlin polymeric temperature-dependent plate resting on orthotropic elastomeric medium using GDQM. Nonlinear Dyn. 79, 1425–1441 (2015). https://doi.org/10.1007/s11071-014-1751-0

    Article  Google Scholar 

  27. Vinh, P.V., Son, L.T.: A new first-order mixed beam element for static bending analysis of functionally graded graphene oxide powder-reinforced composite beams. Structures. 36, 463–472 (2022). https://doi.org/10.1016/j.istruc.2021.12.032

    Article  Google Scholar 

  28. Ansari, R., Hassani, R., Gholami, R., Rouhi, H.: Nonlinear bending analysis of arbitrary-shaped porous nanocomposite plates using a novel numerical approach. Int. J. Non. Linear. Mech. (2020). https://doi.org/10.1016/j.ijnonlinmec.2020.103556

    Article  Google Scholar 

  29. Chen, D., Yang, J., Kitipornchai, S.: Buckling and bending analyses of a novel functionally graded porous plate using Chebyshev-Ritz method. Arch. Civ. Mech. Eng. 19, 157–170 (2019). https://doi.org/10.1016/j.acme.2018.09.004

    Article  Google Scholar 

  30. Magnucki, K., Malinowski, M., Kasprzak, J.: Bending and buckling of a rectangular porous plate. Steel Compos. Struct. 6, 319–333 (2006). https://doi.org/10.12989/scs.2006.6.4.319

    Article  Google Scholar 

  31. Miloud, K., Kaci, A., Bousahla, A.A., Tounsi, A., Bourada, F., Tounsi, A., Bedia, E.A.A., Al-Osta, M.A.: A study on the structural behaviour of functionally graded porous plates on elastic foundation using a new quasi-3D model: Bending and free vibration analysis. Comput. Concr. 25, 37–57 (2020). https://doi.org/10.12989/cac.2020.25.1.037

    Article  Google Scholar 

  32. Tung, P.T., Long, N.V., Tu, T.M., Phuong, N.T.B., Hai, L.T., Long, T.N.: Nonlinear bending analysis of fgp plates under various boundary conditions using an analytical approach. Structures. 34, 4803–4813 (2021). https://doi.org/10.1016/j.istruc.2021.10.042

    Article  Google Scholar 

  33. Kazemi, M.: Experimental analysis of sandwich composite beams under three-point bending with an emphasis on the layering effects of foam core. Structures. 29, 383–391 (2021). https://doi.org/10.1016/j.istruc.2020.11.048

    Article  Google Scholar 

  34. Yoosefian, A.R., Golmakani, M.E., Sadeghian, M.: Nonlinear bending of functionally graded sandwich plates under mechanical and thermal load. Commun. Nonlinear Sci. Numer. Simul. (2020). https://doi.org/10.1016/j.cnsns.2019.105161

    Article  MathSciNet  MATH  Google Scholar 

  35. Pi, Z., Zhou, Z., Deng, Z., Wang, S.: Bending and buckling of circular sandwich plates with a hardened core. Materials (Basel) (2021). https://doi.org/10.3390/ma14164741

    Article  Google Scholar 

  36. Dey, T., Kumar, R., Panda, S.K.: Postbuckling and postbuckled vibration analysis of sandwich plates under non-uniform mechanical edge loadings. Int. J. Mech. Sci. 115–116, 226–237 (2016). https://doi.org/10.1016/j.ijmecsci.2016.06.025

    Article  Google Scholar 

  37. Li, R., Kardomateas, G.A.: Nonlinear high-order core theory for sandwich plates with orthotropic phases. AIAA J. 46, 2926–2934 (2008). https://doi.org/10.2514/1.37430

    Article  Google Scholar 

  38. Mahi, A., Adda Bedia, E.A., Tounsi, A.: A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates. Appl. Math. Model. 39, 2489–2508 (2015). https://doi.org/10.1016/j.apm.2014.10.045

