Skip to main content
Log in

On the nonlinear bending and post-buckling behavior of laminated sandwich cylindrical shells with FG or isogrid lattice cores

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The nonlinear governing equations of three shell theories (Donnell, Love, and Sanders) with first-order approximation and von Kármán’s geometric nonlinearity for laminated sandwich cylindrical shells with isotropic, functionally graded (FG) or isogrid lattice layers are decoupled. This uncoupling makes it possible to present a semi-analytical solution for the nonlinear bending and post-buckling behavior of short and long doubly simply supported, doubly clamped, and cantilever laminated sandwich cylindrical shells subjected to various types of thermo-mechanical loadings. The results for deflection, stress, critical axial traction, and mode shapes in FG shells are verified with those obtained from ABAQUS code. Finally, the case studies are presented for FG shells and laminated sandwich shells with different layups such as \([\hbox {Al; ZrO}_2]\), \([\hbox {Al; FG core; ZrO}_2]\), \([\hbox {Al; Gr; ZrO}_2]\), \([\hbox {Al; Gr; FG core; ZrO}_2]\), \([\hbox {Al; isogrid lattice core; Al}]\). The closed-form solutions presented here for the kinetic parameters and critical axial loading in a nonlinear analysis can be used in the conceptual design of laminated sandwich cylindrical shells with arbitrary layups and boundary conditions. Furthermore, introducing an equivalent Young’s modulus through the shell thickness, a simple formula is presented for the calculation of critical load in long shells with simple and clamped ends under axial loading with a maximum error of 10%. Moreover, findings show that the boundary-layer type behavior is seen only in long cylindrical shells in the pre-buckling region. Under thermal loading, snap-through buckling is observed in clamped shells. However, in simply supported shells by increasing the temperature, the transverse deflection increases, and while \(\Delta T-w/h\) curves do not show any buckling phenomenon, the \(N^{0}/N_{\mathrm{cr}}^{*} -\Delta T\) curves show such a behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Reddy, J.N.: Mechanics of Laminated Composite Plates and Shells: Theory and Analysis. CRC Press, Boca Raton (2004)

    Book  MATH  Google Scholar 

  2. Shiota, I., Miyamoto, Y. (eds.): Functionally Graded Materials 1996. Elsevier, Amsterdam (1997)

    Google Scholar 

  3. Witvrouw, A., Mehta, A.: The use of functionally graded poly-SiGe layers for MEMS applications. Mater. Sci. Forum 492, 255–260 (2005)

    Article  Google Scholar 

  4. Ghayesh, M.H., Farokhi, H., Gholipour, A., Tavallaeinejad, M.: Nonlinear oscillations of functionally graded microplates. Int. J. Eng. Sci. 122, 56–72 (2018)

    Article  MATH  Google Scholar 

  5. Ghayesh, M.H.: Nonlinear vibration analysis of axially functionally graded shear-deformable tapered beams. Appl. Math. Modell. 59, 583–596 (2018)

    Article  MathSciNet  Google Scholar 

  6. Ghayesh, M.H.: Dynamics of functionally graded viscoelastic microbeams. Int. J. Eng. Sci. 124, 115–131 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ghayesh, M.H.: Functionally graded microbeams: simultaneous presence of imperfection and viscoelasticity. Int. J. Mech. Sci. 140, 339–350 (2018)

    Article  Google Scholar 

  8. Ghayesh, M.H., Farokhi, H., Gholipour, A.: Oscillations of functionally graded microbeams. Int. J. Eng. Sci. 110, 35–53 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Vasiliev, V., Morozov, E.V.: Advanced mechanics of composite materials and structural elements, 3rd edn. Elsevier, Newnes (2013)

  10. Galletly, G.D., Aylward, R.W., Bushnell, D.: An experimental and theoretical investigation of elastic and elastic-plastic asymmetric buckling of cylinder-cone combinations subjected to uniform external pressure. Arch. Appl. Mech. 43(6), 345–358 (1974)

    Google Scholar 

  11. Bisagni, C.: Experimental buckling of thin composite cylinders in compression. AIAA J. 37, 276–278 (1999)

    Article  Google Scholar 

  12. Teng, J.G., Rotter, J.M. (eds.): Buckling of Thin Metal Shells. CRC Press, Boca Raton (2006)

    Google Scholar 

  13. Donnell, E.H., Ohio, A.: A new theory for the buckling of thin cylinders under axial compression and bending. Trans. ASME 56, 795–806 (1934)

    Google Scholar 

  14. Sanders, L.J.: Nonlinear theories for thin shells. Q. Appl. Math. 21, 21–36 (1963)

    Article  MathSciNet  Google Scholar 

  15. Koiter, W.T.: On the nonlinear theory of thin elastic shells. In: Proceedings Koniklijke Nederlands Akademie van Wetenschappen, pp. 1–54 (1966)