    Article  MathSciNet  MATH  Google Scholar 

  39. Renchuan, Y., Zhao, N., Yang, D., Cui, J., Gaidai, O., Ren, P.: Bending and free vibration analysis of sandwich plates with functionally graded soft core, using the new refined higher-order analysis model. J. Sandw. Struct. Mater. 23, 680–710 (2021). https://doi.org/10.1177/1099636220909763

    Article  Google Scholar 

  40. Tian, A., Ye, R., Chen, Y.: A new higher order analysis model for sandwich plates with flexible core. J. Compos. Mater. 50, 949–961 (2016). https://doi.org/10.1177/0021998315584650

    Article  Google Scholar 

  41. Wang, Z.X., Shen, H.S.: Nonlinear vibration and bending of sandwich plates with nanotube-reinforced composite face sheets. Compos. Part B Eng. 43, 411–421 (2012). https://doi.org/10.1016/j.compositesb.2011.04.040

    Article  Google Scholar 

  42. Vaghefi, R.: Nonlinear bending of FG skew sandwich plates with temperature-dependent elastoplastic properties using an enhanced 3D meshless approach. Acta Mech. 233, 1599–1631 (2022). https://doi.org/10.1007/s00707-022-03175-w

    Article  MathSciNet  MATH  Google Scholar 

  43. Fallah, F., Taati, E.: On the nonlinear bending and post-buckling behavior of laminated sandwich cylindrical shells with FG or isogrid lattice cores. Acta Mech. 230, 2145–2169 (2019). https://doi.org/10.1007/s00707-019-02385-z

    Article  MathSciNet  MATH  Google Scholar 

  44. Reza Barati, M., Zenkour, A.M.: Post-buckling analysis of refined shear deformable graphene platelet reinforced beams with porosities and geometrical imperfection. Compos. Struct. 181, 194–202 (2017). https://doi.org/10.1016/j.compstruct.2017.08.082

    Article  Google Scholar 

  45. Barati, M.R., Zenkour, A.M.: Investigating post-buckling of geometrically imperfect metal foam nanobeams with symmetric and asymmetric porosity distributions. Compos. Struct. 182, 91–98 (2017). https://doi.org/10.1016/j.compstruct.2017.09.008

    Article  Google Scholar 

  46. Singh, V., Kumar, R., Jain, V., Naveen Kumar, T., Patel, S.N.: Semianalytical development of dynamic instability and response of a multiscale laminated hybrid composite plate. J. Aerosp. Eng. 34, 04021005-(1-21) (2021). Doi:https://doi.org/10.1061/(asce)as.1943-5525.0001244

  47. Tornabene, F., Bacciocchi, M., Fantuzzi, N., Reddy, J.N.: Multiscale approach for three-phase CNT/polymer/fiber laminated nanocomposite structures. 1–25 (2019). https://doi.org/10.1002/pc.24520

  48. Tam, D.K.Y., Ruan, S., Gao, P., Yu, T.: High-performance ballistic protection using polymer nanocomposites. Adv. Mil. Text. Pers. Equip. 213–237 (2012). https://doi.org/10.1533/9780857095572.2.213

  49. Chen, D., Yang, J., Kitipornchai, S.: Elastic buckling and static bending of shear deformable functionally graded porous beam. Compos. Struct. 133, 54–61 (2015). https://doi.org/10.1016/j.compstruct.2015.07.052

    Article  Google Scholar 

  50. Reddy, J.N., Liu, C.F.: A higher-order shear deformation theory of laminated elastic shells. Int. J. Eng. Sci. 23, 319–330 (1985)

    Article  MATH  Google Scholar 

  51. Soldatos, K.P.: A refined laminated plate and shell theory with applications. J. Sound Vib. 144, 109–129 (1991). https://doi.org/10.1016/0022-460X(91)90736-4

    Article  Google Scholar 

  52. Jones, R.M.: Mechanics of Composite Materials (1975)

  53. Chamis, C.C.: Simplified composite micromechanics equations for hygral, thermal and mechanical properties. In: Proceedings of the 38th ACS Plastics Industry Reinforced Plastics Institute, Texas USA, Inc. Houston (1983)

  54. Wang, C.T.: Bending of rectangular plates with large deflection. Tech. Note 1462, National Advis. Comm. Aeronaut. (1984)

  55. Zhang, Y.X., Kim, K.S.: Geometrically nonlinear analysis of laminated composite plates by two new displacement-based quadrilateral plate elements. Compos. Struct. 72, 301–310 (2006). https://doi.org/10.1016/j.compstruct.2005.01.001

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh Kumar.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

The Fourier series expansion is adopted to derive the generalized analytical expansion for the transverse patch loading in both x- and y-directions, which is multiplied later to form a square patch loading (pressure). Transverse patch loading is applied at different locations and with different concentrations to analyze the RD-CNTCFRC porous sandwich plate for nonlinear bending behavior. The unloaded part of the plate’s width is considered as zero in the domain. As per Fig. 

Fig. 12
figure 12

Generalized case of transverse patch loading in the x and y-direction

12, the functions for the general case of transverse patch loading are stated in Eqs. (8587), where ‘\({x}_{c}\)’ and ‘\({y}_{c}\)’ are the center of loading from mid of the width in both ‘x’ and ‘y’ direction, respectively. The final form of the generalized patch loading applied as pressure on the top of the plate’s surface is obtained by multiplying the individual equations for transverse patch loading derived for x-direction and y-direction separately.

The generalized transverse loading along x-direction is given as:

$$q\left( x \right) \, = 0 - \frac{a}{2} < x < x_{c} - \frac{{a_{1} }}{2},$$
(85)
$$q\left( x \right){ } = q_{0} \cdot x_{c} - \frac{{a_{1} }}{2} < x < x_{c} + \frac{{a_{1} }}{2},$$
(86)
$$q\left( x \right) \, = 0\;x_{c} + \frac{{a_{1} }}{2} < x < \frac{a}{2}$$
(87)

where \({a}_{1}\) denotes the length of the patch loading area in the x-direction. The above transverse loading along the x-direction is expressed in the total length of the plate via Fourier series:

$$q\left( x \right){ } = { }\frac{{a_{0} }}{2} + \mathop \sum \limits_{i = 1}^{\infty } a_{i} {\text{cos}}\zeta_{i} x + \mathop \sum \limits_{i = 1}^{\infty } b_{i} {\text{sin}}\zeta_{i} x$$
(88)

where

$$\begin{aligned} a_{0} { } & = { }\frac{2}{a}\mathop \int \limits_{ - a/2}^{a/2} q_{0} {\text{d}}y, \\ a_{0} { } & = { }\frac{2}{a}\mathop \int \limits_{ - a/2}^{{x_{c} - \frac{{a_{1} }}{2}}} q_{0} {\text{d}}x + { }{ }\frac{2}{a}\mathop \int \limits_{{x_{c} - \frac{{a_{1} }}{2}}}^{{x_{c} + \frac{{a_{1} }}{2}}} q_{0} {\text{d}}x + { }\frac{2}{a}\mathop \int \limits_{{x_{c} + \frac{{a_{1} }}{2}}}^{\frac{a}{2}} q_{0} {\text{d}}x \\ & = { }\frac{2}{a}\mathop \int \limits_{{x_{c} - \frac{{a_{1} }}{2}}}^{{x_{c} + \frac{{a_{1} }}{2}}} q_{0} {\text{d}}x, \\ a_{0} { } & = { }\frac{2}{a}q_{0} a_{1}. \\ \end{aligned}$$
(89)