  16. Yiotis, A.J., Katsikadelis, J.T.: Buckling of cylindrical shell panels: a MAEM solution. Arch. Appl. Mech. 85(9–10), 1545–1557 (2015)

    Article  MATH  Google Scholar 

  17. Kazemi, E., Darvizeh, M., Darvizeh, A., Ansari, R.: An investigation of the buckling behavior of composite elliptical cylindrical shells with piezoelectric layers under axial compression. Acta Mech. 223(10), 2225–2242 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Liang, K., Ruess, M.: Nonlinear buckling analysis of the conical and cylindrical shells using the SGL strain based reduced order model and the PHC method. Aerosp. Sci. Technol. 55, 103–110 (2016)

    Article  Google Scholar 

  19. Mikhasev, G., Botogova, M.: Effect of edge shears and diaphragms on buckling of thin laminated medium-length cylindrical shells with low effective shear modulus under external pressure. Acta Mech. 228(6), 2119–2140 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Bagheri, M., Jafari, A.A., Sadeghifar, M.: A genetic algorithm optimization of ring-stiffened cylindrical shells for axial and radial buckling loads. Arch. Appl. Mech. 81(11), 1639–1649 (2011)

    Article  MATH  Google Scholar 

  21. Ghayesh, M.H., Farokhi, H.: Chaotic motion of a parametrically excited microbeam. Int. J. Eng. Sci. 96, 34–45 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ghayesh, M.H., Farokhi, H., Hussain, S.: Viscoelastically coupled size-dependent dynamics of microbeams. Int. J. Eng. Sci. 109, 243–255 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ghayesh, M.H., Farokhi, H.: Nonlinear dynamics of microplates. Int. J. Eng. Sci. 86, 60–73 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ghayesh, M.H., Amabili, M., Farokhi, H.: Nonlinear forced vibrations of a microbeam based on the strain gradient elasticity theory. Int. J. Eng. Sci. 63, 52–60 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Farokhi, H., Ghayesh, M.H.: Supercritical nonlinear parametric dynamics of Timoshenko microbeams. Commun. Nonlinear Sci. Numer. Simul. 59, 592–605 (2018)

    Article  MathSciNet  Google Scholar 

  26. Shen, H.S.: Postbuckling analysis of axially-loaded functionally graded cylindrical shells in thermal environments. Compos. Sci. Technol. 62, 977–987 (2002)

    Article  Google Scholar 

  27. Shen, H.S.: Postbuckling analysis of pressure-loaded functionally graded cylindrical shells in thermal environments. Eng. Struct. 25, 487–497 (2003)

    Article  Google Scholar 

  28. Shen, H.S.: Thermal postbuckling behavior of functionally graded cylindrical shells with temperature-dependent properties. Int. J. Solids Struct. 41, 1961–1974 (2004)

    Article  MATH  Google Scholar 

  29. Shen, H.S., Noda, N.: Postbuckling of FGM cylindrical shells under combined axial and radial mechanical loads in thermal environments. Int. J. Solids Struct. 42, 4641–4662 (2005)

    Article  MATH  Google Scholar 

  30. Shen, H.S.: Thermal postbuckling of shear deformable FGM cylindrical shells with temperature-dependent properties. Mech. Adv. Mater. Struct. 14, 439–452 (2007)

    Article  Google Scholar 

  31. Shen, H.S.: Postbuckling of axially loaded FGM hybrid cylindrical shells in thermal environments. Compos. Sci. Technol. 65, 1675–1690 (2005)

    Article  Google Scholar 

  32. Shen, H.S., Noda, N.: Postbuckling of pressure-loaded FGM hybrid cylindrical shells in thermal environments. Compos. Struct. 77, 546–560 (2007)

    Article  Google Scholar 

  33. Huang, H., Han, Q.: Nonlinear buckling and postbuckling of heated functionally graded cylindrical shells under combined axial compression and radial pressure. Int. J. Non-Linear Mech. 44, 209–218 (2009)

    Article  MATH  Google Scholar 

  34. Huang, H., Han, Q.: Research on nonlinear postbuckling of functionally graded cylindrical shells under radial loads. Compos. Struct. 92, 1352–1357 (2010)

    Article  Google Scholar 

  35. Soltanieh, G., Kabir, M.Z., Shariyat, M.: Snap instability of shallow laminated cylindrical shells reinforced with functionally graded shape memory alloy wires. Compos. Struct. 180, 581–595 (2017)