Again,

$$\begin{aligned} a_{i} { } & = { }\frac{2}{a}\mathop \int \limits_{ - a/2}^{\frac{a}{2}} q_{0} {\text{cos}}\zeta_{i} x {\text{d}}x = { }\frac{2}{a}\mathop \int \limits_{ - a/2}^{{x_{c} - \frac{{a_{1} }}{2}}} q_{0} {\text{cos}}\zeta_{i} x {\text{d}}x + { }\frac{2}{a}\mathop \int \limits_{{x_{c} - \frac{{a_{1} }}{2}}}^{{x_{c} + \frac{{a_{1} }}{2}}} q_{0} {\text{cos}}\zeta_{i} x {\text{d}}x + { }\frac{2}{a}\mathop \int \limits_{{x_{c} + \frac{{a_{1} }}{2}}}^{\frac{a}{2}} q_{0} {\text{cos}}\zeta_{i} x {\text{d}}x \\ & = { }\frac{2}{a}\mathop \int \limits_{{x_{c} - \frac{{a_{1} }}{2}}}^{{x_{c} + \frac{{a_{1} }}{2}}} q_{0} {\text{cos}}\zeta_{i} x{\text{d}}x ,\\ a_{i} & = { }\frac{{2q_{0} }}{{a\beta_{i} }}\left[ {{\text{sin}}\zeta_{i} \left( {x_{c} + \frac{{a_{1} }}{2}} \right) - {\text{sin}}\zeta_{i} \left( {x_{c} - \frac{{a_{1} }}{2}} \right)} \right], \\ \end{aligned}$$
(90)

Similarly,

$$\begin{aligned} b &_{i} { } = { }\frac{2}{a}\mathop \int \limits_{ - a/2}^{\frac{a}{2}} q_{0} {\text{sin}}\zeta_{i} x{\text{d}}x \\ & = { }\frac{2}{a}\mathop \int \limits_{ - a/2}^{{x_{c} - \frac{{a_{1} }}{2}}} q_{0} {\text{sin}}\zeta_{i} x{\text{ d}}x + { }\frac{2}{a}\mathop \int \limits_{{x_{c} - \frac{{a_{1} }}{2}}}^{{x_{c} + \frac{{a_{1} }}{2}}} q_{0} {\text{sin}}\zeta_{i} x dx + { }\frac{2}{a}\mathop \int \limits_{{x_{c} + \frac{{a_{1} }}{2}}}^{\frac{a}{2}} q_{0} {\text{sin}}\zeta_{i} x {\text{d}}x \\ & = { }\frac{2}{a}\mathop \int \limits_{{x_{c} - \frac{{a_{1} }}{2}}}^{{x_{c} + \frac{{a_{1} }}{2}}} q_{0} {\text{sin}}\zeta_{i} x {\text{d}}x, \\ b_{i} & = { } - \frac{{2q_{0} }}{{a\beta_{i} }}\left[ {{\text{cos}}\zeta_{i} \left( {x_{c} + \frac{{a_{1} }}{2}} \right) - {\text{cos}}\zeta_{i} \left( {x_{c} - \frac{{a_{1} }}{2}} \right)} \right]. \\ \end{aligned}$$
(91)

Thus, using (88), (89), (90), and (91), we get

$$q\left( x \right) = { }\frac{{q_{0} a_{1} }}{a} + \mathop \sum \limits_{i = 1}^{\infty } \frac{{2q_{0} }}{{a\zeta_{i} }}\left[ {{\text{sin}}\zeta_{i} \left( {x_{c} + \frac{{a_{1} }}{2}} \right) - {\text{sin}}\zeta_{i} \left( {x_{c} - \frac{{a_{1} }}{2}} \right)} \right]{\text{cos}}\zeta_{i} x - \mathop \sum \limits_{i = 1}^{\infty } \frac{{2q_{0} }}{{a\zeta_{i} }}\left[ {{\text{cos}}\zeta_{i} \left( {x_{c} + \frac{{a_{1} }}{2}} \right) - {\text{cos}}\zeta_{i} \left( {x_{c} - \frac{{a_{1} }}{2}} \right)} \right]{\text{sin}}\zeta_{i} x,$$
(92)

Similarly, the generalized transverse loading along y-direction is expressed as:

$$q\left( y \right) = { }\frac{{q_{0} b_{1} }}{b} + \mathop \sum \limits_{j = 1}^{\infty } \frac{{2q_{0} }}{{b\xi_{j} }}\left[ {{\text{sin}}\xi_{j} \left( {y_{c} + \frac{{b_{1} }}{2}} \right) - {\text{sin}}\xi_{j} \left( {y_{c} - \frac{b}{2}} \right)} \right]{\text{cos}}\xi_{j} y - \mathop \sum \limits_{j = 1}^{\infty } \frac{{2q_{0} }}{{b\xi_{j} }}\left[ {{\text{cos}}\xi_{j} \left( {y_{c} + \frac{{b_{1} }}{2}} \right) - {\text{cos}}\xi_{j} \left( {y_{c} - \frac{{b_{1} }}{2}} \right)} \right]{\text{sin}}\xi_{j} y.$$
(93)

Thus, the final generalized patch loading on the total area of the plate in the transverse direction of the RD-CNTCFRC plate is defined using Eqs. (92) and (93),

$$\begin{aligned} & q\left( {x, y} \right) = \left( \frac{{q_{0} a_{1} }}{a} + \mathop \sum \limits_{i = 1}^{\infty } \frac{{2q_{0} }}{{a\zeta_{i} }}\left[ {\sin \zeta_{i} \left( {x_{c} + \frac{{a_{1} }}{2}} \right) - \sin \zeta_{i} \left( {x_{c} - \frac{{a_{1} }}{2}} \right)} \right]\cos \zeta_{i} x \right. \\ & \quad \left. - \mathop \sum \limits_{i = 1}^{\infty } \frac{{2q_{0} }}{{a\zeta_{i} }}\left[ {\cos \zeta_{i} \left( {x_{c} + \frac{{a_{1} }}{2}} \right) - \cos \zeta_{i} \left( {x_{c} - \frac{{a_{1} }}{2}} \right)} \right]\sin \zeta_{i} x \right) \\ & \quad \times \left( \frac{{q_{0} b_{1} }}{b} + \mathop \sum \limits_{j = 1}^{\infty } \frac{{2q_{0} }}{{b\xi_{j} }}\left[ {\sin \xi_{j} \left( {y_{c} + \frac{{b_{1} }}{2}} \right) - \sin \xi_{j} \left( {y_{c} - \frac{b}{2}} \right)} \right]\cos \xi_{j} y \right.\\ &\quad -\left. \mathop \sum \limits_{j = 1}^{\infty } \frac{{2q_{0} }}{{b\xi_{j} }}\left[ {\cos \xi_{j} \left( {y_{c} + \frac{{b_{1} }}{2}} \right) - \cos \xi_{j} \left( {y_{c} - \frac{{b_{1} }}{2}} \right)} \right]\sin \xi_{j} y \right) ,\\ \end{aligned}$$
(94)

where, \(\zeta_{i} = \frac{2\pi i}{a}\) and \(\xi_{j} = \frac{2\pi j}{b}\).

The final expression for generalized transverse patch loading becomes

$$q\left( {x,y} \right) = \left( {\frac{{q_{0} ab}}{{a_{1} b_{1} }}} \right) \times \left( {\begin{array}{*{20}c} {\frac{{a_{1} }}{a} + \mathop \sum \limits_{i = 1}^{\infty } \frac{1}{\pi i} \left( {\sin \zeta_{i} \left( {x_{c} + \frac{{a_{1} }}{2}} \right) - {\text{sin}}\zeta_{i} \left( {x_{c} - \frac{{a_{1} }}{2}} \right)} \right)cos\zeta_{i} x } \\ { - \mathop \sum \limits_{i = 1}^{\infty } \frac{1}{\pi i} \left( {\cos \zeta_{i} \left( {x_{c} + \frac{{a_{1} }}{2}} \right) - {\text{cos}}\zeta_{i} \left( {x_{c} - \frac{{a_{1} }}{2}} \right)} \right)sin\zeta_{i} x} \\ \end{array} } \right) \times \left( {\begin{array}{*{20}c} {\frac{{b_{1} }}{b} + \mathop \sum \limits_{j = 1}^{\infty } \frac{1}{\pi j} \left( {\sin \xi_{j} \left( {y_{c} + \frac{{b_{1} }}{2}} \right) - {\text{sin}}\xi_{j} \left( {y_{c} - \frac{{b_{1} }}{2}} \right)} \right)cos\xi_{j} y } \\ { - \mathop \sum \limits_{j = 1}^{\infty } \frac{1}{\pi j} \left( {\cos \xi_{j} \left( {y_{c} + \frac{{b_{1} }}{2}} \right) - {\text{cos}}\xi_{j} \left( {y_{c} - \frac{{b_{1} }}{2}} \right)} \right)sin\xi_{j} y} \\ \end{array} } \right)$$
(95)

where \(\left( {\frac{ab}{{a_{1} b_{1} }}} \right)\) is multiplied to keep the same amount of total load in all the cases, although the size of patch loading is varied by varying the values of \(a_{1}\) and \(b_{1}\).