    Article  Google Scholar 

  36. Dung, D.V., Nga, N.T., Hoa, L.K.: Nonlinear stability of functionally graded material (FGM) sandwich cylindrical shells reinforced by FGM stiffeners in thermal environment. Appl. Math. Mech. 38(5), 647–670 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  37. Dung, D.V., Nga, N.T., Vuong, P.M.: Nonlinear stability analysis of stiffened functionally graded material sandwich cylindrical shells with general Sigmoid law and power law in thermal environment using third-order shear deformation theory. J. Sandw. Struct. Mater 21, 938–972 (2019)

    Article  Google Scholar 

  38. Huang, H., Han, Q.: Buckling of imperfect functionally graded cylindrical shells under axial compression. Eur. J. Mech. A/Solids 27, 1026–1036 (2008)

    Article  MATH  Google Scholar 

  39. Huang, H., Han, Q.: Nonlinear buckling of torsion-loaded functionally graded cylindrical shells in thermal environment. Eur. J. Mech. A/Solids 29, 42–48 (2010)

    Article  MathSciNet  Google Scholar 

  40. Huang, H., Han, Q., Feng, N., Fan, X.: Buckling of functionally graded cylindrical shells under combined loads. Mech. Adv. Mater. Struct. 18, 337–346 (2011)

    Article  Google Scholar 

  41. Huang, H., Han, Q., Wei, D.: Buckling of FGM cylindrical shells subjected to pure bending load. Compos. Struct. 93, 2945–2952 (2011)

    Article  Google Scholar 

  42. Shahsiah, R., Eslami, M.R.: Thermal buckling of functionally graded cylindrical shell. AIAA J. 41(9), 1819–1826 (2003)

    Article  Google Scholar 

  43. Wu, L., Jiang, Z., Liu, J.: Thermoelastic stability of functionally graded cylindrical shells. Compos. Struct. 70, 60–68 (2005)

    Article  Google Scholar 

  44. Sofiyev, A.H., Kuruoglu, N.: Parametric instability of shear deformable sandwich cylindrical shells containing an FGM core under static and time dependent periodic axial loads. Int. J. Mech. Sci. 101, 114–123 (2015)

    Article  Google Scholar 

  45. Mohammadzadeh, R., Najafizadeh, M.M., Nejati, M.: Buckling of 2D-FG cylindrical shells under combined external pressure and axial compression. Adv. Appl. Math. Mech. 5(3), 391–406 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  46. Allahkarami, F., Satouri, S., Najafizadeh, M.M.: Mechanical buckling of two-dimensional functionally graded cylindrical shells surrounded by Winkler–Pasternak elastic foundation. Mech. Adv. Mater. Struct. 23(8), 873–887 (2016)

    Article  Google Scholar 

  47. Lopatin, A.V., Morozov, E.V.: Buckling of the composite sandwich cylindrical shell with clamped ends under uniform external pressure. Compos. Struct. 122, 209–216 (2015)

    Article  Google Scholar 

  48. Sun, F., Fan, H., Zhou, C., Fang, D.: Equivalent analysis and failure prediction of quasi-isotropic composite sandwich cylinder with lattice core under uniaxial compression. Compos. Struct. 101, 180–190 (2013)

    Article  Google Scholar 

  49. Xiong, J., Ghosh, R., Ma, L., Vaziri, A., Wang, Y., Wu, L.: Sandwich-walled cylindrical shells with lightweight metallic lattice truss cores and carbon fiber-reinforced composite face sheets. Compos. Part A Appl. Sci. Manuf. 56, 226–238 (2014)

    Article  Google Scholar 

  50. Ghahfarokhi, D.S., Rahimi, G.: An analytical approach for global buckling of composite sandwich cylindrical shells with lattice cores. Int. J. Solids Struct. 146, 69–79 (2018)

    Article  Google Scholar 

  51. Fallah, F., Taati, E., Asghari, M.: Decoupled stability equation for buckling analysis of FG and multilayered cylindrical shells based on the first-order shear deformation theory. Compos. Part B Eng. 154, 225–241 (2018)

    Article  Google Scholar 

  52. Shen, H.S.: A Two-Step Perturbation Method in Nonlinear Analysis of Beams, Plates and Shells. Wiley, New York (2013)

    Book  MATH  Google Scholar 

  53. Kaplan, W.: Operational Methods for Linear Systems. Addison-Wesley Pub. Co, Boston (1962)

    MATH  Google Scholar 

  54. Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. Courier Corporation, Mineola (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Famida Fallah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fallah, F., Taati, E. On the nonlinear bending and post-buckling behavior of laminated sandwich cylindrical shells with FG or isogrid lattice cores. Acta Mech 230, 2145–2169 (2019). https://doi.org/10.1007/s00707-019-02385-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-019-02385-z

Navigation