Appendix B

The nonlinear governing partial differential equations of the RD-CNTCFRC porous sandwich plate in terms of displacements (u0, v0, w0) and rotation (\(\phi_{x}^{0}\), \(\phi_{y}^{0}\)) variables are given below:

$$A_{11} u_{,xx}^{0} + A_{66} u_{,yy}^{0} + \left( {A_{12} + A_{66} } \right)v_{,xy}^{0} - \left\{ {B_{11} w_{,xxx}^{0} + \left( {B_{12} + 2B_{66} } \right)w_{,xyy}^{0} } \right\} + \left( {C_{11} \phi_{x,xx}^{0} + C_{66} \phi_{x,yy}^{0} } \right) + \left( {C_{12} + C_{66} } \right)\phi_{y,xy}^{0} + \left( {A_{11} w_{,xx}^{0} + A_{66} w_{,yy}^{0} } \right)w_{,x}^{0} + \left( {A_{12} + A_{66} } \right)w_{,y}^{0} w_{,xy}^{0} 0 = 0,$$
(96)
$$\left( {A_{12} + A_{66} } \right)u_{,xy}^{0} + A_{66} v_{,xx}^{0} + A_{22} v_{,yy}^{0} - \left\{ {B_{22} w_{,yyy}^{0} + \left( {B_{12} + 2B_{66} } \right)w_{,xxy}^{0} } \right\} + \left( {C_{12} + C_{66} } \right)\phi_{x,xy}^{0} + \left( {C_{22} \phi_{y,yy}^{0} + C_{66} \phi_{y,xx}^{0} } \right) + \left( {A_{22} w_{,yy}^{0} + A_{66} w_{,xx}^{0} } \right)w_{,y}^{0} + \left( {A_{12} + A_{66} } \right)w_{,x}^{0} w_{,xy}^{0} = 0,$$
(97)
$$\begin{aligned} & B_{11} \left\{ {u_{,xxx}^{0} + w_{,x}^{0} w_{,xxy}^{0} + \left( {w_{,xx}^{0} } \right)^{2} } \right\} + B_{12} \left\{ {v_{,xxy}^{0} + u_{,xxy}^{0} + w_{,x}^{0} w_{,xyy}^{0} + w_{,y}^{0} w_{,xxy}^{0} + 2\left( {w_{,xy}^{0} } \right)^{2} } \right\} \\ & \quad + B_{22} \left\{ {v_{,yyy}^{0} + w_{,y}^{0} w_{,yyy}^{0} + \left( {w_{,yy}^{0} } \right)^{2} } \right\} \\ & \quad + 2B_{66} \left\{ {u_{,xyy}^{0} + v_{,xxy}^{0} + w_{,x}^{0} w_{,xxy}^{0} + w_{,yy}^{0} w_{,xx}^{0} + w_{,y}^{0} w_{,xxy}^{0} + \left( {w_{,xy}^{0} } \right)^{2} } \right\} - D_{11} w_{,xxxx}^{0} \\ & \quad - 2D_{12} w_{,xxyy}^{0} - D_{22} w_{,yyyy}^{0} - 4D_{66} w_{,xxyy}^{0} + E_{11} \phi_{x,xxx}^{0} + E_{12} \left( {\phi_{x,xyy}^{0} + \phi_{y,xxy}^{0} } \right) \\ & \quad + E_{22} \phi_{y,yyy}^{0} + 2E_{66} \left( {\phi_{x,xyy}^{0} + \phi_{y,xxy}^{0} } \right) \\ & \quad + w_{,xx}^{0} \left( {A_{11} q_{1} + A_{12} r_{1} + B_{11} q_{2} + B_{12} r_{2} + C_{11} q_{3} + C_{12} r_{3} } \right) \\ & \quad + w_{,x}^{0} \left( {A_{11} q_{1,x} + A_{12} r_{1,x} + B_{11} q_{2,x} + B_{12} r_{2,x} + C_{11} q_{3} ,x + C_{12} r_{3,x} } \right) - n_{xx,x} w_{,x}^{0} \\ & \quad + 2w_{,xy}^{0} \left( {A_{66} s_{1} + B_{66} s_{3} + C_{66} s_{3} } \right) + w_{,x}^{0} \left( {A_{66} s_{1,y} + B_{66} s_{3,y} + C_{66} s_{3,y} } \right) \\ & \quad + w_{,y}^{0} \left( {A_{66} s_{1,x} + B_{66} s_{3,x} + C_{66} s_{3,x} } \right) \\ & \quad + w_{,yy}^{0} \left( {A_{12} q_{1} + A_{22} r_{1} + B_{12} q_{2} + B_{22} r_{2} + C_{12} q_{3} + C_{22} r_{3} } \right) \\ & \quad + w_{,y}^{0} \left( {A_{12} q_{1,y} + A_{22} r_{1,y} + B_{12} q_{2,y} + B_{22} r_{2,y} + C_{12} q_{3,y} + C_{22} r_{3,y} } \right) = Q\left( {x,y} \right) \\ \end{aligned}$$
(98)

where \(q_{1} = u_{,x}^{0} + 0.5\left( {w_{,x}^{0} } \right)^{2} ;r_{1} = v_{,x}^{0} + 0.5\left( {w_{,y}^{0} } \right)^{2} ;s_{1,x} = u_{,x}^{0} + v_{,x}^{0} + w_{,x}^{0} w_{,y}^{0}\); \(q_{2} = - w_{,xx}^{0}; r_{2} = - w_{,yy}^{0};\,s_{2} =2w_{,xy}^{0}\); \(q_{3} = \phi_{x,x}^{0} ;r_{3} = \phi_{y,y}^{0} ;s_{3} = \phi_{x,y}^{0} + \phi_{y,x}^{0};\)

$$\begin{aligned} & \left( {C_{12} + C_{66} } \right)u_{,xy}^{0} + \left( {C_{22} v_{,yy}^{0} + C_{66} v_{,xx}^{0} } \right) + \left( {C_{12} + C_{66} } \right)w_{,x}^{0} w_{,xy}^{0} + \left( {C_{22} w_{,yy}^{0} + C_{66} w_{,xx}^{0} } \right)w_{,y}^{0} - E_{22} w_{,yyy}^{0} \\ & \quad - \left( {E_{12} + 2E_{66} } \right)w_{,xxy}^{0} + F_{66} \phi_{y,xx}^{0} + F_{22} \phi_{y,yy}^{0} + \left( {F_{12} + F_{66} } \right)\phi_{x,xy}^{0} - H_{44} \phi_{y}^{0} = 0 ,\\ \end{aligned}$$
(99)
$$\begin{aligned} & \left( {C_{11} u_{,xx}^{0} + C_{66} u_{,yy}^{0} } \right) + \left( {C_{12} + C_{66} } \right)v_{,xy}^{0} + \left( {C_{11} w_{,xx}^{0} + C_{66} w_{,yy}^{0} } \right)w_{,x}^{0} + \left( {C_{12} + C_{66} } \right)w_{,y}^{0} w_{,xy}^{0} \\ & \quad - E_{11} w_{,xxx}^{0} - \left( {E_{12} + 2E_{66} } \right)w_{,xyy}^{0} + F_{11} \phi_{x,xx}^{0} + F_{66} \phi_{x,yy}^{0} + \left( {F_{12} + F_{66} } \right)\phi_{y,xy}^{0} - H_{55} \phi_{x}^{0} = 0. \\ \end{aligned}$$
(100)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R., Singh, V., Dey, T. et al. Nonlinear analysis of sandwich plate with FG porous core and RD-CNTCFRC face sheets under transverse patch loading. Acta Mech 233, 4589–4614 (2022). https://doi.org/10.1007/s00707-022-03323-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-022-03323-2

Navigation